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Abstract

Motivation: We present a new concept that combines data
storage and data analysis in genome research, based on an
associative network memory. As an illustration, 115 000
conserved regions from over 73 000 published sequences
(i.e. from the entire annotated part of the SMSSPROT
sequence database) were identified and clustered by a
self-organizing network. Smilarity and kinship, as well as
degree of distance between the conserved protein segments,
arevisualized as neighborhood rel ationship on a two-dimen-
sional topographical map.

Results: Such a display overcomes the restrictions of linear
list processing and allows local and global sequence
relationshipsto be studied visually. Families are memorized
as prototype vectors of conserved regions. On a massive
parallel machine, clustering and updating of the database
take only a few seconds; a rapid analysis of incoming data
such as protein sequences or ESTs is carried out on
present-day workstations.

Availability: Access to the database is available at
http: //Amww.bi oi nf.mdc-berlin.de/unter 2.html

Contact: (hanke,|lehmann,reich)@mdc-berlinde; bork@embl-
heiddberg.de

I ntroduction

At present, any novel sequence obtained in the laboratory
undergoes extensive database comparison. Resulting matches
to exiging entries facilitate interpretation and further
experimental exploration. However, the current hugeincrease
in database dze tends to produce adverse effects. An
avalanche of text information, in flat file or table format, has
become typical for each query sequence, the basic items of
which are sequence drings or identifiers accompanied by
coded or plain text information. This makes semarntic
cross-referencing of information as well as cross-comparison
of sequence features very tedious and difficult to automate.
Moreover, the intensty of background noise due to
high-scoring but biologicdly irrdevant matches will grow
exponentially with the increasing size of current databases.
Prohibitively redundant information obtains when databases
contain many identical or dightly varying entries (which
isexpedient for certain other applications). Findly, amatchis

usudly established by pairwise smilarity scores without
embedding it into a consstent distance metric within the
N-dimensional Euclidean sequence space.

To overcome these difficulties, we propose here a concept
of integrated sequence handling and distance analysis based
on pictorid representation that focuses on neighborhood
relationships defined by the module substructure of protein
sequences.

We wanted to free molecular biologists from monotonous
screening of largetext collections and allow themto carry out
more advanced andyses of significant genome regions.
Artificia intelligence methods are very well suited for that
type of task. In addition to the actua recognition, which
consists of filtering particular characteristics from dense data
collections, neural networks are increasingly being used for
knowledge-based data management. Their great advantage
lies in the conceptua collection of information recognition
and information structuring. The collection of primary
structure information (on the basis of conserved motifs) and
secondary structure information [on the basis of the
homology-derived secondary structure protein database
(HSSP); Schneider etal.,, 1997] can be presented very
impressively using such a data management strategy. This
database is a systematically derived motif database, allowing
the classification of the mgority of the newly appearing
protein sequences into known families.

System and methods

An associative network is a computer program that classifies
and stores alarge number of information items. Asabasis of
thisnetwork, we used aself-organizing map (SOM; K ohonen,
1996). It consists of atwo-dimensiond (2D) field of vectors
(often called weight vectors or neurons). Individual neurons
are ordered in a lattice (map), and the input congists of
n-dimensional vectors. The dimension n of the input spaceis
significantly larger than the dimension of the SOM. Theresult
of the training is amapping of the n-dimensiona input space
onto a 2D map. Between different neurons, there is a map
distance defined (we sdlected the Euclidean distance).
Neighboring vectors (vectors of similarity) should thereby be
mapped onto neighboring neurons on the SOM.
Neighbourhood is defined by asuitable distance metric, which
we obtain by transforming each amino acid in a sequence
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segment into acolumn vector of scorestaken fromasimilarity
matrix (like PAM or BLOSUM; Dayhoff et al., 1978;
Henikoff and Henikoff, 1992). This representation of an
amino acid by a vector congtitutes a conceptud difference
from scoring methods like PROFILE (Gribskov et al., 1987,
and many others), where only one scdar is assigned to one
amino acid in one given position. The coding scheme and the
data presentation for the network are described in detail in
Hanke and Reich (1996).

