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Abstract
Motivation: We present a new concept that combines data
storage and data analysis in genome research, based on an
associative network memory. As an illustration, 115 000
conserved regions from over 73 000 published sequences
(i.e. from the entire annotated part of the SWISSPROT
sequence database) were identified and clustered by a
self-organizing network. Similarity and kinship, as well as
degree of distance between the conserved protein segments,
are visualized as neighborhood relationship on a two-dimen-
sional topographical map.
Results: Such a display overcomes the restrictions of linear
list processing and allows local and global sequence
relationships to be studied visually. Families are memorized
as prototype vectors of conserved regions. On a massive
parallel machine, clustering and updating of the database
take only a few seconds; a rapid analysis of incoming data
such as protein sequences or ESTs is carried out on
present-day workstations.
Availability: Access to the database is available at
http://www.bioinf.mdc-berlin.de/unter2.html
Contact: (hanke,lehmann,reich)@mdc-berlin.de; bork@embl-
heidelberg.de

Introduction

At present, any novel sequence obtained in the laboratory
undergoes extensive database comparison. Resulting matches
to existing entries facilitate interpretation and further
experimental exploration. However, the current huge increase
in database size tends to produce adverse effects. An
avalanche of text information, in flat file or table format, has
become typical for each query sequence, the basic items of
which are sequence strings or identifiers accompanied by
coded or plain text information. This makes semantic
cross-referencing of information as well as cross-comparison
of sequence features very tedious and difficult to automate.
Moreover, the intensity of background noise due to
high-scoring but biologically irrelevant matches will grow
exponentially with the increasing size of current databases.
Prohibitively redundant information obtains when databases
contain many identical or slightly varying entries (which
is expedient for certain other applications). Finally, a match is

usually established by pairwise similarity scores without
embedding it into a consistent distance metric within the
N-dimensional Euclidean sequence space.

To overcome these difficulties, we propose here a concept
of integrated sequence handling and distance analysis based
on pictorial representation that focuses on neighborhood
relationships defined by the module substructure of protein
sequences.

We wanted to free molecular biologists from monotonous
screening of large text collections and allow them to carry out
more advanced analyses of significant genome regions.
Artificial intelligence methods are very well suited for that
type of task. In addition to the actual recognition, which
consists of filtering particular characteristics from dense data
collections, neural networks are increasingly being used for
knowledge-based data management. Their great advantage
lies in the conceptual collection of information recognition
and information structuring. The collection of primary
structure information (on the basis of conserved motifs) and
secondary structure information [on the basis of the
homology-derived secondary structure protein database
(HSSP); Schneider et al., 1997] can be presented very
impressively using such a data management strategy. This
database is a systematically derived motif database, allowing
the classification of the majority of the newly appearing
protein sequences into known families.

System and methods

An associative network is a computer program that classifies
and stores a large number of information items. As a basis of
this network, we used a self-organizing map (SOM; Kohonen,
1996). It consists of a two-dimensional (2D) field of vectors
(often called weight vectors or neurons). Individual neurons
are ordered in a lattice (map), and the input consists of
n-dimensional vectors. The dimension n of the input space is
significantly larger than the dimension of the SOM. The result
of the training is a mapping of the n-dimensional input space
onto a 2D map. Between different neurons, there is a map
distance defined (we selected the Euclidean distance).
Neighboring vectors (vectors of similarity) should thereby be
mapped onto neighboring neurons on the SOM.
Neighbourhood is defined by a suitable distance metric, which
we obtain by transforming each amino acid in a sequence
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segment into a column vector of scores taken from a similarity
matrix (like PAM or BLOSUM; Dayhoff et al., 1978;
Henikoff and Henikoff, 1992). This representation of an
amino acid by a vector constitutes a conceptual difference
from scoring methods like PROFILE (Gribskov et al., 1987,
and many others), where only one scalar is assigned to one
amino acid in one given position. The coding scheme and the
data presentation for the network are described in detail in
Hanke and Reich (1996).

The algorithm is structured in a rather simple manner. First,
every neuron on the map is assigned a random weight vector,
wij, which has the same dimension as the vectors of the input
space. The following scheme will then be carried out for a
given number of training steps: a vector x from the input space
is chosen at random, and the entire map is searched for the
neuron that (we selected the Euclidean distance, Dij) has
stored the weight vector next to the input vector.

