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ABSTRACT

Functional links between proteins can often
be inferred from genomic associations between
the genes that encode them: groups of genes
that are required for the same function tend to show
similar species coverage, are often located in close
proximity on the genome (in prokaryotes), and tend
to be involved in gene-fusion events. The database
STRING is a precomputed global resource for the
exploration and analysis of these associations.
Since the three types of evidence differ conceptually,
and the number of predicted interactions is very
large, it is essential to be able to assess and
compare the significance of individual predictions.
Thus, STRING contains a unique scoring-framework
based on benchmarks of the different types of
associations against a common reference set, inte-
grated in a single confidence score per prediction.
The graphical representation of the network of
inferred, weighted protein interactions provides a
high-level view of functional linkage, facilitating the
analysis of modularity in biological processes.
STRING is updated continuously, and currently
contains 261033 orthologs in 89 fully sequenced
genomes. The database predicts functional
interactions at an expected level of accuracy of at
least 80% for more than half of the genes; it is online
at http://www.bork.embl-heidelberg.de/STRING/.

INTRODUCTION

Protein—protein interactions are not limited to direct physical
binding. Proteins may also interact indirectly—by sharing a
substrate in a metabolic pathway, by regulating each other
transcriptionally, or by participating in larger multi-protein
assemblies. For predicting such functional associations
(including direct binding), the current growth in completed
genomes offers unique opportunities through so-called

‘genomic  context’ or inference
methods (1-3).

These methods are based on the fact that functionally
associated proteins are encoded by genes that share similar
selection pressures—the genes need to be maintained together,
and regulated together, such that the encoded proteins can
interact at the same time and place in the cell. This leaves
signals in the genome, which become detectable above the
noise of random genomic events when analyzing multiple
species. For example, the need for maintaining functionally
associated genes together can become visible as an agreement
in occurrence-patterns across several genomes (4,5): the genes
tend to be either present together, or absent together—they
have the same ‘phylogenetic profile’. This is particularly
informative when the profile is not in agreement with
organismal phylogeny, as is the case when horizontal transfers
or gene losses are involved (6,7). Likewise, the need for similar
regulation is often reflected in a tendency of functionally
associated genes to be close neighbors in prokaryotic genomes
(8,9), where they generally have the same transcriptional
orientation and little or no sequence between them. This
suggests that they are single transcription units (operons),
recurring in similar but not identical composition across
several genomes (10). Finally, genes whose protein products
need to interact closely in the cell have a noticeable tendency
to be fused into a single gene, encoding a combined
polypeptide (11,12) in which the proteins have a higher
chance of interacting productively.

Optimal, user-friendly exploitation of genomic context for
the prediction of functional interactions requires: (i) a
benchmarked scoring scheme that integrates the three types
of context and gives a confidence value for each prediction,
(i1) automatic implementation and orthology assignment of
the genes in newly published genomes, and (iii) easy
navigation between various displays so that not only the
pairwise interactions, but also the network of interactions and
the presence of potential (sub)modules in the network
become visible. Previous genomic context databases such as
Indigo (13), the first version of STRING (14), the Clusters of
Orthologous Group (COG) database (15), Predictome (16),
and SNAPper (17) only rely on a single form of genomic
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context. Where they do include multiple forms (Predictome
and COG) these are not integrated; nor do any of the
databases indicate the reliability of the predictions. This
indication of reliability is necessary: with the ever-increasing
number of genomes, the amount of predictions can become
quite large and, depending on the parameters, may include
many false positives. We took the opportunity of a complete
redesign of STRING to introduce such a scoring scheme,
derived by integrating all three types of genomic context.
Additionally, STRING is now continuously updated and the
predictions are fully precomputed. Particular emphasis has
been placed on fast and easy navigation, coupled to
integrated visual outputs (see Fig. 1 for an example output
of STRING).
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USAGE

Users enter the database via a protein of interest, for which
functional associations are to be predicted. This protein can be
identified by its accession number or identifier. Alternatively,
the raw amino acid sequence of the protein can be supplied (in
this case, checksum lookups and similarity searches are done
to identify the corresponding entry in the database). The user is
then presented with a summary of the predicted functional
links for the protein, ranked by estimated confidence. Further
pages are accessible which summarize and explain the
evidence that leads to the predictions. Additionally, a fully
interactive network display is available—allowing navigation
through the combined functional associations. The network
display also allows iteration—zooming out of a particular
module and visualizing its connections to other modules.
For independent computational analysis, the entire set of
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Figure 1. An example of a functional module detected by STRING. The module encompasses the prototypic phosphate-regulon, an active uptake-system for
inorganic phosphate found in most, but not all, prokaryotes (24). (A) Network view. Green lines connect proteins which are associated by recurring neighborhood,
blue connections are inferred by phylogenetic co-occurence, and red lines indicate gene-fusion events; line thickness is a rough indicator for the strength of the
association. The visualization shows that the module is composed of two sub-modules: The larger module to the right contains the structural and immediate reg-
ulatory molecules of the transporter; the two proteins to the left form a two-component regulator system controlling the transcription of the other components in
response to phosphate starvation. (B) Score summary view. Association scores are highest among structural components. (C) Evidence view. A subset of the full

evidence is shown, visualizing the three types of genomic context links.



