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In the past decade, bioinformatics has become an integral part of research and development in the biomedical

sciences. Bioinformatics now has an essential role both in deciphering genomic, transcriptomic and proteomic

data generated by high-throughput experimental technologies and in organizing information gathered from tra-

ditional biology. Sequence-based methods of analyzing individual genes or proteins have been elaborated and

expanded, and methods have been developed for analyzing large numbers of genes or proteins simultaneously,

such as in the identification of clusters of related genes and networks of interacting proteins. With the complete

genome sequences for an increasing number of organisms at hand, bioinformatics is beginning to provide both

conceptual bases and practical methods for detecting systemic functional behaviors of the cell and the organism.
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The exponential growth in molecular sequence data started in
the early 1980s when methods for DNA sequencing became
widely available. The data were accumulated in databases such as
GenBank, EMBL (European Molecular Biology Laboratory
nucleotide sequence database), DDBJ (DNA Data Bank of
Japan), PIR (Protein Information Resource) and SWISS-PROT,
and computational methods were developed for data retrieval
and analysis, including algorithms for sequence similarity
searches, structural predictions and functional predictions. Such
activities of computational biology or ‘bioinformatics’ as it is
now called were already apparent in the 1980s, although they
mainly involved DNA and protein sequence analysis and, to a
small extent, the analysis of three-dimensional (3D) protein
structure.

The impact of the genome projects of the past 10 years is not
simply an increased amount of sequence data, but the diversifica-
tion of molecular biology data. A genome sequence presents not
only a complete set of genes and their precise locations in the
chromosome, but also gene similarity relationships within the
genome and across species. Automatic sequencing has had an
enormous impact as it has been at the forefront of the high-
throughput generation of various biological data expressed-
sequence tags (ESTs) and single-nucleotide polymorphisms
(SNPs) among others. Experimental technologies have been
developed, notably DNA microarrays for systematically analyz-
ing gene expression profiles and yeast two-hybrid systems and
mass spectroscopy for detecting protein-protein interactions.
Initiatives on structural genomics are not in the large-scale pro-
duction phase as yet, but they will certainly result in an increased
amount of protein 3D structural data.

In addition to the continual development of experimental
technologies for accumulating divergent molecular biology data,
the past decade saw developments in informatics technologies.

The single most important event was the arrival of the Internet,
which has transformed databases and access to data, publica-
tions and other aspects of information infrastructure. The Inter-
net has become so commonplace that it is hard to imagine that
we were living in a world without it only 10 years ago. The rise of
bioinformatics has been largely due to the diverse range of large-
scale data that require sophisticated methods for handling and
analysis, but it is also due to the Internet, which has made both
user access and software development far easier than before.

There is no doubt that the lists of ‘molecular parts’ obtained by
systematic experiments and revealed using bioinformatics tools
have helped to advance genetics and other biological sciences. As
compared with physics or chemistry, however, biology is still an
immature science in the sense that we cannot make predictions
based on general principles. This situation is bound to change
through our expanding body of large-scale data and accumulated
knowledge and through bioinformatics, which is gradually alter-
ing course to become a more fundamental discipline. The ulti-
mate goals of bioinformatics will be to abstract knowledge and
principles from large-scale data, to present a complete represen-
tation of the cell and the organism, and to predict computation-
ally systems of higher complexity, such as the interaction
networks in cellular processes and the phenotypes of whole
organisms. From this perspective, as illustrated in Fig. 1, we pre-
sent a chronological account of the rise of bioinformatics.

From sequence to high-throughput data analysis
The first big breakthrough in the past decade was the introduc-
tion of the rapid sequence database search tool BLAST1. This
search tool was not only more efficient than FASTA2, which had
been developed in the 1980s, but also based on different princi-
ples. A database search involves pair-wise comparison of the
query sequence against each sequence contained in the database.
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Traditionally, this comparison was treated as an optimization
query that searches for the optimal sequence alignment maximiz-
ing either the number of matched letters or the similarity score
using an amino acid mutation matrix. When gaps are allowed,
there are an enormous number of possibilities for aligning two
sequences; however, the optimal alignment can be found rigor-
ously by the ‘dynamic programming’ algorithm3, which systemat-
ically ‘prunes’ the branches of the search tree containing all
possible alignments. Unfortunately, this algorithm requires much
computation time and is not readily applicable to large-scale
databases. Thus, the strategy taken in FASTA is first to do a rapid,
rough search for matched areas using a data structure called ‘hash’
and then to apply the dynamic programming algorithm in the
neighborhood of those areas.