The agorithmis structured in arather simple manner. First,
every neuron on the map is assigned a random weight vector,
wij, which has the same dimension as the vectors of the input
space. The following scheme will then be carried out for a
given number of training steps: avector x from theinput space
is chosen at random, and the entire map is searched for the
neuron that (we selected the Euclidean distance, Djj) has
stored the weight vector next to the input vector.

D; = i(wijk(t) — xk(1))?

Thetraining function is cal culated with this neuron and the
weights in a particular area around the excitement center
changed accordingly (adapted). During the course of the
training process, the strength of the learning and the width of
the excitation center are reduced to zero, and the training
process ends. The algorithmic details of the training strategy
are described in the specialized literature (e.g. Hertz et al.,
1991; Ritter et al., 1992).

This whole principle is termed topology preservation and
has beneficid side-effects. The SOM isa productive, capable
classification tool. It represents a generaization of the linear
principa component anadysis used in statigtics. Instead of
linear main axes or levels, SOM uses non-linear hyperplanes.
Their position and orientation are chosen o that every data
point from the input space lies as close as possible to a point
in the hyperplane, whose position is defined by the weight
vectors stored on the 2D map.

Vector quantization

In spite of continuous growth of sequence collections, the
number of (super-) families and congtituent motifs will
probably saturate as the sequence space is not unlimited
(Green et al., 1993; Gerstein et al., 1994). Hence, we expect
that the number of motifsoccupying our network will likewise
converge to alimit.

The SOM dlows the representation of many homologous
sequences on aweight vector (atypeof consensus production)
through its projection rules. Average data reduction is [110
sequence motifs per reference sequence.

Large amounts of data can be effectively processed based
on the fundamental idea that every input vector can be

approximated through a reference vector (weight vector) of
the same dimension.

For that, one must define a smallest possible number, R, of
weight vectors (independent of distance function) so that, for
every input vector, an approximation vector can be found that
aufficiently represents the qualities of the input vector. The
areas with minimum distance to the weight vectors
correspond to the partition of theinput spaceinto Voronoi cells
(polygons). The resulting data compression, in the form of a
sdf-congtructing mean-reference vector, is referred to as
vector quantization (Lynch, 1985).

Results
The associative database as analysis source

In preparation for later protein classfication, we chose
conserved patterns of amino acids (motifs) as the smallest
sequence information units. Such sequence motifs are
signatures of protein families, usualy corresponding to <300
amino acids in length, and can often be used astools for the
prediction of protein function.

In order to set up the associ ative database of motifs, wefirst
needed a systematic collection of al known protein patterns.
Such patterns are collected in pecialized databases such as
BLOCKS (Henikoff and Henikoff, 1996), PROSITE
(Bairochetal., 1997), PRINTS (Attwood et al., 1997), PFAM
(Sonnhammer et al., 1998), and others, which are routinely
updated from the publicly available sequence collections.
After the collection and comparison of the complete data set,
we decided, in order to avoid too much redundancy between
the databases, to fill the associative database only with
patterns from the PROSITE database. We dso included
self-generated patterns chosen by an established pattern
recognition method (Hanke et al., 1996). The complete
method can be describe briefly as follows:.

1. Using the pattern recognition method, only informative
sequences (conserved regions) are filtered out of the
protein database (from SWISSPROT Redesse 35;
Bairoch and Apweiler, 1998).

2. The ggnificant sequence areas (without gaps) are
divided into partid patterns.

3. Theentirecollection of partial ungapped patternsisthen
classified (see System and methods). Using projection
rules, an attempt is made to build a 2D neighborhood
map for dl partid patterns (Figure 2C; similarities are
shown in the form of distances).

4.  Thecomplete smilarity comparison for dl partia patterns
is then shown through classes. Every dlass builds a type
of consensus pattern during the learning process (see the
previous section on vector quantizetion). The possble
vaidions, i.e digantly rdated or smilar patterns, are
shown by neighborhood cdusters on a 2D map
(Figure 2C).
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Table 1. Systematic collection and comparison between the Prosite
database and our own pattern database

