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Abstract

By exploiting the rapid increase in available sequence data, the definition of medically relevant protein targets has
been improved by a combination of: (i) differential genome analysis (target list); and (ii) analysis of individual
proteins (target analysis). Fast sequence comparisons, data mining, and genetic algorithms further promote these
procedures. Mycobacterium tuberculosis proteins were chosen as applied examples. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Revealing protein targets from genome screening is a
new major challenge (Emilien et al., 2000). For individ-
ual molecules or even a family of related structures,
efficient procedures incorporating methods from artifi-
cial intelligence exist (e.g. Ghuloum et al., 1999; Polan-
ski and Walczak, 2000 for recent QSAR studies).
Nevertheless, in areas such as protein structure predic-
tion, a combination of expert knowledge with computer
automation is often used (Bates et al., 1997; Trohalaki
et al., 2000). In genomes, the combination of specific
databases, sequence search algorithms and expert
knowledge offers a promising approach to tackle the
higher complexity of a genome compared to a single

protein (Koonin, 2001). Our approach presented here is
medically oriented. It combines different sequence anal-
ysis algorithms with expert knowledge to divide and
analyze the complete set of proteins in a genome re-
garding pharmacologically motivated sets and target
categories. Simple routines from artificial intelligence
approaches are included to enhance this complex pre-
diction task. Next, individual targets are efficiently
analyzed including model building, homology mod-
elling and domain retrieval. This is demonstrated for
proteins and structures from different target categories
in Mycobacterium tuberculosis. Presently, our combined
approach allows not only efficient target retrieval for
pharmacologically interesting protein categories (indi-
vidual examples are presented), but also a substantial
gain in genomic protein function assignment compared
to direct annotation (about one-third less unassigned
proteins). This is compared to other recent advances in
computational genomics. Further gains from context-
based and artificial intelligence-based approaches are
expected (Tsoka and Ouzounis, 2000).
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2. Materials and methods

2.1. Differential genome analysis

Differential genome analysis was carried out exten-
sively using sequence comparison methods as de-
scribed (Huynen et al., 1998; Dandekar et al., 2000).
Briefly, lists comparing similarities were created by
sensitive sequence alignment algorithms for the
proteins from the complete genome sequence. Related-
ness was established by significant expected values
(E�0.001) in sequence comparisons. It was carefully
checked whether this applied to the whole sequence or
only parts of the complete protein. Separate protein
domains with different predicted function were distin-
guished by detailed sequence analysis. Orthologs were
determined by comparing complete genomes from dif-
ferent organisms. Homologous sequences are called or-
thologous when their independent evolution reflects a
speciation event rather than a gene duplication event
(Fitch, 1970). Orthologous sequences are likely to have
the same function in the two species compared. In the
determination of orthology, we use both relative simi-
larity (two orthologous sequences should have the
highest pairwise identity level, compared to the level of
identity of either of the sequences to all other se-
quences in the other sequence’s genome), and relative
position within the genome (conservation of gene
neighborhood). Several sequence analysis algorithms
were used for this (BLAST, FASTA and PSI-BLAST;
Aravind and Koonin, 1999). In particular, with appli-
cation-specific hardware for large-scale sequence to se-
quence comparisons, the speedup obtained is large
enough to compare even complete prokaryotic
genomes such as different Mollicutes among each
other (Dandekar et al., 2000).

2.2. Secondary structure prediction

Profile-based neural networks were used applying
Rost’s program PHD (Rost and Sander, 2000). The
program PREDATOR (Persson, 2000; Frishman and Ar-
gos, 1997) served to achieve a secondary structure
prediction based on pairwise alignment of the se-
quence to be predicted with each related sequence.
Secondary structure assignment comparing the blo-
sum62 similarity scores (Pearson, 2000) of best-match-
ing fragments in a database of known structures was
done using the program SIMPA 96 (Levin, 1997). Sec-
ondary structure predictions were compared and com-
bined for model building in the case of a target
structure where no tertiary template was known.
Model coordinates are available on request.

2.3. Homology modelling and domain identification

Homology modelling used the PEITSCH software
package available from SwissModel (Schwede et al.,
2000). Domain identification applied iterative sensitive
sequence alignment procedures including PSI-BLAST
(Aravind and Koonin, 1999) and the simple modular
architecture detection tool (SMART; Schultz et al.,
2000) and followed detailed protocols as described
previously (Dandekar et al., 2000; Bork et al., 1998).
Identified known three-dimensional (3-D) structures
were classified according to SCOP (Lo Conte et al.,
2000).

