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A large-scale analysis of protein isoforms arising from

alternative splicing shows that alternative splicing

tends to insert or delete complete protein domains

more frequently than expected by chance, whereas dis-

ruption of domains and other structural modules is less

frequent. If domain regions are disrupted, the functional

effect, as predicted from 3D structure, is frequently

equivalent to removal of the entire domain. Also, short

alternative splicing events within domains, which

might preserve folded structure, target functional resi-

dues more frequently than expected. Thus, it seems

that positive selection has had a major role in the evolu-

tion of alternative splicing.

Several recent large-scale computational studies were
directed towards analysis of mRNA expression to quantify
the extent of alternative splicing [1–7], to identify groups
of genes with an increased level of alternative splicing [7],
and to relate the level of alternative splicing to the
organism complexity [8]. Experimental studies of indi-
vidual genes [9–12] revealed cases of functional differ-
ences between splice forms, differences in the cellular
localization, and even pathogenic consequences of a

changed ratio of expression of alternative splice variants.
With only rare exceptions, these observations were attrib-
uted to insertions, deletions or substitutions of protein
domains or other protein structural modules. Therefore,
the impact of alternative splicing on functional diversifica-
tion can be analysed by quantifying the effect of alter-
native splicing on protein domains and mapping of
alternative splicing regions on protein functional and
structural units.

We extracted all alternatively spliced protein isoforms
in higher organisms with fully sequenced genomes (Homo
sapiens, Mus musculus, Drosophila melanogaster and
Caenorhabditis elegans) from the SWISS-PROT database
[13], producing a set of 4804 splicing variants of 1780
proteins. We then mapped the alternatively spliced
regions onto protein domain annotations of the InterPro
resource [14], which combines entries from several major
protein domain databases. Our data are presented as
supplementary information at http://archive.bmn.com/
supp/tig/March_2003.pdf.

To interpret the mapping, we tested whether the
distribution of alternative splicing is random with regard
to the protein domain architecture. As we did not observe
any bias of alternative splicing towards N-terminal,
C-terminal or central parts of protein sequencesCorresponding author: Shamil Sunyaev (ssunyaev@rics.bwh.harvard.edu).
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(data not shown), our random model assumes a uniform
placement of alternative splicing regions along the protein
sequences while retaining the annotated domain archi-
tecture of proteins. The number of alternative splicing
regions per protein and their length were assumed to
match that of observed alternative splicing.

As shown in Fig. 1a, the proportion of alternative
splicing boundaries within annotated domains is much
lower than expected by chance; that is, alternative splicing
tends not to occur within protein domains. This effect can
be explained in two ways. First, the observation could
simply reflect a correlation of exon and domain bound-
aries. Second, it could reflect the impact of negative
natural selection, which would eliminate meaningless or
even deleterious alternative splicing variants that might
result from broken domains. To discriminate between
these, we examined the boundaries of exons involved in
constitutive splicing (i.e. not involved in alternative splic-
ing), and we tested whether these constitutive splicing
boundaries occur within domains more frequently than
alternative splicing boundaries. The results clearly sup-
port the second possibility (Fig. 2).

The avoidance of disruption of structural elements is

even stronger for elements that are not domains but that
are structurally important, such as transmembrane
regions, signal peptides and coiled-coil sequences (Fig. 1a).

The tendency of alternative splicing to occur outside of
domains and other structural elements might, at a first
glance, indicate that function is little affected by alternative
splicing. However, here we show that alternative splicing
that inserts or deletes whole domains affects function more
than expected. To prove this, we modified our random
expectation model and only considered a subset of alterna-
tive splicing variants that did not have split domains.
Indeed, the observed number of insertions and deletions of
complete domains in alternatively spliced isoforms is
significantly higher than would be expected from random
distribution of alternative splicing (Fig. 1c), even when
disregarding partially affected domains. Alternative spli-
cing variants that incorporate protein domains are over-
represented, whereas alternative splicing affecting the
inter-domain regions are under-represented. This sug-
gests that alternative splicing that changes the domain
architecture of proteins is favoured by selection.