Whereas FASTA follows the tradition of combinatorial opti-
mization, BLAST is based on mathematical statistics coupled
with human intuition. For example, if we humans were to com-
pare two sequences by eye, we would not dare to examine all pos-
sible alignments; rather, we would look for common patterns
shared by two sequences and try to extend these to obtain longer
matches, because we know that related sequences tend to contain
conserved sequence motifs. This is the strategy taken in BLAST,
which incorporates a sound mathematical foundation to calcu-
late the statistics of high-scoring segment pairs (HSPs) un-
gapped local alignments whose scores cannot be improved by
extension or trimming. The probability of finding an HSP with
score S is known to follow an extreme value distribution, and this
probability or so-called ‘E value’ can be estimated for a given
combination of the query sequence, the database to be searched
and the scoring system. The E value is now used widely as a stan-
dardized measure to estimate statistical significance of sequence
similarity, in other words, how often one would expect to observe
a particular database hit by chance alone.

At about the same time that BLAST was developed, researchers
started to collect a different type of data the gene-based
sequence-tagged sites4 or ESTs5 that would subsequently influ-
ence the nature of sequence databases. The mass collection of
data containing single-pass (low-quality and fragment)
sequences is a quick way to capture a complete repertoire of

genes expressed in specific cells or tissues. In this approach,
BLAST is the method of choice to search for similarities against
existing databases and to do all-against-all comparisons within
the data set for identifying clusters of similar sequences.

The mid-1990s saw the collection of another, qualitatively dif-
ferent type of mass sequence data the whole genomes of cellu-
lar organisms. Starting with the small bacterium Haemophilus
influenza6, progressing to yeast7 and the more-complex multicel-
lular organisms Caenorhabditis elegans8 and Drosophila
melanogaster9 and ultimately, the draft sequence of the human
genome10,11. The completely sequenced genomes of more than
100 organisms are now available and many more are in progress,
including a finished version of the human genome.

An increase in the amount of large-scale sequence data does not
necessarily lead to an increase in biological knowledge unless it is
accompanied with new or improved tools for sequence analysis12.
Elaborate methods have been developed to increase the sensitivity
of sequence similarity searches by a factor of three13, the most suc-
cessful ones being PSI-BLAST14 and hidden Markov models
(HMMs)15. PSI-BLAST is an extremely sensitive method to detect
weak similarities and is based on an iterative procedure that makes
successive improvements to the position-specific scoring matrix (or
‘profile’) initially generated by a standard BLAST search.

Similar to profiles, HMMs are constructed from multiple
sequence alignments, such as those produced by ClustalW and
X16,17, but they explicitly incorporate the probabilities of inser-
tions and deletions and enable a search against an HMM library
to detect subtle sequence features. Other successful methods for
sequence analysis have been based on neural networks, resulting
in considerable improvement in, for example, protein secondary
structure predictions18, and on rule-based systems that predict
various functional features of proteins, for example, the predic-
tion of protein localization by PSORT (ref. 19; a comprehensive
survey of prediction accuracy in different areas of sequence
analysis is given in ref. 20).

Biological knowledge obtained from the analysis of primary
databases containing sequences and 3D structures was stored in
secondary databases for further reference purposes, and this
trend has continued (Table 1). In particular, HMMs and PSI-

BLAST facilitated the develop-
ment of protein domain
databases21–27 that allow iden-
tification of the modular archi-
tecture of proteins and their
functional units. The similarity
search against primary
sequence databases can be used
for functional prediction of a
gene or a protein as long as the
database is well annotated and
curated, although it is increas-
ingly more difficult to maintain
an up-to-date, well-annotated
sequence database owing to the
varying quality and ever-
increasing amounts of
sequence data. Thus, it has
become customary to rely
more on the secondary data-
bases, which contain signatures
of protein domains and func-
tional sites rather like dictio-
naries containing knowledge
on the ‘words’ and ‘sentences’
of the ‘sequence language’.