Table 2. Continued

No. of No. Coinciding/overlaoping  New Hitsin

PROSITE of own

patterns patterns patterns with patterns HSSP
PROSITE

1355 11750 1294 10456 1265

Table 2. Pattern recognition (receiver domain) in transcriptional regulatory

proteins starts from query sequence RESD_BACSU

/I ADZ-Pattern signature |

TRANSCRI PTI ONAL REGULATORY PROTEI N

| D HO00513

LN 20

ARCA ECOLI (50)
TORR ECOLI (46)
VI RG_AGRTS (46)
OWPR ECOLI (45)
VANR_ENTFC ( 45)
YC27_PORAE (50)
CPXR_ECOLI (45)
PETR_RHOCA (47)
PHOB_ECOLI (45)
BAER ECOLI (48)
AFQL_STRCO (47)
YC27_PORPU (49)
PHOB_HAEI N ( 34)
YV17_MYCLE (17)
RESD BACSU ( 45)
CHVI _AGRTU ( 45)
CREB_ECOLI (50)
YRKP_BACSU (43)
KDPE_ECOLI (31)
YXDJ_BACSU ( 45)
RSTA ECOLI (45)
RCAC FREDI (45)
CUTR STRLI (45)
COPR_PSESM ( 45)
YG X_ECOLI (45)
BASR_SALTY (45)
YG X_HAEI N (45)
TCTD_SALTY (45)
SPAR_BACSU (2)
NI SR_LACLA (45)
YC29_CYAPA (46)
HNR ECOLI  (45)

LVI MDI NLPGKNGLLLAREL
LI LLDI NLPDENGLM.TRAL
VVWWDLNLGREDGLE! VRSL
LMVLDLM_PGEDGLS! CRRL
LAl LDI MLPGTSGLTI OQXI
LVVL DL MVPKL DGYGVCQEL
LLLLDVMVPKKNG DTLKAL
LI VLDVMVPGEDGLSLTRDL
LI LLDWWLPGGSG QFI KHL
LI LLDLM_PGTDGLTLCREI
LI VLDVM_PG DGFEVCRRI
LWL DVMVPKL DGYGVOQEL
LI LLDWLPGRSG QFI QvI
| VLLDLM.PGVBGTDVYKQL
LI LLDLMVPGTDG EVCRQ
LAl FDI KMPRVDGMVEL L RRL
VM LDVGLPDI SGFELCRQL
LVI LDI MVPGI SGI ETCQHI
LI | LDLGLPDGDG EFI RDL
WVLLDI NLPAYDGYYWCRQ
LVLLDI M_PGKDGMTI CRDL
LI 1 LDI MLPNLDG SLCKRF
VWV DRDL PLVHGDDVCRKI
LLI LDVMVPGLDGWEVI RRL
AVI LDLTLPGVDGRDI LREW
LMVLDLGLPDEDGLHFLTRI
AWLDLTLPKLDGLEVLQQW
LAVLDI NVPGVDGLEVWQRL
LI LLDVMVPDI DGFELCKQ
LI LLDI MVBNI EGTEI CKRI
LI 1 CDI | MPGMGGFNFLHQL
LM CDI AVPRWNGLKLLEHI

/I ADZ-Pettern signature I

TRANSCRI PTI ONAL REGULATORY PROTEI N

| D HO00514
LN 28

/I ADZ-Pettern signature I

ARCA_ECOLI (77) LMFLTGRDNEVDKI LGLEI GADDYI TKP
TORR_ECOLI (73) |1 LVTGRSDRI DRI VGLEMGADDYVTKP
VI RG_AGRT5 (73) 111 SGRLEEADKVI ALELGATDFI AKP
OWPR_ECOLI (70) |1 WTAKGEEVDRI VGLEI GADDY! PKP