2.4. Optimization of different ranking criteria using the
genetic algorithm

Since ranking and evaluation of drug or target can-
didates can be difficult because of the great number of
criteria and compounds to be considered, we wrote a
genetic algorithm optimizer for this task.

Input file : Different pharmacologically interesting
compounds (or drug targets) are ranked according to
their established quality on the basis of a gold stan-
dard for the desired pharmacological activity, for in-
stance, their antibiotic efficacy. In addition, they are
measured in their quality (simple scalar values such as
point scores or floating point values) by different
physico-chemical criteria such as hydrophobicity, anti-
genicity, content of secondary structure and accessibil-
ity. These data are stored in a flat file table.

Our program utilizes a genetic algorithm (Pena-
Reyes and Sipper, 2000)-driven search engine to opti-
mize the weights for the different criteria. The
program was written in PASCAL. Weights were ini-
tially randomly chosen and later optimized and se-
lected on comparing arrays with different target
ranking according to the encoded weights. They were
evolved in successive generation cycles in such a way
that the weights chosen for the different other criteria
can best predict the gold standard ranking (e.g. antibi-
otic efficacy).

Running conditions : After a random start, high qual-
ity bit-strings are selected preferentially as parents.
They are mutated using on average one bit per string
per generation and recombined through crossover; the
probability of recombination is 0.2 per bit string per
generation and occurs at exactly one equivalent site
chosen at random on each of the parental chromo-
some pairs. This yields the next parental generation of
encoded weights. A positive constant keeps the popu-
lation of prediction trials richer since low-fitness indi-
viduals may also survive. Simulations were run over
300 generations to allow convergence.
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3. Results and discussion

3.1. Differential genome analysis

Large-scale sequencing projects now yield a huge
amount of data including the complete genome se-
quences of a number of prokaryotic and eukaryotic or-
ganisms. Here, we will concentrate on the severely
pathogenic genome from M. tuberculosis.

Detection of open reading frames is, even in prokary-
otes, a non-trivial exercise. Software such as GENESCAN

(Ramakrishna and Srinivasan, 1999) is used; recent ad-
vances involve data mining for more sensitive detection
(King et al., 2000).

The next step for protein target identification is differ-
ential genome analysis. It tackles the following recogni-
tion task: which proteins are specific for this organism,
which are shared with several other species and which
proteins occur ubiquitously? In particular, genome-spe-
cific enzymes may be pharmacologically targeted without
hurting the human patient. Furthermore, genes shared
only among pathogens often give a first clue for identify-
ing new pathogenicity factors.

These questions can be answered by a two-step proce-
dure; first, the group of genes or even a whole genome is

compared by fast automated sequence comparison pro-
cedures with the corresponding genes from other
genomes.

Three different types of genes can be distinguished.
Genes from other species can be either (i) highly similar
over most of the sequence and probably encode a protein
with the same function, an ortholog; (ii) related only in
some part of the complete sequence; or (iii) not signifi-
cantly related.

Next, the genes encoding orthologous (see M&M)
proteins, encoding probably the same function, are
classified according to Venn diagrams. Different cate-
gories are identified in this way such as organism-specific
genes (set 1, e.g. an organism-specific kinase), genes
shared between several pathogenic species (set 2, e.g. host
interaction factors), between most bacteria (set 3, e.g. ri-
bosomal proteins) or between patient and parasite (e.g.
triosephosphate isomerase). This Venn classification can
be automated using awk scripts and PERL programs.

3.2. Lists of potential targets and further identification
tools

Currently, we investigate improved ways to cluster
and sort genes. Data mining subroutines look in addi-

Fig. 1. Cartoon representation (using the program RASMOL from Sayle, see latest update by Bernstein (2000)) of the main chain trace
of a deduced first approximation model of polyphosphate glucokinase from M. tuberculosis. N- and C- terminals are labeled. Helices
are shown in black.
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Fig. 2. Cartoon representation (using the program RASMOL,
Bernstein, 2000) of the 3-D structure of the known SCOP
domain 3.1.21.1.1 evident in the predicted dihydropteroate
synthase homolog from M. tuberculosis. Helices are shown in
black, sheet regions in dark grey.

with latest software, genome context, detailed sequence
analysis and expert knowledge to achieve protein func-
tion assignments allowed a substantial gain, for exam-
ple, in Mycoplasma pneumoniae (Dandekar et al., 2000):
688 protein frames are identified and only 230 or 33%
have no function assignment. Standard techniques
(Himmelreich et al., 1996) identified only 677 protein
reading frames and 328 or 48% remained with un-
known function.

