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High-throughput technologies im-
press us almost every week with novel
global results and big numbers. They of-
ten reveal important general trends that
are impossible to realize with classical,
low-throughput experimental methods,
yet (so far) they provide fewer insights
into specific, molecular detail. Because
of the amount of data involved, high-
throughput technologies imply the use
of bioinformatics methods that deal
with information transformation, stor-
age, and analysis. By necessity, most of
these processes are automated.

Partly because of the nature of cur-
rent publication schemes, the accuracy
and error margins of a given method are
often only found in small print. It is ob-
vious that each method has its limits
and also that during data processing,
some information will be lost or diluted.
Because of the current need to integrate
and add value to data, results from high-
throughput experiments (if made pub-
licly accessible) are often taken further
by third-party research that relies on the
quality of these data. Thus, I believe that
public awareness of error margins for
high-throughput experimental and
computational methods should be in-
creased; the incredibly valuable data ac-
cumulating in various heterogeneous
databases permit powerful analyses but
should not be overinterpreted. In the
following discussion, I will concentrate
on limits in computational sequence
analysis, which is far from being perfect
(Table 1), despite the fact that sequenc-
ing itself is highly automated and accu-
rate, and despite the fact that sequence
information is described in simple linear
terms (using a four-letter alphabet). On

average, a 70% accuracy just to predict
functional and structural features has to
be considered a success (Table 1).

Limitations in the Total Knowledge
Base of Protein Function

As these analysis methods are knowl-
edge based, one of the reasons for the
inaccuracy is that the quality of data in
public sequence databases is still insuffi-
cient (e.g., Bork and Bairoch 1996; Bha-
tia et al. 1997; Pennisi 1999). This is par-
ticularly true for data on protein func-
tion. Protein function is loosely defined;
cellular function is more than the very
complicated network of individual mo-
lecular interactions on which it is based
(Bork et al. 1998). Furthermore, the se-
mantics for functional features are not
always established. For instance, the
notion of a “protein complex” not only
depends heavily on detection and puri-
fication methods—which, in turn, are
constantly evolving—but also on envi-
ronmental conditions. Protein function
is context dependent, and both molecu-
lar and cellular aspects have to be con-
sidered (for review, see Bork et al. 1998).

To illustrate some of this complex-
ity, a good example is lactate dehydro-
genase: This gene product can act both
as a dehydrogenase and an eye lens
structural protein, depending on its con-
text (for review, see Piatigorsky and
Wistow 1991). Even without the compli-
cation of a second, unrelated role for the
same gene product, do we know enough
about the function of lactate dehydroge-
nase, one of the best-studied proteins?
We know its biochemical pathway (at
least in human and some model organ-
isms), its different isoenzymes (in organ-
isms) with different context-dependent

properties, its regulation, and the orga-
nization of its quaternary structure.
However, we are probably still missing
much information, even on crucial mo-
lecular features: Are we sure about alter-
native splice variants? Can we exclude
age-dependent post-translational modi-
fications in some tissues? Our knowl-
edge is even more limited regarding
higher order functions that involve con-
centration, compartmental organiza-
tion, dynamics, regulation, and perhaps
even the impact of external environ-
ment. Often, the available data give at
best some reliable qualitative results on
functional features but far from a com-
plete understanding of functionality.
Yet our ability to annotate genome se-
quences and translate information
therein relies heavily on the summaries
of features attached to each sequence in
the respective public databases.

Limitations of Gene Expression
Data Extrapolations

As more high-throughput technologies
follow, the data will become more com-
plicated than sequences. Novel comple-
mentary data types such as gene expres-
sion arrays will generate more func-
tional information, but conclusions
from these data are often stretched with
regard to protein products. The expres-
sion of genes and their reciprocal pro-
teins seems to correlate weakly, with a
correlation coefficient of 0.48 (Anderson
and Seilhammer 1997). Furthermore, re-
cent studies (Hanke et al. 1999; Mironov
et al. 1999) show that alternative splic-
ing might affect >30% of the human
genes, although measurements at the
protein level have yet to confirm this.
Finally, the number of known post-
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translational modifications of gene
products is increasing constantly, so
that the complexity at the protein level
is enormous. Each of these modifica-
tions may change the function of the
respective gene products drastically.
(The entire aspect of context-dependent
gene regulation is excluded from current
discussions as we are only beginning to
understand the complex underlying ge-
netic machinery. For example, promoter
prediction in eukaryotes has a success of
only ∼35% (Table 1), and there are many
other regulatory elements that we can-
not predict at all.)

Limitations Created by
Third-Party Analyses

Public releases of completely sequenced
genomes exceed a rate of one per
month, with thousands of function pre-
dictions therein. Gene annotation via
sequence database searches is already a
routine job, but even here the error rate
is considerable (Table 1). The lower limit
of errors in current functional annota-
tion of large-scale sequencing projects is
8% (Brenner 1999). As errors accumulate
and propagate (Bork and Bairoch 1996;
Bhatia et al 1997; Smith and Zhang

1997; Bork and Koonin 1998; Pennisi
1999), it becomes more difficult to infer
correct function from the many possi-
bilities revealed by a database search. In-
creasing these complications is the fact
that computer programs often cannot
even retrieve the source of the stored in-
formation (Doerks et al. 1998).

Use of Complementary Information to
Limit Errors in Function Prediction

Some new information can be retrieved
from completely sequenced genomes,
for example, function can be predicted
by exploitation of genomic context.