Although the disruption of a domain sequence by
alternative splicing is avoided in the statistical sense, a

Fig. 1. The distribution of alternatively spliced regions in human with respect to the functional domains and structures in the proteins. (a) The observed distribution is com-

pared with the distribution expected if alternative splicing were randomly located throughout the protein sequence. The events are divided into different classes: (1) alterna-

tive splicing inserts or deletes a complete protein domain (according to PROSITE profiles); (2) alternative splicing inserts or deletes entire functional elements that are not

domains (i.e. transmembrane segments, signal peptides and coiled-coil regions); (3) alternative splicing does not affect any annotated or predicted protein functional

elements; (4) alternative splicing inserts or deletes only part of a domain; (5) alternative splicing inserts or deletes only part of a non-domain functional element. The num-

bers of alternative splicing events in each class are shown and the percentage of the total for each class is in parentheses. (b) For cases where alternative splicing inserts or

deletes a short fragment of a protein domain (less than 50 aa), the figure depicts the expected numbers of affected and unaffected functional sites. Only proteins with func-

tional amino acids annotated in SWISS-PROT or in PROSITE were included in the analysis. The upper part of the figure corresponds to functional sites annotated in feature

table (FT) in the SWISS-PROT entries. The lower part corresponds to sites annotated as PROSITE patterns. We focused solely on short alternative splicing within domains

because long events are likely to destroy the domain structure. It is seen that short alternative splicing events within domains have a propensity to affect functional resi-

dues. (c) The expected and observed relative frequencies of alternative splicing events that either (1) insert or delete complete domains; (2) insert or delete complete non-

domain functional elements or (3) have no effect on domains and other functional units. As opposed to (a), here partially affected elements are disregarded from the

analysis.
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considerable fraction (up to 28%) of alternative splicing
variants do have split domains. The functionality of this
type of alternative splicing depends on whether these
isoforms can retain or even change their function.

The 3D structures of only 48 alternatively spliced
proteins is known. Forty-three of the 71 alternative
splicing variants that map to these proteins (60.5%)
remove long essential parts of the domains, with a
significant fraction of the hydrophobic core being deleted
(e.g. Fig. 3a). We suggest that the resulting effect on
function is probably equivalent to removal of the entire
domain because only relatively short unfolded parts of
the domain are retained in the shorter splicing isoforms.
The remaining 28 alternative splicing variants do not
affect most of the domain sequence and do not destroy
the hydrophobic core (e.g. Fig. 3b). Of these, ten are
sequence substitutions and 18 are short insertions or
deletions. Two recent studies show that short alternative
splicing in protein domains can leave the general
structural scaffold unaffected and still be of functional
importance [15,16].

To reveal whether insertions/deletions or substitutions
of short regions of globular domains might constitute yet
another mode of functional diversification by alternative
splicing, we superimposed alternative splicing variants
affecting functional residues in domains. From our set, we
extracted alternative splicing variants that overlapped
with a domain by less than 50 amino acids (e.g. in human,
106 such alternative splicing variants were identified).
The annotation of functional sites was taken from the
SWISS-PROT database [13] and from the database of
PROSITE [17] patterns. Figure 1b shows that alternative
splicing occurring inside protein domains preferentially
targets functional amino acids (x2 test, P-value ,10214).
This suggests that alternative splicing frequently
modulates function of protein domains either by inserting
or deleting functional residues, and therefore possibly
serving as a dominant–negative regulation mechanism
[18], or by substituting the sequence that includes a
functional site. Examples of the latter possibility include

Fig. 3. Examples of structural location of alternatively spliced (AS) regions from

the dataset of splicing variants annotated in SWISS-PROT. Longer isoforms are

displayed, with the parts missing from the shorter isoforms coloured in dark blue.