In particular, signal to noise ratios for protein func-
tion detection are improved and misannotations are
reduced. The combination of genome context with dif-
ferent algorithms and databases is the main reason for
this gain (compare with similar results reported by
Koonin (2001), Kyrpides et al. (2000)). Regarding ar-
tificial intelligence techniques, one has to stress that the
routines applied are still simple and human expert
knowledge and intervention includes critical steps. The
gain nevertheless achieved indicates that further devel-
opments in this direction should allow an even larger
improvement in sequence assignment as well as in
prediction and analysis of valuable targets (see below).
This includes incorporation of techniques from data
mining and symbolic machine learning (Helma et al.,
2000) or inductive logic programming (to achieve prob-
abilistic prediction rules; King et al., 2001).

3.3. Target structure analysis

Analysis of individual targets suggested from our
genome analysis of M. tuberculosis is illustrated by
structures obtained from the different protein sets.

The gene for polyphosphate glucokinase and its en-
coded enzyme are a specific adaptation of M. tuberculo-
sis and not present in humans (see set 1 above,
species-specific adaptations). This enzyme catalyzes the
reaction: phosphate(n)+D-glucose�phosphate(n−1)+
D-glucose phosphate and presents a potential pharma-
cological target. Polyphosphate glucokinase from M.
tuberculosis is not homologous to any known 3-D
structure. We tested this using different sensitive se-
quence alignment programs (Aravind and Koonin,
1999) as well as by looking for structurally related
protein domains with the SMART program (Schultz et
al., 2000). However, a first approximation of the 3-D
structure of polyphosphate glucokinase is helpful for
drug design. Initial results applying secondary structure
prediction, analysis of loop regions, accessibility (ac-
cording to PHD; Rost and Sander, 2000) and selection
of predictions from model building by different target
evaluation criteria (compactness, protein topology;
comparison to non-homologous enzymes of carbohy-
drate metabolism) suggest the globular fold we show in
Fig. 1. Such models have to be improved in new
structure prediction cycles (e.g. by applying genetic
algorithms, by model building, or energy refinement)

tion to direct sequence similarity (orthologous genes,
detected by the programs mentioned above) for similar
functionality. This can be achieved by combining clus-
ters according to sequence similarity with PERL pro-
grams that link and sort genes by functional patterns
(e.g. classification, substrates) identified in the descrip-
tion line comparing genes from different species.

Moreover, simple rules such as the percentage of
sequence identity multiplied by the length of the iden-
tity stretch are combined with enzyme-specific data
strings (such as ‘kinase’) and recognition motifs (e.g.
from the database PROSITE, Apweiler et al., 2001).
This allows a far more specific recognition and classifi-
cation of related enzyme activities with the potential for
large scaleup. Thus, M. tuberculosis polyphosphate glu-
cokinase (E.C. 2.7.1.63) can be readily identified and
grouped into the context of other, not functionally
identical but related enzyme activities, for instance,
hexokinases and glucokinases from different organisms.
Coupling sensitive sequence comparisons to straightfor-
ward text mining routines has been shown to signifi-
cantly enhance structure prediction for remote
homologs by MacCallum et al. (2000) (program
SAWTED). Our combination of such routines together
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according to the experimentally obtained data and
available biological knowledge (Saxena et al., 2001; Ota
et al., 1999). After this, they can achieve reliable topol-
ogy predictions (handedness, correct number and suc-
cession of secondary structure elements, etc.) and
sufficiently low RMSD (around 6 A� and less; compare
to recent improvements in pure ab initio prediction by
Pillardy et al. (2001)).

The dihydropteroate synthase homolog in M. tuber-
culosis is an example for set 3 (general proteins) as it is
present in many bacteria. However, the enzyme does
not occur in humans. A comparison among more or-
ganisms including humans would put the protein away
from the central set of proteins shared among all com-
pared species. It provides the second step in dihydrofo-
late synthesis. The homolog is directly identifiable by
sensitive sequence and domain comparisons from the
raw genome sequence; see also the annotation from the
M. tuberculosis sequencing consortium (Cole et al.,
1998). Further, by straightforward domain analysis the
protein can be shown to contain a SCOP domain of a
known structure shown in Fig. 2. This enables, in this

simple illustration example, a more accurate examina-
tion of the 3-D structure of the fold (after refinement
RMSD error estimated to be 2–3 A� ) to better fight the
sulfonamide resistance of M. tuberculosis.