Dij ��
n

K�1

(wijk(t) � xk(t))2

The training function is calculated with this neuron and the
weights in a particular area around the excitement center
changed accordingly (adapted). During the course of the
training process, the strength of the learning and the width of
the excitation center are reduced to zero, and the training
process ends. The algorithmic details of the training strategy
are described in the specialized literature (e.g. Hertz et al.,
1991; Ritter et al., 1992).

This whole principle is termed topology preservation and
has beneficial side-effects. The SOM is a productive, capable
classification tool. It represents a generalization of the linear
principal component analysis used in statistics. Instead of
linear main axes or levels, SOM uses non-linear hyperplanes.
Their position and orientation are chosen so that every data
point from the input space lies as close as possible to a point
in the hyperplane, whose position is defined by the weight
vectors stored on the 2D map.

Vector quantization

In spite of continuous growth of sequence collections, the
number of (super-) families and constituent motifs will
probably saturate as the sequence space is not unlimited
(Green et al., 1993; Gerstein et al., 1994). Hence, we expect
that the number of motifs occupying our network will likewise
converge to a limit.

The SOM allows the representation of many homologous
sequences on a weight vector (a type of consensus production)
through its projection rules. Average data reduction is ∼ 10
sequence motifs per reference sequence.

Large amounts of data can be effectively processed based
on the fundamental idea that every input vector can be

approximated through a reference vector (weight vector) of
the same dimension.

For that, one must define a smallest possible number, R, of
weight vectors (independent of distance function) so that, for
every input vector, an approximation vector can be found that
sufficiently represents the qualities of the input vector. The
areas with minimum distance to the weight vectors
correspond to the partition of the input space into Voronoi cells
(polygons). The resulting data compression, in the form of a
self-constructing mean-reference vector, is referred to as
vector quantization (Lynch, 1985).

Results

The associative database as analysis source

In preparation for later protein classification, we chose
conserved patterns of amino acids (motifs) as the smallest
sequence information units. Such sequence motifs are
signatures of protein families, usually corresponding to <300
amino acids in length, and can often be used as tools for the
prediction of protein function.

In order to set up the associative database of motifs, we first
needed a systematic collection of all known protein patterns.
Such patterns are collected in specialized databases such as
BLOCKS (Henikoff and Henikoff, 1996), PROSITE
(Bairoch et al., 1997), PRINTS (Attwood et al., 1997), PFAM
(Sonnhammer et al., 1998), and others, which are routinely
updated from the publicly available sequence collections.
After the collection and comparison of the complete data set,
we decided, in order to avoid too much redundancy between
the databases, to fill the associative database only with
patterns from the PROSITE database. We also included
self-generated patterns chosen by an established pattern
recognition method (Hanke et al., 1996). The complete
method can be describe briefly as follows:
1. Using the pattern recognition method, only informative

sequences (conserved regions) are filtered out of the
protein database (from SWISSPROT Release 35;
Bairoch and Apweiler, 1998).

2. The significant sequence areas (without gaps) are
divided into partial patterns.

3. The entire collection of partial ungapped patterns is then
classified (see System and methods). Using projection
rules, an attempt is made to build a 2D neighborhood
map for all partial patterns (Figure 2C; similarities are
shown in the form of distances).

4. The complete similarity comparison for all partial patterns
is then shown through classes. Every class builds a type
of consensus pattern during the learning process (see the
previous section on vector quantization). The possible
variations, i.e. distantly related or similar patterns, are
shown by neighborhood clusters on a 2D map
(Figure 2C).
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Table 1. Systematic collection and comparison between the Prosite
database and our own pattern database

No. of
PROSITE

No. 
of own

Coinciding/overlapping New Hits in

patterns patterns patterns with patterns HSSP

PROSITE

1355 11750 1294 10 456 1265

Table 2. Pattern recognition (receiver domain) in transcriptional regulatory
proteins starts from query sequence RESD_BACSU