The ligand is coloured green. (a) Deoxynypusine synthase (PDB ID 1dhs, SWISS-

PROT ID DHYS_HUMAN) catalyses the NAD-dependent oxidative cleavage of the

spermidine. The region deleted by alternative splicing in the shorter isoform is

relatively large and is located in the protein core closely to the ligand. The shorter

isoform is known to be inactive. (b) Serine hydroxymethyltransferase (PDB ID 1bj4,

SWISS-PROT ID GLYC_HUMAN) converts serine to glycine and is a key enzyme in

the biosynthesis of purines, lipids, hormones, and other components. The region

missing in the shorter isoform (isoform 2) is relatively short and is located on the

protein surface.

Fig. 2. Splicing events that occur within (blue) and outside (pink) of protein functional domains as annotated in the PROSITE Profiles, SMART and Pfam databases. The bars

are ratios of observed numbers of splicing events to numbers expected under the assumption of the uniform random distribution of spliced regions. The graph shows

ratios for constitutive splicing and alternative splicing for both Homo sapiens (H) and Mus musculus (M).
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the integrin a-7 (ITA7_HUMAN), where the fragment
containing the GFFKR motif is substituted for a non-
homologous fragment containing the same motif [19], and
the Glandular Kallikrein 2 (KLK2_HUMAN), where
sequence containing the serine residue involved in the
charge relay system is substituted [20].

Under the natural assumption that mutational events
leading to the emergence of multiple alternative splicing
variants are randomly distributed, the observed non-
random alternative splicing, tending to alter domain
architecture and functional sites of proteins, suggests
that positive Darwinian selection favours alternative
splicing rather than splicing of unique variants. Such
positive selection is strong evidence of the importance
of alternative splicing in increasing functional diversity
of proteomes.

Methods

The dataset of alternative splicing isoforms has been
obtained by selecting all SWISS-PROT entries with the
keyword ‘alternative splicing’ corresponding to proteins
from C. elegans, D. melanogaster, M. musculus and
H. sapiens. SWISS-PROT currently provides the largest
set of experimentally identified splicing isoforms. Several
organisms have been selected to verify that the observed
effects are general and the organisms with fully sequenced
genomes provide the most comprehensive set. VARSPLIC
[21] routine was applied to these SWISS-PROT entries to
form the complete collection of 4804 isoforms.

Sequence analysis of all splicing variants was per-
formed by the InterProScan [22] tool. Protein domains
were identified by characteristic signatures in SMART
[23], Pfam [24], and PROSITE [17] Profiles. PROSITE [17]
Patterns and SWISS-PROT [13] FT terms were used to
select functional amino acids in protein domains.

The statistical analysis of the data included the follow-
ing tests. First, the expected proportions of alternative
splicing events, which insert or delete complete functional
elements or affect these elements partially, were computed
through direct enumeration via a sliding window. For each
alternative splicing region from a given protein, a window
of the length equal to the length of the alternative splicing
region scanned the sequence of the protein and the counts
of window positions, which affect functional elements as a
whole or in part were enumerated. Then, the goodness-of-
fit x2 test was used to compare the observed and expected
proportions (Fig. 1a). Tests for all organisms and anno-
tation databases considered resulted in highly significant
P-values. In the test used to demonstrate the role of
alternative splicing in functional diversification, we
enumerated only those window positions, where both
borders of the window were not inside a domain (Fig. 1c).

Second, we tested whether alternative splicing bound-
aries are underrepresented within domains and other
structural modules. Under the assumption on the uniform
random placement of alternative splicing regions on
protein sequences, the expected number of alternative
splicing boundaries inside protein domains would be
proportional to the total number of amino acid residues
in domains. We applied the x2 contingency test to
demonstrate that alternative splicing boundaries in

domains are under-represented. The test gave highly
significant P-values in the range 1025 to 102148 for all
considered organisms and all domain databases. The same
test was applied to non-domain protein structural
elements. We also repeated the same procedure for
constitutive exons to verify that the observed effect is
not due to positional correlation of exon and domain
structures (Fig. 2).