I I MLTGKDTEVDKI TGLTI GADDYI TKP
I'1 MLTALSDVSDRI TGLELGADDYI VKP
VI ML TARGSEL DRVLGLEL GADDYL PKP
| LLLTARGETRERI EGLEAGADDYLPKP
VWM_TARGEEEDRVRGLETGADDYI TKP
| VMWTAKI EEI DRLLGLEI GADDYI CKP
I I LLTARNDDI DVVVGLESGADDYVVKP
I I MLTALGEVCDRI TGLEI GADDYVVKP
I I MLTAKSTEEDCI ACLNAGADDY!I TKP
VI MVTARDSEI DKVVGLEL GADDYVTKP
I 1 MLTAKGEEANRVQGFEAGTDDYI VKP
VI FLTSKDEEI DELFGLKMGADDFI TKP
VLFLTARSEEVDRLLGLElI GADDYVAKP
| LFLTARSSTLDKTEG.LAGGDDYMTKP
VI VLSARSEESDKI AAL DAGADDYL SKP
I 1 FI SARSGEVDQVVAI ENGGDDY!1 EKP
| VLLTSLDSDVNHI LALEMGACDY! LKT
I LLLTAQDNI TAKVQGL DAGADDYVVKP
VLMLTASCDVSDRVEGLEI GADDYLPKP
VLFLTARDGVDDRVKGLEL GADDYLVKP
VLI LTARDALAERVEGLRLGADDYL CKP
VLI LTAHDTLNDRI TGLDVGADDYLVKP
VLI LTARDTLDERVKGLQSGADDYL CKP
PVLLTARSAVADRVKGLNVGADDYL PKP
| LFLTAKTEEEAI VKGLI TGGDDYI TKP
I 1 FVSAKDTEEDI | NGLG GGDDYI TKP
VI LLTTRGLTQDRI | GYKTGCDSYI SKP
VLVI SATENVADI AKALRLGVEDVLLKP

VANR_ENTFC (72)
YC27_PORAE (77)
CPXR_ECOLI (72)
PETR_RHOCA (74)
PHOB_ECOLI (72)
BAER ECOLI (75)
AFQL_STRCO (74)
YC27_PORPU ( 76)
PHOB_HAEI N (61)
YV17_MYCLE (44)
RESD_BACSU (72)
CHVI _AGRTU (72)
CREB_ECOLI (70)
YRKP_BACSU (70)
KDPE_ECOLI (58)
YXDJ_BACSU (72)
RSTA _ECOLI (72)
RCAC_FREDI (70)
CUTR_STRLI (67)
COPR_PSESM ( 68)
YG X_ECOLI (68)
BASR_SALTY (72)
YG X_HAEI N (69)
TCTD_SALTY (72)
SPAR_BACSU (29)
NI SR_LACLA (72)
YC29_CYAPA (73)
HNR ECOLI  (70)

The comparison with both databases produced acatdog of 11
750 different patterns  (ftp.biocinf.mdc-berlin.de/database/
SWISSPROT/moativ.res). From our pattern recognition method
and PROSITE database, we chose patterns containing at leest a
minimum length of 17 amino acids without gaps.

Out of atotal of 73 459 protein sequences, 59 178 proteins
could be classified into 3124 protein familiesfrom our pattern
method [the agorithmic details of the pattern method are
described in Hanke et al. (1996)]. The rest of the protein
sequences were less well represented (they were either too
closdy related as a group or were only represented by a
limited number of sequences).

Redundant sequences, both coinciding and overlapping
with the PROSITE patterns, were filtered out (see Table 1).
We used the PROSI TE pattern annotation and chose complete
sequences for our new, sdlf-generated patterns using
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SWISSPROT annotation. For every new pattern, we
generated a signature according to the PROSITE rules.

Finally, the complete data set is divided into subpatterns of
17 amino acids (total 115 000 subpatterns).

In addition, secondary structure information from the pattern
collection was added, for which we used the HSSP database.
For every protein sequence pettern found, an HSSP database
comparison was made. Of the 11 750 paitern classes, at least
1265 held a sequence-structure homology.

Our god was both to incude a clear overview of the
relaionship between primary and secondary ructure
information, and to include two digtinct forms of information
(normdlly requiring two different databases) in the associaive
network. This alowed not only a Smultaneous sequence
andyss and secondary dtructure prediction for protein
sequences, but dso a detailed observetion of digtantly relaed
sequence motifs (dructura matifs) on the 2D map.

Our method atempts to derive a sendtive pattern- or
module-domain recognition method. The drength of this
method lies in the recognition or summary of variable protein
modules or protein domains supported by each of the secondary
structure statements. Out of the 12 000 dlasses contained in the
associative database, we chose two representative examples of
domain recognition.