primary databases containing
large-scale experimental data
in genomics and proteomics

secondary databases (knowledge
bases) containing accumulated
biological knowledge

understanding functions and
utilities of individual genes
or proteins

understanding functions and
utilities at the molecular,
cellular and organism levels

bioinformatics in the 90s

bioinformatics now

bioinformatics in the future

a complete computer
representation of the cell
and the organism

understanding basic principles
of the higher complexity of
biological systems

Fig. 1 A view of bioinformatics past, present and future.
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With the increasing number of complete genomes available for
comparative studies, different types of function prediction con-
cepts have been developed, notably ‘gene context’ and ‘gene con-
tent’ analyses (reviewed in refs. 28,29). If the genome is viewed as
a string of genes, gene context represents the positional associa-
tion of genes, such as an operon in prokaryotic genomes. Gene
context analysis, involving the comparison of gene orders and
gene fusions across different genomes, can detect the functional
association of proteins, such as physically interacting subunits,
members of the same pathway and an enzyme and its regulator.

By contrast, gene content analysis is a comparison of gene
repertoires across different genomes. When two genes are pre-
sent or absent in a correlated manner among many organisms,
there may be a functional link between these genes. A prereq-
uisite to such an analysis is to establish orthologous relation-
ships that is, functionally identical genes that have
descended from a common ancestor. In practice, orthologs
are defined by sequence similarities, often by the criterion of
bidirectional best hits in pair-wise genome comparisons. The
COG database30 was one of the early and most prominent
efforts to organize knowledge about orthologous groups
among completely sequenced genomes.

From molecular to higher order function
The availability of different types of high-throughput experi-
mental data in the late 1990s has expanded the role of bioinfor-
matics and facilitated the analysis of higher order functions
involving various cellular processes. Notably, an oligonucleotide
array31 or a cDNA microarray32 containing every gene in the
genome is a powerful tool to measure gene expression across a
whole cell or tissue under different conditions. In addition to
sequence similarity and proximity on the chromosome, two
genes can now be related by their similarities in expression pro-
files, either at specific time points or in other controlled condi-
tions. Clusters of co-regulated genes can be detected from gene
expression data a process that is similar in essence to detecting
clusters of orthologous genes in COG or clusters of positionally
correlated genes in gene context analysis and these expression
clusters can identify potential members of gene groups responsi-
ble for specific physiological processes. Complex gene expression
data also have stimulated applications of informatics technolo-
gies, including self-organizing maps33 and support vector
machines34, for the extraction of inherent biological features.

Protein-protein interactions represent another type of experi-
mental data. High-throughput two-hybrid system analyses have
been performed for whole sets of protein pairs encoded in the
yeast genome35,36, and components in purified protein com-
plexes in yeast have been identified systematically by mass spec-
troscopy37,38. These data sets add an additional layer of
information about proteins (protein interactions) to the existing
genome (sequence similarity and gene context) and transcrip-
tome (expression similarity) data sets. All of these data sets can
be treated as collections of binary relationships that is, rela-
tionships between two objects which allow an integrated analy-
sis that can extract biological features more accurately. When
different data sets in yeast were combined, commonly found
pairs were likely to be biologically more meaningful39,40. This
implies that data on higher order function usually have higher
error rates, that the interpretation can contain many pitfalls, and
that rigorous benchmarking is therefore required.

Until recently, there was no common terminology for the dif-
ferent aspects of function. The first steps towards a common
vocabulary for protein function have been taken by the Gene
Ontology Consortium41 so that functional features can be com-
pared and described better. The Gene Ontology Consortium
categorizes currently accumulated and dynamically changing
knowledge into three systematic terminologies or ‘ontologies’:
the ‘molecular function’ of an individual protein; the ‘biological
process’ in which a protein is involved; and the ‘cellular compo-
nent’ in which a protein functions.