Pyruvate kinase from M. tuberculosis is an example
for set 2 (proteins found in some species, but a clear
subset of all compared) Fig. 3. A homology model is
easily obtained (many related sequences and a struc-
tural homolog with detailed 3-D structure is available),
e.g. using the Swiss modelling server (Schwede et al.,
2000; RMSD error estimated to be 1–2 A� ). The model
shows minor differences when compared to other pyru-
vate kinases. In contrast to the above example, this
enzyme occurs in humans and thus much more care is
needed to exploit the predicted structure as a potential
therapeutical target.

For the evaluation of different targets or drugs for a
specific target by different criteria, many different
parameters and rankings are possible. We developed a
genetic algorithm-based optimizer for this. According
to the desired criteria and a ‘gold standard’, e.g. antibi-
otic activity against a pathogen, optimal weights yield-

Fig. 3. Cartoon representation (using the program RASMOL, Bernstein, 2000) of a homology model of pyruvate kinase from M.
tuberculosis. Helices are shown in black, sheet regions in dark grey.
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Table 1
Target ranking illustration example

N-terminal Relative antibiotic strength (average number ofMolecular RelativeOverall
weight toxicitynegative chargehydrophobicity bacterial colonies remaining after antibiotic)

−6769.86−16897.13 1979.00 3 9.8
−6676.40−16650.64 1979.00 3 9.3

1852.00 4−5767.24 11.3−15340.80
−5765.54−15339.99 1852.00 4 11.3

1940.00 5−5786.51 8.2−15297.65
1955.00 4−15398.68 12.1−5803.39
1965.00 4−5824.71 7.0−15905.19

−5641.23−15252.84 1960.00 5 10.0
2009.00 0−6258.18 6.6−17024.36

−5921.17−15272.44 1908.00 0 6.9
−14292.27 −5938.48 1998.00 4 7.1
…(further data) …

Optimized weights for predicting antibiotic efficacy of further compounds from the library using the other parameters after
weight normalization to the first parameter:

3.35 −10.211.000 11.69

Many slightly different antibiotic compounds from a substance library are tested (example data are given line by line). From the
measured data, optimal weights are calculated to best predict (rank error minimization) antibiotic efficacy (last column) for the rest
of the library (or a new series of similar compounds). This is based on the other criteria, taking into account toxicity as an important
negative criterion (weights given in the bottom line).

ing the best ranking are calculated for each parameter
based on a series of compounds. Further potential drug
targets or putative drugs for a given target can then be
ranked and their efficacy predicted considering the
same parameters using the optimized weights. For ex-
ample, one can use established antibiotic compounds
from a substance library as standards and the pharma-
cological parameters of choice — such as half-life,
hydrophobicity, N-terminal charge, toxicity — in order
to compare and predict new compounds for their an-
tibiotic efficacy based on these parameters (Table 1).
This approach is useful for a simple initial analysis and
ranking among compounds. However, several further
refinements are possible, such as sequential projection
pursuit to detect interesting clusters in the multidimen-
sional data available for the compounds measured
(Guo et al., 2000).

4. Conclusions

Target identification from genome sequence is
achieved here by a combination of sequence compari-
son, genome context, basic data mining and motif
recognition. Such combined approaches also do well on
other genome studies and reduce the fraction of unan-
notated proteins by about a third (Dandekar et al.,
2000; Iliopoulos et al., 2000; Koonin, 2001). Evaluation
of concrete targets includes genetic algorithm-evalua-
tion of ranking criteria. Potential pharmacological
targets are analyzed structurally by domain assignment,

homology modeling and model building (RMSD be-
tween 6 A� and more, down to 1 A� depending on target
difficulty). Three typical examples demonstrate that
biologically relevant targets are readily identified. Cur-
rent procedures are only semiautomatic, relying also on
human expert knowledge and intervention. For a num-
ber of tasks (e.g. data mining, target ranking), artificial
intelligence methods have already been shown to be
powerful to retrieve and analyze individual proteins
(Casadio et al., 2000; King et al., 2001). Several steps
were outlined where we explore and incorporate input
from such approaches. Nevertheless, more improve-
ments are expected and necessary (Tsoka and Ouzou-
nis, 2000) to further automate genome target
identification in the future.
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