The method is asfollows. The pattern generated in the first
sep (in this example, derived from the transcriptiona
regulatory proteins RESD_BACSU and YJDG_ECOLI)

provided 47 homol ogous sequencesfor RESD_BACSU. Two
conserved regions (ADZ pattern signature | and ADZ pattern
signature I1) could be extracted from that data set (Table 2).

Thereceiver domain

Thereceiver domain isagood example for the performance
of this two-level pattern-oriented recognition and
classification method, and is not annotated in PROSITE. We
want to describe the two-level method in detail using this
example. These domains are found in transcriptional
regulatory proteins, but show extraordinarily low sequence
homology within this family (<14% sequence identity).
Sequence analysis methods, like Gap-Blast (Altschul et al.,
1997), provided no evidence of common functional domains
or common sequence families.

Using the other query sequence, YJDG_ECOLI, seven
similar protein sequences, not included in the previous
results from RESD_BACSU, were found. These seven
sequencesall contained aconserved region of 59 amino acids
length (Table 3).

All three conserved regionsfound were cut into fragments
of 17 amino acids length and added to the complete data set
of 115 000 partia patterns. After the classification of all
partia patterns, wefound onecluster (11 311 position 94 30),
that contained both families (ADZ pattern signature | and the
AQH pattern). We show here asample from thetotal cluster
of the 54 sequences (Table 4).

Table 3. Pattern recognition (receiver domain) in transcriptional regulatory proteins starts from query sequence YJDG_ECOLI

/I AQH-Pattern TRANSCRIPTIONAL REGULATORY PROTEIN

| D H000119
LN 59

Cl TB_KLEPN (52)
YIDG ECOLI (41)
LUXO VI BHA ( 3)
PI LR_PSEAE (31)
HYDG ECOLI (21)
HYDG_SALTY (21)
ATOC_ECOLI

LI LLDNFLPDGKG DLI RHAVSTHYKGR! | FI TADNHVET! SEALRLGVFDYLI KPVHY
LI LLDI YMQKENGL DLLPVLHNARCKSDVI VI SSAADAATI KDSLHYGVWDYLI KPFQA
LI LLDLRLPDMIGVDVLHAVKKSHPDVPI | FMTAHGS! DTAVEAVRHGSQDFLI KPCEA
LCLTDVRLPDGSGL DLVQY! QQRHPQTPVAM TAYGSLDTAI QALKAGAFDFL TKPVDF
LVLCDVRMAEMDG! ATLKEI KALNPAI PVLI MTAYSSVETAVEALKTGALDYLI KPLDF
LVLCDVRMAEMDG! ATLKEI KALNPAI Pl LI MTAFSSVETAVEAL KAGALDYL| KPLDF
( 3) VVLMDI RVPEMDG KALKEMRSHETRTPVI LMIAYAEVETAVEALRCGAFDYVI KPFDL

Table 4. Receiver domain classified in one neuron

Position 94 30 (11311)

Se+ID Position Sequence Description Score Code  Structure
YJDG _ECOLI 41 LI LLDI YMXENGLDLL  Hypot hetical 27.4 kDa 24.7 ADZ EEEE S SSSS TTH
protein

PI LR_PSEAE 31 LCLTDMRLPDGSA.DLV  Finbri ae expression regul at 27.2 ADZ EEEE S SSSS TTH
ATOC_ECOLI 3 WLMJ RWEMDA KAL  Acet oacetate metabolismreg 23.4 ADZ EEEEES SSS HHHHH
ARCA_ECOLI 50 LVI MD NLPGKNGLLLA  Aerobic respiration control 25.8 ACH -

ARCA HAEI N 50 LVWMD NLPGKNGLLLA  Aerobic respiration control 25.9 ACH EEEE S SSSS TTH
RESD_BACSU 45 LI LLDLMWGIDGE EVC  RESD protein 23.2 ACH EEEEES SSS HHHHH
H\NR_ECCLI 45 LM CDI AVPRWGLKLL ~ HNR protein 24.7 ACH EEEEES SSS HHHHH