260 Nucleic Acids Research, 2003, Vol. 31, No. 1

predictions contained in STRING is available as computer-
readable flat-files through the website.

PREDICTION ALGORITHMS

The concepts behind the individual algorithms for the
prediction of functional associations have all been published
and validated previously; for STRING, only minor
modifications were made. The requirements for the detection
of gene fusions are more strict than those published previously
(11,12); fused proteins are not recognized by homology, but
rather by orthology of the fused parts to other, non-fused
proteins (18,19).

For neighborhood evidence, a repeatedly occurring neigh-
borhood is required, in species that are sufficiently remote to
uncover functional constraints on gene order.

For the analysis of gene co-occurrence, STRING does not
require perfect agreement between the occurrence of two
genes, but uses a measure from information theory, mutual
information (20,21), which quantifies the information
gained—from the knowledge that one gene is present—about
the presence of another gene in the same genome. The specific
algorithm used here corrects for biases in the number of
genomes sequenced for a particular branch of phylogeny, by
collapsing into a single node those taxa in which the presence
or absence of a specific gene pair is in agreement in all the
species.

SCORING-FRAMEWORK AND BENCHMARKING

The three types of genomic association each contain
quantitative information (e.g. the number of times two genes
occur together in an operon). Additionally, there is a positive
correlation between the genomic associations and the like-
lihood and strength of interactions (9,21); this allows the
derivation of a scoring system.

We benchmarked the various genomic associations sepa-
rately (Fig. 2), based on the co-occurrence of proteins on
metabolic maps in the KEGG database (22); proteins that
occur on the same metabolic KEGG map are presumed to
be functionally interacting, those that occur on different maps
are not. For both fusion and conserved gene order, we find that
the simple counting of events is insufficient; it is outperformed
by a score that includes normalization by the number of
species covered by the genes involved (Fig. 3).

The comparison of the different types of genomic association
to the same benchmark helps to establish which scores in each
method are equivalent. For example, at a fusion frequency of
0.04, 50% of the predicted pairs are on the same KEGG map,
while this is only reached at a conserved gene order frequency
of 0.10 (Fig. 2). This equivalency can be formalized by finding
a function that describes the relation between the score and
the observed accuracy. The correlations of the genomic
association counts with the fraction of proteins on the same
KEGG map are sigmoidal, and we, therefore, fitted them to
hill-equations (Fig. 2).

The equivalency mapping makes it possible to combine the
three hill-equations into a single score. We integrate the scores
by multiplying the probabilities of associations not predicting a
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Figure 2. Comparing different types of genomic associations to obtain equiva-
lency. Scores are plotted versus the observed accuracy for each genomic associa-
tion method. Data points indicate the fraction of predicted pairs of orthologous
groups that are on the same KEGG map for each type of genomic association.
For fusion and gene order, scores indicate the number of non-redundant observa-
tions divided by the number of species that contain at least one of the orthologous
groups. The dashed lines in the respective colors represent fits of these data to
standard saturating hill equations: f{x)=a + [(1 — a)x’/(c® + x®)], where x
represents the score, a the intercept, b the cooperativity, and ¢ the value of x where
half of the maximum is reached.
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Figure 3. Increased performance of an integrated score relative to the different
types of genomic association scores. Coverage and accuracy are plotted using a
sliding scale of score thresholds for each genomic association method. Shown
are the three individual methods, as well as the integrated score (for fusion and
gene order, the absolute count versus the normalized count are shown sepa-
rately). Methods in general can be said to perform better when their data points
are higher and further to the right.

functional interaction. In this way, multiple scores can be
combined to form a single score that expresses a higher
confidence (Fig. 3). Combining the separate scores leads to a
higher coverage at a given accuracy, specifically for the genes
that score sub-optimally for all the individual genomic
associations (Fig. 3). Remarkably, gene-order conservation
remains clearly the most power-full method of the three (21).



DATA SOURCES, ORTHOLOGY

For information on genomes, genes, and encoded proteins,
STRING relies on the annotated proteomes maintained by
SWISS-PROT (23). Assignment of functional equivalence of
genes across these genomes is essential for the predictions, and
this information is derived from the manually curated
orthology database, COGs (15). For any genomes not yet
present in the COG database, orthology assignments are made
by an automatic method resembling the COG procedure. This
results not only in the addition of new genes to COGs, which
are presently based on 43 genomes, but also in the creation of
a number of additional orthologous groups (NOGs, non-
supervised orthologous groups) (see http://www.bork.embl-
heidelberg.de/STRING/ for details on the orthology assign-
ment procedure. Essentially, assignments are based on
triangles of reciprocal best matches between species in all-
against-all Smith—Waterman searches, allowing for recent
duplications within the genome, and including a clean-up step
to join remaining genes by simple bidirectional hits).

STRING uses a relational database system (PostgreSQL,
http://www.postgresql.org) to store primary data, such as genes
and genomic locations. Periodically, complete all-against-all
runs of the prediction algorithms are performed, and the
resulting functional associations are stored in the database
system as well. Precomputed results are stored at several levels
of detail, allowing for very fast navigation through the
predictions.
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