To increase our understanding of cellular processes from
genome information, pathway database, for example KEGG42

and EcoCyc43, have been created in the past decade (Table 1).
Whereas most databases concentrate on molecular properties
(for example, sequences, 3D structures, motifs and gene
expressions), these databases tackle complex cellular proper-
ties, such as metabolism, signal transduction and cell cycle, by
storing the corresponding networks of interacting molecules
in computerized forms, often as graphical pathway diagrams.
Inevitably, it is necessary to collect data and knowledge from
published literature accumulated over many years from tradi-
tional studies of biology. At least for metabolic pathways, the
past knowledge is relatively well organized in these databases,
providing a reference data set for annotating genomes (the
‘metabolic reconstruction’) and for screening microarray and
other high-throughput experimental data.

Table 1 • Databases of organized biological knowledge

Knowledge Database URL Refs.

protein functional sites PROSITE http://www.expasy.ch/prosite/ 21
BLOCKS http://www.blocks.fhcrc.org/ 22
PRINTS http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/ 23
ProDom http://prodes.toulouse.inra.fr/prodom/doc/prodom.html 24
Pfam http://pfam.wustl.edu/ 25
SMART http://smart.embl-heidelberg.de/ 26
TIGRFAMs http://www.tigr.org/TIGRFAMs/ 27

protein 3D folds SCOP http://scop.mrc-lmb.cam.ac.uk/scop/ 52
CATH http://www.biochem.ucl.ac.uk/bsm/cath_new/ 53

transcription factors TRANSFAC http://transfac.gbf.de/TRANSFAC/ 54

protein interactions BIND http://www.bind.ca/ 55
DIP http://dip.doe-mbi.ucla.edu/ 56

protein pathways KEGG http://www.genome.ad.jp/kegg/ 42
EcoCyc http://www.ecocyc.org/ 43

ortholog groups COG http://www.ncbi.nlm.nih.gov/COG/ 30

controlled vocabulary GO http://www.geneontology.org/ 41
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In contrast to the sequence, which is a simple one-dimen-
sional object, the network of interacting molecules is repre-
sented as a complex graph object. Mathematically, a graph is a
set of nodes and edges and, depending on what is to be taken as
a node, different types of graphic objects can be defined. For
example, the protein sequence is a graph object consisting of
amino acids (nodes) connected by peptide bonds (edges),
whereas the protein 3D structure is a graph object consisting of
atoms (nodes) and atomic interactions (edges). To understand
higher functions, it is necessary to consider ‘higher’ graph
objects: the KEGG database consists of three such objects
called ‘protein network’, ‘gene universe’ and ‘chemical uni-
verse’, for which the nodes are proteins, genes and chemical
compounds, respectively. These databases of higher graph
objects have paved the way for developing graph algorithms,
such as those for detecting local graph similarities44 among
pathways, expression profiles and genomic contexts.

The concept of the E value in the BLAST search is based on
the view that the database is a collection of independent
objects (sequences). By contrast, the KEGG database or any

interaction network database contains graph
objects that are collections of nodes (proteins,
genes or chemical compounds) that are inher-
ently related by different types of edge. Thus,
the statistics of similarities and other features
of the graph must be understood and con-
verted to a new E value for the network analy-
sis to become more intelligent and
efficient in other words, a FASTA-to-BLAST
type of development.

Toward this end, recent analyses on global
statistical features of network topology may
have relevance. Various interaction networks
of complex systems such as the Internet and
social networks, as well as metabolic networks,

gene regulatory networks and other biological networks, share
common properties of network topology. One property is the
‘small world’ network45, in which any two nodes can be con-
nected by a few steps because of the intermediate topology
between completely regular and completely random graphs.
Another property is the ‘scale-free’ network, in which the node
connectivity distribution follows a power law46, which suggests
the existence of highly connected nodes (hubs). In the continu-
ally expanding Internet and social networks, these properties
have been related to the tendency of new nodes to be linked to
larger hubs. In the biological networks, the implications must be
pursued in functional and evolutional perspectives. For exam-
ple, the scale-free property seems to be correlated to the network
stability against random errors a feature that is favored in evo-
lution. Although different types of complex network share
global properties, they seem to be distinct when simple struc-
tural elements (network motifs) are examined47.