744



Associative database of protein sequences

YJDG_ECOLI NVLIIDDDAMVAELNRRYVAQIPGFQCCGTASTLEKAKEITIFNSDTPIDLILLDIYMOKE 62

+L++DD+A + L R Y+ + + A ++A T + DLILLD+ M
RESD_BACSU KILVVDDEARIRRLLRMYLER-ENYA-IDEAENGDEA~~TAKGLEANYDLILLDIMMPGT 63
YJIDG_ECOLT NGLDLLPVLHNARCKSDVIVISSAADAATIKDSLHYGVVDYLIKPFOASRFEEALTGWRQ 122

+GH++ 4 4+ 4 D444+ + R G DY++KPF + +
RESD_BACSU DGIEVCRQIREXKA-TPIIMLTAKGEEANRVQGFEAGTDDYIVKPFSPREVVLRVKALLR 122
YJDG_ECOLI KKM'H KHOYYDOAELDQLIHGSSS NEQEPRRLP{LLT“UT R----TLCOWIDAHQDYE 178

+ + L+ S + D R+ T L L ++

RESD_BACSU RASQTSYFNANTPTK-NVLVESHLS IDHDAHRY “\U(th\b TPKYYELLYFLAKTPDKV 181
YJDG_ECOLI FSTDELANEVNISR-----1 ’SL%!YLLW,——— NCHILETSIHYGVTGRPVYRYRIQAE 229

+ ++L EYV P +N + Y++ + AE
RESD_BACSU YDREKLLKEVWQYEFFGDLRTVDTHVKRLREKLNKVSPEAAKKIVTVWGYGYKFEVGAE 240

Fig. 1. Weak pairwise alignment of the two query transcriptional
regulatory proteins (RESD_BACSU and YJDG_ECOLI). The
conserved regions (shown in bold) extracted from the pattern
method are classified as* receiver domain’ and contained within two
typical neurons (one receiver domain neuron example shown).

The first line shows the position of the cluster on the 2D
map, as well as its cluster number. The most important
information found using the associative databank is shownin
the form of a table for each cluster. This provides the
molecular biologist with a quick overview of function,
structure and sequence (a more detailed description of the
table is given in Figure 2C). Digtantly related sequences can
be found by observing the neighborhood on 2D map.

Both previous search results showed similarity in primary
and secondary dtructure information for this cluster. [In
Figure 1, we examinethe pairwise alignment of thetwo query
sequences, aweak agreement is shown over the entire length
of the sequences identities 42/239 (17%).]

Alignment is difficult with such alow sequence homol ogy.
The only relatively homologous areas were found using the
pattern recognition method and adso summarized in the
classfication step. The second conserved region was aso
found in a cluster at postion 30 34 (not shown here)
The classfication step associated the two query families. The

Table 5. Sushi module classified in one neuron

common, multiple appearance of different families
confirmed, therefore, thetheory that weweredealing with one
domain. It was also possible to show a common relaionship
using the iterative blast method (PSI-Blast; Altschul et al.,
1997) dfter the third iteration (E-value = 10-28).

Sushi module (CCP)

Thismodule is abundant in complement control proteins and
aso in the complement system itself. It has aso been found
in viruses, the enzyme thyroxide peroxidase and in protein
families such as sdectins and mucins. Its functions are fill
unclear and may well be different in the various proteins
whereit hasbeen found so far (Bork et al., 1996). CCPs occur
most frequently intandem arrays, but aso afew single copies
have been identified. An exampleisthe classification of class
1626. We show here a sample from the total cluster of the 72
sequences. The complement receptor CR2, necessary and
aufficient for binding naturd ligands, the cell adhesion
selectin precursor proteins and the apolipoprotein r precursor
protein fell into one class.

Such a module is too short to be found with standard
homology tools. Generaly, it needsalot of experienceto find
such small similaritiesin these diverse families (Table 5).

The associative database as application

The actual verson of our associative memory of protein
motifs congists of 115 000 conserved segments distributed
over 12 000 classes. About 92% of dl SWISSPROT
sequences match to at least one submotif in this memory. The
rest (total 8932 sequences) consist of either single sequences
or of sequences without a marked conserved region in the
primary structure. These are stored in separate classes of the
memory.