Table 1. Selected Examples of Prediction Accuracy in Different Areas of Sequence Analysis

Prediction of Acc @ cova
Accuracy

(%)

Coverage
or coverage in %
of reference set Referenceb

Human promoters 0.35 50 70% of annotated test set Prestidge 1995; P. Bucher
(pers. comm)

Human regulatory RNA elements 0.34 85 40% of new DNA Dandekar and Sharma (1998)
Human genes (only presence) 0.49 70 70% of chromosome 22 Dunham et al. (1999) and

refs. therein
Human SNPs by EST comparison 0.21 70 30% of all proteins with SNP Buelow et al. (1999); Sunyaev

et al. (2000)
Human alternative splicing 0.45 90 50% of all splice sites Hanke et al. (1999)
Transmembranes (only presence) 0.85 85 99% of annotated test set Tusnady and Simon (1998)

and refs. therein
Signal peptides (only presence) .90 90 100% of annotated test set Nielsen et al. (1999)
GPI ancors (incl cleavage site) .72 72 100% of annotated test set Eisenhaber et al. (1999)
Coiled coil (only presence) .81 90 90% of annotated coiled coil Lupas (1996)
Secondary structure (Three states) .77 77 100% of 3D test set Jones (1999) and refs. therein
Buried or exposed residues .74 74 100% of 3D test set Rost (1996)
Residue hydration .72 72 100% of 3D test set Ehrlich et al. (1998)
Protein folds (in Mycoplasma) .49 98 50% of Mycoplasma ORFs Teichmann et al. (1999) and

refs. therein
Homology (several methods) .49 98 50% of 3D test set Muller et al. (1999) and refs.

therein
Functional features by homology .63 90 70% unicellular genomes Bork and Koonin (1998);

Brenner (1999)
Function association by context .25 50 10% high confidence in yeast Marcotte et al. (1999b)
Cellular localization (two states) .77 77 100% of annotated test set Andrade et al. (1998)

The numbers referred to are in many cases crude estimates taken or sometimes even estimated from the literature and have an expected accuracy of
∼70%. Direct comparison of the numbers might be misleading as the context is not properly explained here. Furthermore, although most of the
examples are two state predictions, the percentage numbers do not take into account random occurrences of the states. All test sets are most likely
biased (e.g., current 31) test sets do not contain many compositionally biased regions, which probably contain up 15% of all residues, and annotation
test sets are far from being perfect; see text), i.e., the real accuracy is thus probably lower.
aTo make the numbers more comparable, accuracy has been multiplied by coverage; some methods give accuracy for different degree of coverage and
roughly justify this procedure. However, often it is biased toward sensitivity as specificity cannot be properly taken into account. Most features predicted
with an accuracy 2 coverage >0.70 are of structural nature and at best only indirectly imply a certain functionality.
bOnly one recent reference is given and if indicated, references therein should also be considered as other reports do not always agree with the numbers
given.
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Based on the observation that interact-
ing proteins in one organism sometimes
have homologs in other organisms fused
together in a single gene, Marcotte et al.
(1999a) predicted novel interactions for
50% of yeast proteins using gene fusion
information. However, they noted an
overlap with classical methods and an
error rate of 82%. To see a signal they
had to correct for domains present in
many proteins (Marcotte et al. 1999a).
By considering only orthologs with fis-
sion and fusion events (Enright et al.
1999, Snel et al. 2000), the signal-to-
noise ratio increases and the number of
predictions drops dramatically (7% of
Escherichia coli proteins; Enright et al.
1999). With a particular question in
mind, Does protein X have interaction
partners?, the generation of hypotheses
is extremely useful; yet to provide a gen-
eral overview of protein function, it is
advisable to keep the errors small. Fur-
ther information can be added later,
which is easier than retracting stored in-
formation. But how do we incorporate
the information on error margins? Such
estimates (sometimes not even the
sources of the annotation) are not vis-
ible in current databases that store the
results of computational approaches.

Taking the 70% Hurdle

As noted above, most prediction
schemes extrapolate from current
knowledge, and many bioinformatics
methods have difficulty exceeding a
70% prediction accuracy (numbers in
Table 1 are often overestimates because
the test sets used are usually not repre-
sentative of all sequences). On one
hand, current methods seem to capture
important features and explain general
trends; on the other hand, 30% of the
features are missing or predicted
wrongly. This has to be kept in mind

when processing the results further. Also
the 70% accuracy often attaches to
methods that deal with discrete objects
such as sequences; making estimates
about the prediction of cellular features
is much more difficult as one first has to
agree on semantics (or ontology in a da-
tabase sense) to describe complex pro-
cesses in a comparable way.

All of the above focuses on limita-
tions in the computational prediction of
qualitative features. There remains a
long way to go until we are able to de-
scribe molecular processes quantita-
tively; current simulations of complex
systems are still very rough and simplis-
tic. However, there is still no doubt that
sequence analysis is extremely powerful
and that the generation of hypotheses
derived by computational methods will
be more and more often the first success-
ful step in the design of experiments. If
70% of such experiments were success-
ful, the speed of scientific discoveries
would grow exponentially.

The publication costs of this article
were defrayed in part by payment of
page charges. This article must therefore
be hereby marked “advertisement” in
accordance with 18 USC section 1734
solely to indicate this fact.
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