Certainly, the complexity of network topology arises from
complex patterns of connections (interactions) and not sim-
ply from the size of the network (measured by the number of

nodes). This may have bio-
logical implications, espe-
cially in view of the
surprisingly few genes found
in the human genome10,11.
Graphs and patterns of node
connections are static in
nature. Predicting network
dynamics is far more difficult
than simply predicting con-
nection patterns, as has been
accomplished in metabolic
reconstruction. Here again,
by designing high-through-
put experiments that system-
atically perturb dynamic
environments and collecting
enough experimental data,
network dynamics may
become computable, at least
for dynamic changes in
response to small environ-
mental perturbations48.

Fig. 3 Bioinformatics now and in the future. Bioinformatics (shaded area) is currently an interdisciplinary field of biology
and informatics that focuses on practical applications of informatics technologies to genomics and other areas of high-
throughput biology. As data-driven biology is replaced by principle-driven biology in the future, bioinformatics will
become a more-fundamental discipline encompassing mathematics, physics and chemistry.

Fig. 2 Bioinformatics developments of the past decade.
Shown are principal landmarks in the generation of
large-scale data by high-throughput experiments, the
development of computational tools for data analysis,
and the creation of databases of biological knowledge.
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From data-driven to principle-driven biology
In the past decade, bioinformatics was characterized by the
development of innovative computational methods to help gen-
erate and analyze various large-scale data and by the creation of
new databases of biological knowledge as a direct result of the
large-scale analyses. (Fig. 2) We consider that this is only the
beginning of the path to our ultimate goal of understanding the
basic principles underlying the complexity of living cells and
organisms (Fig. 1). Enumeration in biology is no longer limited
to the lists of molecular parts such as genes (genome), mRNAs
(transcriptome), proteins (proteome) and metabolic com-
pounds (metabolome). More extensive lists include the interac-
tome36, which incorporates sets of protein–protein interactions,
and the localizome49, which describes the subcellular localiza-
tions of proteins. The repertoire of different lists will continue to
grow as high-throughput experimental methods are further
elaborated and expanded.

Of course, on its own the bottom-up approach from large-
scale data in genomics and proteomics will not be sufficient for
understanding the higher complexity of biological systems.
Efforts to computerize our knowledge on cellular functions, at
present either by the controlled vocabulary of Gene Ontology or
by graph representation in KEGG, will both facilitate the compu-
tational mapping of genomic data to complex cellular properties
and detect any empirical relationships between genomic and
higher properties. Although the field is already looking forward
to a ‘systems biology’ approach and to simulations of whole cells,
much of the effort must be devoted to capturing even higher
properties, such as ontology for human diseases and the com-
putable representation of cellular networks. In addition, the
dependence of functionality on the context (such as experimen-
tal conditions, cell status and environment) is currently mostly
ignored; in other words, several other levels of complexity will
have to be considered before we can come to a more basic under-
standing of life as a series of complex information systems50.

There are already several molecular biology databases available
on the Internet51, and many more will evolve as genomic data and
computational methods are introduced into individual research in
biology. Although Internet-based linking among different data-
bases is a convenient way to use this huge resource, more effort is
required for the true integration of biological knowledge and data.
Integration in this respect does not simply involve methodology,
such as links and common interfaces, but rather it involves biology.
The ultimate integration of biological databases will be a computer
representation of living cells and organisms, whereby any aspect of
biology can be examined computationally.

Until now, bioinformatics has been a practical discipline through
which to meet the needs for informatics technologies in large-scale
data production in genomics and other high-throughput areas of
biology. But as data are converted to knowledge and empirical rules
lead to principles, bioinformatics is bound to become a more fun-
damental discipline. As illustrated in Fig. 3, bioinformatics in the
future will encompass not only biology and practical aspects of
informatics (computer science), but also mathematics and theoret-
ical foundations to detect the basic architectures of complex biolog-
ical information systems, and physics and chemistry to integrate
physical and chemical principles with biological principles. When
we have a complete computer representation of living cells and
organisms and know the principles of how they compute, then, in
the words of Sydney Brenner, “computational biology will become
biological computation”.
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