Position 13 65 (1626)

Seg-ID Position Sequence Description Score Code Structure
APAR _PI G 59 CDEGYTLVGEDRLSCRS Apol i poprotein r precursor 32.5 AKO -
CR2_MOUSE 31 CDPSFTLI GEKTI SQKN Conpl ement receptor type 31.7 AKO -
CR2_HUVAN 30 CKTNFSLI GESTI RCTS Conpl ement receptor type 31.5 AKO -
CFAH_MOUSE CDDGYQLVGQDYLRCTA Conpl ement factor H precur 34.1 AKO -
LEM2_HUMAN 23 CEEGFELMGAQSLQCTS E-sel ectin precursor (endot 31.2 aT -
LEM2_RABI T 23 CEEGFTLLGARSLQCTS E-sel ectin precursor (endot 31.3 aT -
LEM2_PI G 13 CKEGFEL| GPEHLQCTS Sel ectin precursor (endothe 30.2 aT -
CO2_HUVAN 23 CSSNLVLTGSSSRLCKS Conpl ement C2 precursor 30.1 aT -
CFAB_HUVAN 62 CPSGFYPYPVQTRTCRS Conpl emrent factor B (precur 31.3 aT -
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Fig. 2. Associative memory of protein sequence motifs displaying the fingerprint of the phospholipase A2 family, Ca-dependent subgroup
(Dennis, 1997). (A) A grid of 120 x 100 memory cells (‘neurons') is displayed highlighting spots (each comprising a cluster of 3-6 neurons)
that indicate the position of four characteristic sequence motifs of the PA2 family. Spots (each covering several neurons) appear when
‘phospholipase A2’ is called, whereas a single query sequence (such as PA2M_HUMAN) will result in the same pattern, but with finer spots
(asthen only one cell per spot is activated). The spots identify characteristic motifs as present in all true family members: red, the LFI motif
(L-X(2)-F-X(3)-1); ochre, the CCHC motif (C-C-X(2)-H-X(2)-C-C); green, the Y GCY CG moatif (Y-G-C-Y-C-G(4)-X-G-X-P-X-D); purple, the
CCDC motif ([LIVMA]-C-[ADEGHKNQR]-C-D-X(5)-C). (B) PA2M_HUMAN as query has produced four spots. Shown is a schematic
aignment of the hit motifsin the sequence, including position, together with atentative prediction of the secondary structure (H, helix; T, turn;
S, sheet). (C) Zoominto theregion of the CCHC motif. For each individual memory cell of the grid, abracketed number stateshow many motifs
are stored there, identifying thefirst few (up to four) of them by ashort code. Further information may be obtained by clicking into the quadratic
domain pertinent to acell [see (D)]. Five memory cells (encircled) are being occupied by 91 motifs of the queried PA2 family (code: BD6). (D)
Tables of sequence motif information are provided when individua cells of (C) are opened. Shown is the content of cell (33,7) with five
unambiguous PA2 matifs (with the CCHC motif, boxed). Cell (33,9) contains a‘maverick’ PA2 member from Xenopus laevis, the sequence
of which, though being closely related to the other members in the neighboring cells, has replaced by Q the obligatory H of the active center,
henceits catalytic function islost. Cell (34,6) contains a segment of bovine aminopeptidase (code: HG1), biochemicaly quite unrelated, with
faint similarity to the PA2 motif, but, interestingly, also predicted to form an a helix. Clicking on any table item (not shown) established links
to background databases such as SWISSPROT, PROSITE and further, in the usual way. In this manner, the whole vicinity of PA2M_HUMAN
and itsfamily, aswell as neighbors, may be systematically studied on the conspicuous 2D map supported by hyperlinked text information. The
recently detected other subgroups (Dennis, 1997) of PA2 get quite different fingerprintsin the memory, pointing to evolutionary unrel atedness.
PAF acylhydrolase, secreted into human plasma, for instance, getsonly onehit containing the characteristic G-X-S-X-G motif of theactive center
of esterases and lipases. Obvioudly, the superfamily is functionally defined, not by common ancestry.
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Associative database of protein sequences

A query sequence (protein, putative exon, EST, trandated
genomic region, etc) is divided into segments which are
projected and shown as a ‘hit' on the map. The resulting hit
pattern (a“ motif fingerprint’; see Figure 2A) istypica for that
sequence and may serveto identify its class filiation aswell
asto grengthen the memory by updating the prototype vector.
An dternative approach to the memory is to specify a
sequence family in order to find its common motifs.