// ADZ-Pattern signature I

TRANSCRIPTIONAL REGULATORY PROTEIN

ID H000513

LN 20

ARCA_ECOLI (50) LVIMDINLPGKNGLLLAREL

TORR_ECOLI (46) LILLDINLPDENGLMLTRAL

VIRG_AGRT5 (46) VVVVDLNLGREDGLEIVRSL

OMPR_ECOLI (45) LMVLDLMLPGEDGLSICRRL

VANR_ENTFC (45) LAILDIMLPGTSGLTICQKI

YC27_PORAE (50) LVVLDLMMPKLDGYGVCQEL

CPXR_ECOLI (45) LLLLDVMMPKKNGIDTLKAL

PETR_RHOCA (47) LIVLDVMMPGEDGLSLTRDL

PHOB_ECOLI (45) LILLDWMLPGGSGIQFIKHL

BAER_ECOLI (48) LILLDLMLPGTDGLTLCREI

AFQ1_STRCO (47) LIVLDVMLPGIDGFEVCRRI

YC27_PORPU (49) LVVLDVMMPKLDGYGVCQEL

PHOB_HAEIN (34) LILLDWMLPGRSGIQFIQYI

YV17_MYCLE (17) IVLLDLMLPGMSGTDVYKQL

RESD_BACSU (45) LILLDLMMPGTDGIEVCRQI

CHVI_AGRTU (45) LAIFDIKMPRMDGMELLRRL

CREB_ECOLI (50) VMILDVGLPDISGFELCRQL

YRKP_BACSU (43) LVILDIMMPGISGIETCQHI

KDPE_ECOLI (31) LIILDLGLPDGDGIEFIRDL

YXDJ_BACSU (45) VVLLDINLPAYDGYYWCRQI

RSTA_ECOLI (45) LVLLDIMLPGKDGMTICRDL

RCAC_FREDI (45) LIILDIMLPNLDGISLCKRF

CUTR_STRLI (45) VVVLDRDLPLVHGDDVCRKI

COPR_PSESM (45) LLILDVMMPGLDGWEVIRRL

YGIX_ECOLI (45) AVILDLTLPGMDGRDILREW

BASR_SALTY (45) LMVLDLGLPDEDGLHFLTRI

YGIX_HAEIN (45) AVVLDLTLPKLDGLEVLQQW

TCTD_SALTY (45) LAVLDINMPGMDGLEVVQRL

SPAR_BACSU (2)  LILLDVMMPDIDGFELCKQI

NISR_LACLA (45) LILLDIMMSNIEGTEICKRI

YC29_CYAPA (46) LIICDIIMPGMGGFNFLHQL

HNR_ECOLI  (45) LMICDIAMPRMNGLKLLEHI

// ADZ-Pattern signature II

TRANSCRIPTIONAL REGULATORY PROTEIN

ID H000514

LN 28

Table 2. Continued

// ADZ-Pattern signature II

ARCA_ECOLI (77) LMFLTGRDNEVDKILGLEIGADDYITKP

TORR_ECOLI (73) IILVTGRSDRIDRIVGLEMGADDYVTKP

VIRG_AGRT5 (73) IIIISGRLEEADKVIALELGATDFIAKP

OMPR_ECOLI (70) IIMVTAKGEEVDRIVGLEIGADDYIPKP

VANR_ENTFC (72) IIMLTGKDTEVDKITGLTIGADDYITKP

YC27_PORAE (77) IIMLTALSDVSDRITGLELGADDYIVKP

CPXR_ECOLI (72) VIMLTARGSELDRVLGLELGADDYLPKP

PETR_RHOCA (74) ILLLTARGETRERIEGLEAGADDYLPKP

PHOB_ECOLI (72) VVMLTARGEEEDRVRGLETGADDYITKP

BAER_ECOLI (75) IVMVTAKIEEIDRLLGLEIGADDYICKP

AFQ1_STRCO (74) IILLTARNDDIDVVVGLESGADDYVVKP

YC27_PORPU (76) IIMLTALGEVCDRITGLEIGADDYVVKP

PHOB_HAEIN (61) IIMLTAKSTEEDCIACLNAGADDYITKP

YV17_MYCLE (44) VIMVTARDSEIDKVVGLELGADDYVTKP

RESD_BACSU (72) IIMLTAKGEEANRVQGFEAGTDDYIVKP

CHVI_AGRTU (72) VIFLTSKDEEIDELFGLKMGADDFITKP

CREB_ECOLI (70) VLFLTARSEEVDRLLGLEIGADDYVAKP

YRKP_BACSU (70) ILFLTARSSTLDKTEGLLAGGDDYMTKP

KDPE_ECOLI (58) VIVLSARSEESDKIAALDAGADDYLSKP

YXDJ_BACSU (72) IIFISARSGEMDQVMAIENGGDDYIEKP

RSTA_ECOLI (72) IVLLTSLDSDMNHILALEMGACDYILKT

RCAC_FREDI (70) ILLLTAQDNITAKVQGLDAGADDYVVKP

CUTR_STRLI (67) VLMLTASGDVSDRVEGLEIGADDYLPKP

COPR_PSESM (68) VLFLTARDGVDDRVKGLELGADDYLVKP

YGIX_ECOLI (68) VLILTARDALAERVEGLRLGADDYLCKP

BASR_SALTY (72) VLILTAHDTLNDRITGLDVGADDYLVKP

YGIX_HAEIN (69) VLILTARDTLDERVKGLQSGADDYLCKP

TCTD_SALTY (72) PVLLTARSAVADRVKGLNVGADDYLPKP

SPAR_BACSU (29) ILFLTAKTEEEAIVKGLITGGDDYITKP

NISR_LACLA (72) IIFVSAKDTEEDIINGLGIGGDDYITKP

YC29_CYAPA (73) VILLTTRGLTQDRIIGYKTGCDSYISKP

HNR_ECOLI  (70) VLVISATENMADIAKALRLGVEDVLLKP

The comparison with both databases produced a catalog of 11
750 different patterns (ftp.bioinf.mdc-berlin.de/database/
SWISSPROT/motiv.res). From our pattern recognition method
and PROSITE database, we chose patterns containing at least a
minimum length of 17 amino acids without gaps.

Out of a total of 73 459 protein sequences, 59 178 proteins
could be classified into 3124 protein families from our pattern
method [the algorithmic details of the pattern method are
