8.
OGEE: an online gene essentiality database.
2012 Jan 10; 40(Database issue): D901-6. Epub 2011 Nov 10; PubMed:
22075992.Abstract + PDF
OGEE is an Online GEne Essentiality database. Its main purpose is to enhance our understanding of the essentiality of genes. This is achieved by collecting not only experimentally tested essential and non-essential genes, but also associated gene features such as expression profiles, duplication status, conservation across species, evolutionary origins and involvement in embryonic development. We focus on large-scale experiments and complement our data with text-mining results. Genes are organized into data sets according to their sources. Genes with variable essentiality status across data sets are tagged as conditionally essential, highlighting the complex interplay between gene functions and environments. Linked tools allow the user to compare gene essentiality among different gene groups, or compare features of essential genes to non-essential genes, and visualize the results. OGEE is freely available at http://ogeedb.embl.de.
7.
Annotation of the M. tuberculosis Hypothetical Orfeome: Adding Functional Information to More than Half of the Uncharacterized Proteins.
Abstract + PDF
The genome of Mycobacterium tuberculosis (H37Rv) contains 4,019 protein coding genes, of which more than thousand have been categorized as 'hypothetical' implying that for these not even weak functional associations could be identified so far. We here predict reliable functional indications for half of this large hypothetical orfeome: 497 genes can be annotated based on orthology, and another 125 can be linked to interacting proteins via integrated genomic context analysis and literature mining. The assignments include newly identified clusters of interacting proteins, hypothetical genes that are associated to well known pathways and putative disease-relevant targets. All together, we have raised the fraction of the proteome with at least some functional annotation to 88% which should considerably enhance the interpretation of large-scale experiments targeting this medically important organism.
6.
Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments.
García-Alonso L, Alonso R, Vidal E, Amadoz A, de María A, Minguez P, Medina I, Dopazo J
2012 Jul 27; [Epub ahead of print] PubMed:
22844098.Abstract
Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein-protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We performed an exhaustive study of network parameters that allowed us concluding that the average number of components and the average number of nodes per component are the parameters that best discriminate between real and random networks. A novel aspect that increases the efficiency of this strategy in finding sub-networks is that, in addition to direct connections, also connections mediated by intermediate nodes are considered to build up the sub-networks. The possibility of using of such intermediate nodes makes this approach more robust to noise. It also overcomes some limitations intrinsic to experimental designs based on differential expression, in which some nodes are invariant across conditions. The proposed approach can also be used for candidate disease-gene prioritization. Here, we demonstrate the usefulness of the approach by means of several case examples that include a differential expression analysis in Fanconi Anemia, a genome-wide association study of bipolar disorder and a genome-scale study of essentiality in cancer genes. An efficient and easy-to-use web interface (available at http://www.babelomics.org) based on HTML5 technologies is also provided to run the algorithm and represent the network.
5.
Deciphering a global network of functionally associated post-translational modifications.
Abstract + PDF
Various post-translational modifications (PTMs) fine-tune the functions of almost all eukaryotic proteins, and co-regulation of different types of PTMs has been shown within and between a number of proteins. Aiming at a more global view of the interplay between PTM types, we collected modifications for 13 frequent PTM types in 8 eukaryotes, compared their speed of evolution and developed a method for measuring PTM co-evolution within proteins based on the co-occurrence of sites across eukaryotes. As many sites are still to be discovered, this is a considerable underestimate, yet, assuming that most co-evolving PTMs are functionally associated, we found that PTM types are vastly interconnected, forming a global network that comprise in human alone >50 000 residues in about 6000 proteins. We predict substantial PTM type interplay in secreted and membrane-associated proteins and in the context of particular protein domains and short-linear motifs. The global network of co-evolving PTM types implies a complex and intertwined post-translational regulation landscape that is likely to regulate multiple functional states of many if not all eukaryotic proteins.