The hit pattern, consisting of segments typica for that
protein initsfamily, may be schematicaly aigned to show its
position in the query sequence (Figure 2B). A different
gpplication isazoom into a certain region of cells containing
afamily of smilar motifs (Figure 2C). Each memory cell may
present its content and offer (by adouble-click on the WWW
map) links to pertinent text information (Figure 2D) or to
structurd information as present in the background databases
supporting the memory.

The sengitivity and sdectivity of a query areillustrated by
the phospholipase A2 family of proteins (PA2). We take the
subgroups of Ca-dependent enzymes (groups I-11; Dennis,
1994) as an example. It has two signatures in the PROSITE
database relating to its catalytic center (His-Asp pair). Having
trained the 120 x 100 cel memory with al conserved
segments available, we look up where PA2 is stored and
obtain afingerprint of four spots (Figure 2A) characterigtic of
this family. Any single true member, when submitted as a
query, will show the same unambiguous pattern of spots,
which may be complemented by additional information (see
Figure 2B-D) on that item as well as on its neighborsin the
sequence space. Thus, the map allows the study of sequences
by partia motifs, in great detail and in quite conspicuousform:
as fingerprinted spots of families, with subtle variants in
different cells, including outsider (single sequence without
homology) at the fringe, closely related motifs and their
character of faint sequence similarity, including prediction of
higher structure. All this can be done in turn, motif by motif.
Lengthy domains are divided into convenient submotifs of
suitable length. The memory is capable of storing al motifs
(many thousands) as known to be conserved in the sequence
space.

Discussion

The prevailing method of sequence analysis in huge files of
information items rests on text linking (often hampered by
doppy nomenclature) and on similarity study. Severa tools
depart one step into the 2D world by storing index matrices of
pre-processed ‘hits' between raw data (Mewes et al., 1997;
Vingron and von Haesdler, 1997). Another way isto envisage
proteins as arrays of motifs (being signatures standing for
domainsor modules) and to establish links between sequences
in terms of shared motifs or domains (Bork et al., 1996).

With the associative data memory, we offer to push ahead
further into the 2D world of shared motifs. We make use of the
neighborhood concept that emerges from the notion of amap.
A geographic map is superior to atable of distances between
selected points in a landscape. Likewise, the display of a
sequence memory asa 2D map givesaclear picture of cluster
structure as well as of neighborhood *topology’ . Aswe make
use of the ‘motif’ concept of sequence study and transform
similarity into distance, we circumvent the common problem
of non-trangitivity in sequence analysis (A and B may both be
close to C, but completely dien to each other, because the
closeness relates to different domains). The size of motifs has
to be chosen as a compromise: sufficiently short to display
sequence conservation as a small distance, but sufficiently
long to avoid random clustering. For protein sequences, this
means that motifs of about 17 resdues are expedient.
Sequencesthus envisaged as asuccession of conserved motifs
implies sequencediagnogticsin theform of fingerprints. Inthe
case of multidomain proteins (Bork and Koonin, 1996), this
may result in quite a bunch of motif hits.

Theassociativememory isatool for retrieval, diagnosisand
comprehensive visudization of biomolecular sequences that
effectively complements (not replaces) the hitherto
dominating lig-and-table software. Beyond sequence
relationships, it is possible to evoke prediction of secondary
structureand of function or regulation (if thisisdeduciblewith
aufficient confidence from the sequence). Apparent
dissimilarities between amino acid sequences within acluster
can be explaned by smilar secondary structure (see
Figure 2D).

The accompanying WWW server dlows an extremely
rapid analysis of either peptide or nucleotide sequences
(trandated in al six reading frames) (see http://www.bioinf.
mdc-berlin.de/unter2.html). The interactive network is
on-line and was implemented on a pardld computer
(Sparc-20 with four processors).

In conclusion, we propose the further development of
visudly oriented analysis of the sequence space. Extension to
the performance of associative memoriesfor genomic repeats
andfor ESTsisbeing studied at present. Weare convinced that
the rapid worldwide progress in genome decoding
necessitates theintegration of associative data storageinto the
toolbox of information analysis.
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