described in Hanke et al. (1996)]. The rest of the protein
sequences were less well represented (they were either too
closely related as a group or were only represented by a
limited number of sequences).

Redundant sequences, both coinciding and overlapping
with the PROSITE patterns, were filtered out (see Table 1).
We used the PROSITE pattern annotation and chose complete
sequences for our new, self-generated patterns using
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SWISSPROT annotation. For every new pattern, we
generated a signature according to the PROSITE rules.

Finally, the complete data set is divided into subpatterns of
17 amino acids (total 115 000 subpatterns).

In addition, secondary structure information from the pattern
collection was added, for which we used the HSSP database.
For every protein sequence pattern found, an HSSP database
comparison was made. Of the 11 750 pattern classes, at least
1265 held a sequence–structure homology.

Our goal was both to include a clear overview of the
relationship between primary and secondary structure
information, and to include two distinct forms of information
(normally requiring two different databases) in the associative
network. This allowed not only a simultaneous sequence
analysis and secondary structure prediction for protein
sequences, but also a detailed observation of distantly related
sequence motifs (structural motifs) on the 2D map.

Our method attempts to derive a sensitive pattern- or
module-domain recognition method. The strength of this
method lies in the recognition or summary of variable protein
modules or protein domains supported by each of the secondary
structure statements. Out of the 12 000 classes contained in the
associative database, we chose two representative examples of
domain recognition.

The method is as follows. The pattern generated in the first
step (in this example, derived from the transcriptional
regulatory proteins RESD_BACSU and YJDG_ECOLI)

provided 47 homologous sequences for RESD_BACSU. Two
conserved regions (ADZ pattern signature I and ADZ pattern
signature II) could be extracted from that data set (Table 2).

The receiver domain

The receiver domain is a good example for the performance
of this two-level pattern-oriented recognition and
classification method, and is not annotated in PROSITE. We
want to describe the two-level method in detail using this
example. These domains are found in transcriptional
regulatory proteins, but show extraordinarily low sequence
homology within this family (<14% sequence identity).
Sequence analysis methods, like Gap-Blast (Altschul et al.,
1997), provided no evidence of common functional domains
or common sequence families.

Using the other query sequence, YJDG_ECOLI, seven
similar protein sequences, not included in the previous
results from RESD_BACSU, were found. These seven
sequences all contained a conserved region of 59 amino acids
length (Table 3).

All three conserved regions found were cut into fragments
of 17 amino acids length and added to the complete data set
of 115 000 partial patterns. After the classification of all
partial patterns, we found one cluster (11 311 position 94 30),
that contained both families (ADZ pattern signature I and the
AQH pattern). We show here a sample from the total cluster
of the 54 sequences (Table 4).