Third, to demonstrate that short alternative splicing
regions inside protein domain borders have a prefer-
ence to affect functional amino acids, we applied the x2

contingency test. We tested whether the fraction of
functional amino acids in alternative splicing regions is
significantly higher than in constantly spliced regions
(Fig. 1b). The test resulted in a highly significant
P-value in range of 1026 to 10239 for SWISS-PROT
annotated functional sites.
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34095 Montpellier Cedex, France

The mouse Fxy gene was translocated into the highly

recombining pseudoautosomal region comparatively

recently in evolutionary terms. This event resulted in a

rapid increase of GC content. We investigated the con-

sequences of the translocation further by sequencing

exons and introns of Fxy in various rodent species.

We found that the DNA fragment newly located in a

highly recombining context has acquired every property

of a GC-rich isochore, namely increased GC content

(especially at the third codon positions of exons),

shorter introns and high density of minisatellites. These

results strongly suggest that recombination is the

primary determinant of the isochore organization of

mammalian genomes.

The pseudoautosomal region (PAR), a small region of
homology between mammalian X and Y chromosomes, is
intrinsically highly recombining because it is a short piece
of DNA undergoing one obligatory cross-over per gener-
ation [1], like every bivalent. The Fxy gene is X specific in
human and rat, but in the house mouse, Mus musculus,
this gene was recently translocated and spans the pseudo-
autosomal boundary: its 30 region (exons 4 to 10) now lies
in the PAR [2]. Local recombination rate, therefore, has
dramatically increased for the translocated 30 Fxy in
M. musculus. The detailed phylogenetic history of this
gene was reconstructed by sequencing exons 8, 9 and 10 in
nine rodent species (Fig. 1). Two copies of Fxy were found
in Mus spretus (the previously known X-linked copy [2]
and a new, presumably PAR-located copy). This indicates
that a gene duplication occurred before the translocation
event, 1–3 million years ago (that is, the date of the radi-
ation between M. spretus, M. musculus, Mus macedonicus
and Mus spicilegus) [3], followed by gene loss in
M. musculus, in which only the PAR-specific copy could
be amplified. Figure 1 confirms the previously reported
increase in GC content at neutrally evolving third codon
positions (GC3) in the PAR-located exons, together with an

increase of evolutionary rate – a pattern not observed in
exons 1–3, that have remained X specific [2]. This makes
Fxy a unique ‘natural laboratory’ for investigating the
relationship between recombination rate and isochore
evolution [4] – an issue hotly debated during the past
decade [5–7].

We contrasted the X-specific 50 part and the PAR-located
30 part of Fxy in M. musculus (data from ENSEMBL;

Fig. 1. Phylogenetic tree of Fxy in rodents. Exons 8, 9 and 10 (597 sites) were

used. Nine rodent species were surveyed using PAR-specific primers (positive in

Mus musculus and Mus spretus, top) and X-specific primers (positive in all but

M. musculus, bottom). The GC content at redundant third codon positions (GC3)

of each sequence (exons 8, 9 and 10, shown in cyan) is given. The topology was

recovered using the maximum likelihood method [19]. Branch lengths were

calculated from third codon positions using a model that accounts for variable GC

content between sequences [20], removing a possible bias in the estimation of

evolutionary rates. The two genes compared in further analyses are green. Genes

whose chromosomal location has been determined experimentally [2] are

underlined. Scale bar is in unit of average per site substitution rate. Diagrams

show relationship of Fxy (white box) to the pseudoautosomal boundary (red line).

GenBank accession numbers: Homo, AF035360; Arvicola, AY181220-22; Rattus,

AF186461; Mastomys, AY181223-25; Mus cervicolor: AY181226-28; Mus platythrix:

AY181232-34; Mus macedonicus, AY181229-31; Mus spicilegus, AY181235-37;

M. spretus Fxy_X: AF186460; M. spretus Fxy_PAR: AY181238-40; M. musculus:

AF026565.
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