Table 3. Pattern recognition (receiver domain) in transcriptional regulatory proteins starts from query sequence YJDG_ECOLI

// AQH-Pattern TRANSCRIPTIONAL REGULATORY PROTEIN

ID H000119

LN 59

CITB_KLEPN (52) LILLDNFLPDGKGIDLIRHAVSTHYKGRIIFITADNHMETISEALRLGVFDYLIKPVHY

YJDG_ECOLI (41) LILLDIYMQKENGLDLLPVLHNARCKSDVIVISSAADAATIKDSLHYGVVDYLIKPFQA

LUXO_VIBHA ( 3) LILLDLRLPDMTGMDVLHAVKKSHPDVPIIFMTAHGSIDTAVEAMRHGSQDFLIKPCEA

PILR_PSEAE (31) LCLTDMRLPDGSGLDLVQYIQQRHPQTPVAMITAYGSLDTAIQALKAGAFDFLTKPVDF

HYDG_ECOLI (21) LVLCDVRMAEMDGIATLKEIKALNPAIPVLIMTAYSSVETAVEALKTGALDYLIKPLDF

HYDG_SALTY (21) LVLCDVRMAEMDGIATLKEIKALNPAIPILIMTAFSSVETAVEALKAGALDYLIKPLDF

ATOC_ECOLI ( 3) VVLMDIRMPEMDGIKALKEMRSHETRTPVILMTAYAEVETAVEALRCGAFDYVIKPFDL

Table 4. Receiver domain classified in one neuron

Position 94 30 (11311)
Seq-ID Position Sequence Description Score Code Structure

YJDG_ECOLI 41 LILLDIYMQKENGLDLL Hypothetical 27.4 kDa
protein

24.7 ADZ EEEE S SSSS TTH

PILR_PSEAE 31 LCLTDMRLPDGSGLDLV Fimbriae expression regulat 27.2 ADZ EEEE S SSSS TTH

ATOC_ECOLI 3 VVLMDIRMPEMDGIKAL Acetoacetate metabolism reg 23.4 ADZ EEEEES SSS HHHHH

ARCA_ECOLI 50 LVIMDINLPGKNGLLLA Aerobic respiration control 25.8 AQH –

ARCA_HAEIN 50 LVVMDINLPGKNGLLLA Aerobic respiration control 25.9 AQH EEEE S SSSS TTH

RESD_BACSU 45 LILLDLMMPGTDGIEVC RESD protein 23.2 AQH EEEEES SSS HHHHH

HNR_ECOLI 45 LMICDIAMPRMNGLKLL HNR protein 24.7 AQH EEEEES SSS HHHHH
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Fig. 1. Weak pairwise alignment of the two query transcriptional
regulatory proteins (RESD_BACSU and YJDG_ECOLI). The
conserved regions (shown in bold) extracted from the pattern
method are classified as ‘receiver domain’ and contained within two
typical neurons (one receiver domain neuron example shown).

The first line shows the position of the cluster on the 2D
map, as well as its cluster number. The most important
information found using the associative databank is shown in
the form of a table for each cluster. This provides the
molecular biologist with a quick overview of function,
structure and sequence (a more detailed description of the
table is given in Figure 2C). Distantly related sequences can
be found by observing the neighborhood on 2D map.

Both previous search results showed similarity in primary
and secondary structure information for this cluster. [In
Figure 1, we examine the pairwise alignment of the two query
sequences; a weak agreement is shown over the entire length
of the sequences identities 42/239 (17%).]

Alignment is difficult with such a low sequence homology.
The only relatively homologous areas were found using the
pattern recognition method and also summarized in the
classification step. The second conserved region was also
found in a cluster at position 30 34 (not shown here)
The classification step associated the two query families. The

common, multiple appearance of different families
confirmed, therefore, the theory that we were dealing with one
domain. It was also possible to show a common relationship
using the iterative blast method (PSI-Blast; Altschul et al.,
1997) after the third iteration (E-value = 10–28).

Sushi module (CCP)

This module is abundant in complement control proteins and
also in the complement system itself. It has also been found
in viruses, the enzyme thyroxide peroxidase and in protein
families such as selectins and mucins. Its functions are still
unclear and may well be different in the various proteins
where it has been found so far (Bork et al., 1996). CCPs occur
most frequently in tandem arrays, but also a few single copies
have been identified. An example is the classification of class
1626. We show here a sample from the total cluster of the 72
sequences. The complement receptor CR2, necessary and
sufficient for binding natural ligands, the cell adhesion
selectin precursor proteins and the apolipoprotein r precursor
protein fell into one class.

Such a module is too short to be found with standard
homology tools. Generally, it needs a lot of experience to find
such small similarities in these diverse families (Table 5).

The associative database as application

The actual version of our associative memory of protein
motifs consists of 115 000 conserved segments distributed
over 12 000 classes. About 92% of all SWISSPROT
sequences match to at least one submotif in this memory. The
rest (total 8932 sequences) consist of either single sequences
or of sequences without a marked conserved region in the
primary structure. These are stored in separate classes of the
memory.

Table 5. Sushi module classified in one neuron

Position 13 65 (1626)

Seq-ID Position Sequence Description Score Code Structure

APAR_PIG 59 CDEGYTLVGEDRLSCRS Apolipoprotein r precursor 32.5 AKO –

CR2_MOUSE 31 CDPSFTLIGEKTISQKN Complement receptor type 31.7 AKO –

CR2_HUMAN 30 CKTNFSLIGESTIRCTS Complement receptor type 31.5 AKO –

CFAH_MOUSE CDDGYQLVGQDYLRCTA Complement factor H precur 34.1 AKO –

LEM2_HUMAN 23 CEEGFELMGAQSLQCTS E-selectin precursor (endot 31.2 CIT –

LEM2_RABIT 23 CEEGFTLLGARSLQCTS E-selectin precursor (endot 31.3 CIT –

LEM2_PIG 13 CKEGFELIGPEHLQCTS Selectin precursor (endothe 30.2 CIT –

CO2_HUMAN 23 CSSNLVLTGSSSRLCKS Complement C2 precursor 30.1 CIT –

CFAB_HUMAN 62 CPSGFYPYPVQTRTCRS Complement factor B (precur 31.3 CIT –
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Fig. 2. Associative memory of protein sequence motifs displaying the fingerprint of the phospholipase A2 family, Ca-dependent subgroup
(Dennis, 1997). (A) A grid of 120 × 100 memory cells (‘neurons’) is displayed highlighting spots (each comprising a cluster of 3–6 neurons)
that indicate the position of four characteristic sequence motifs of the PA2 family. Spots (each covering several neurons) appear when
‘phospholipase A2’ is called, whereas a single query sequence (such as PA2M_HUMAN) will result in the same pattern, but with finer spots
(as then only one cell per spot is activated). The spots identify characteristic motifs as present in all true family members: red, the LFI motif
(L-X(2)-F-X(3)-I); ochre, the CCHC motif (C-C-X(2)-H-X(2)-C-C); green, the YGCYCG motif (Y-G-C-Y-C-G(4)-X-G-X-P-X-D); purple, the
CCDC motif ([LIVMA]-C-[ADEGHKNQR]-C-D-X(5)-C). (B) PA2M_HUMAN as query has produced four spots. Shown is a schematic
alignment of the hit motifs in the sequence, including position, together with a tentative prediction of the secondary structure (H, helix; T, turn;
S, sheet). (C) Zoom into the region of the CCHC motif. For each individual memory cell of the grid, a bracketed number states how many motifs
are stored there, identifying the first few (up to four) of them by a short code. Further information may be obtained by clicking into the quadratic
domain pertinent to a cell [see (D)]. Five memory cells (encircled) are being occupied by 91 motifs of the queried PA2 family (code: BD6). (D)
Tables of sequence motif information are provided when individual cells of (C) are opened. Shown is the content of cell (33,7) with five
unambiguous PA2 motifs (with the CCHC motif, boxed). Cell (33,9) contains a ‘maverick’ PA2 member from Xenopus laevis, the sequence
of which, though being closely related to the other members in the neighboring cells, has replaced by Q the obligatory H of the active center,
hence its catalytic function is lost. Cell (34,6) contains a segment of bovine aminopeptidase (code: HG1), biochemically quite unrelated, with
faint similarity to the PA2 motif, but, interestingly, also predicted to form an α helix. Clicking on any table item (not shown) established links
to background databases such as SWISSPROT, PROSITE and further, in the usual way. In this manner, the whole vicinity of PA2M_HUMAN
and its family, as well as neighbors, may be systematically studied on the conspicuous 2D map supported by hyperlinked text information. The
recently detected other subgroups (Dennis, 1997) of PA2 get quite different fingerprints in the memory, pointing to evolutionary unrelatedness.
PAF acylhydrolase, secreted into human plasma, for instance, gets only one hit containing the characteristic G-X-S-X-G motif of the active center
of esterases and lipases. Obviously, the superfamily is functionally defined, not by common ancestry.
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A query sequence (protein, putative exon, EST, translated
genomic region, etc.) is divided into segments which are
projected and shown as a ‘hit’ on the map. The resulting hit
pattern (a ‘motif fingerprint’; see Figure 2A) is typical for that
sequence and may serve to identify its class affiliation as well
as to strengthen the memory by updating the prototype vector.
An alternative approach to the memory is to specify a
sequence family in order to find its common motifs.

The hit pattern, consisting of segments typical for that
protein in its family, may be schematically aligned to show its
position in the query sequence (Figure 2B). A different
application is a zoom into a certain region of cells containing
a family of similar motifs (Figure 2C). Each memory cell may
present its content and offer (by a double-click on the WWW
map) links to pertinent text information (Figure 2D) or to
structural information as present in the background databases
supporting the memory.

The sensitivity and selectivity of a query are illustrated by
the phospholipase A2 family of proteins (PA2). We take the
subgroups of Ca-dependent enzymes (groups I–III; Dennis,
1994) as an example. It has two signatures in the PROSITE
database relating to its catalytic center (His-Asp pair). Having
trained the 120 × 100 cell memory with all conserved
segments available, we look up where PA2 is stored and
obtain a fingerprint of four spots (Figure 2A) characteristic of
this family. Any single true member, when submitted as a
query, will show the same unambiguous pattern of spots,
which may be complemented by additional information (see
Figure 2B–D) on that item as well as on its neighbors in the
sequence space. Thus, the map allows the study of sequences
by partial motifs, in great detail and in quite conspicuous form:
as fingerprinted spots of families, with subtle variants in
different cells, including outsider (single sequence without
homology) at the fringe, closely related motifs and their
character of faint sequence similarity, including prediction of
higher structure. All this can be done in turn, motif by motif.
Lengthy domains are divided into convenient submotifs of
suitable length. The memory is capable of storing all motifs
(many thousands) as known to be conserved in the sequence
space.

Discussion

The prevailing method of sequence analysis in huge files of
information items rests on text linking (often hampered by
sloppy nomenclature) and on similarity study. Several tools
depart one step into the 2D world by storing index matrices of
pre-processed ‘hits’ between raw data (Mewes et al., 1997;
Vingron and von Haeseler, 1997). Another way is to envisage
proteins as arrays of motifs (being signatures standing for
domains or modules) and to establish links between sequences
in terms of shared motifs or domains (Bork et al., 1996).

With the associative data memory, we offer to push ahead
further into the 2D world of shared motifs. We make use of the
neighborhood concept that emerges from the notion of a map.
A geographic map is superior to a table of distances between
selected points in a landscape. Likewise, the display of a
sequence memory as a 2D map gives a clear picture of cluster
structure as well as of neighborhood ‘topology’. As we make
use of the ‘motif’ concept of sequence study and transform
similarity into distance, we circumvent the common problem
of non-transitivity in sequence analysis (A and B may both be
close to C, but completely alien to each other, because the
closeness relates to different domains). The size of motifs has
to be chosen as a compromise: sufficiently short to display
sequence conservation as a small distance, but sufficiently
long to avoid random clustering. For protein sequences, this
means that motifs of about 17 residues are expedient.
Sequences thus envisaged as a succession of conserved motifs
implies sequence diagnostics in the form of fingerprints. In the
case of multidomain proteins (Bork and Koonin, 1996), this
may result in quite a bunch of motif hits.

The associative memory is a tool for retrieval, diagnosis and
comprehensive visualization of biomolecular sequences that
effectively complements (not replaces) the hitherto
dominating list-and-table software. Beyond sequence
relationships, it is possible to evoke prediction of secondary
structure and of function or regulation (if this is deducible with
sufficient confidence from the sequence). Apparent
dissimilarities between amino acid sequences within a cluster
can be explained by similar secondary structure (see
Figure 2D).

The accompanying WWW server allows an extremely
rapid analysis of either peptide or nucleotide sequences
(translated in all six reading frames) (see http://www.bioinf.
mdc-berlin.de/unter2.html). The interactive network is
on-line and was implemented on a parallel computer
(Sparc-20 with four processors).

In conclusion, we propose the further development of
visually oriented analysis of the sequence space. Extension to
the performance of associative memories for genomic repeats
and for ESTs is being studied at present. We are convinced that
the rapid worldwide progress in genome decoding
necessitates the integration of associative data storage into the
toolbox of information analysis.
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