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ABSTRACT

DNA microarray experiments have provided vast
amounts of data which can be used for inferring
gene function. However,mostmethods for predicting
functional associations between genes from expres-
sion data are not suited to simultaneous analysis
of multiple datasets, and a comprehensive resource
of coexpression-based predictions is currently lack-
ing. Here, we present an interactive web resource of
geneassociationspredictedbyapplyinganovel algo-
rithm to all expressiondata in theStanfordMicroarray
Database. The underlying pre-computed database
currentlycontainsmore than200 000high-confidence
gene associations in 12 different species sampled
from a broad taxonomic range. The resource allows
every association to be inspected visually and can be
accessed at http://www.bork.embl.de/ArrayProspector.

INTRODUCTION

Over less than a decade, vast amounts of microarray expres-
sion data have been collected. The data have from very early
on been used for inferring gene function based on unsuper-
vised clustering of coexpressed genes (1), although it is
unclear how correlated the expression profiles must be in
order for function to be safely inferred. Also, if one wants
to make use of expression data from many very different
experiments, these cannot all be assumed to be equally
important—nor will correlations necessarily hold across all
microarrays. Traditional clustering methods are thus not
applicable.

We instead opt for a combination of singular value decom-
position and kernel density estimation to calculate a log-odds
score for each pair of genes. These scores are further refined to
obtain a confidence value for each interaction. Through
this procedure, evidence from related arrays is combined
and different arrays will contribute differently to the final
score depending on how well they correlate with functional

annotation. The ArrayProspector web server will be closely
integrated with the next version of STRING (2), a resource for
the prediction of protein interaction networks, to allow micro-
array-based predictions to be viewed as an additional evidence
type for functional association between genes.

Usage and visualization of predictions

Users can submit queries to the ArrayProspector server using a
web interface (http://www.bork.embl.de/ArrayProspector).
The gene of interest can be specified using either one of a
number of database identifiers or the name of the gene/protein.
Alternatively, the user can submit two gene names to
specifically check for association of the two.

The predicted functional associations for the query gene are
shown as a clickable two-panel view, which by default shows
the top 10 genes ranked by confidence score of the association
(Figure 1). The left panel displays a traditional blue/yellow
representation of the expression log-ratios of each gene on
each array; a contrast button allows the user to adjust the
color scale used. In addition to the usual features of this
visualization, the spot size is used to denote the importance
of each experiment for each predicted association. In cases of
missing measurements of gene expression, a small white spot
is shown. To start with, the arrays contributing most to the
most important principal component are shown.

The right panel shows a more compact view of coexpression
evidence in which gene expression has been projected onto
principal components. The principal components are ranked
by importance according to their total contribution to the log-
odds scores of the genes shown. The view is very similar to the
left panel except that each column represents a principal com-
ponent and thus a combination of correlated arrays rather than
a single array. Also, a different color scale is used to avoid
confusion of the two panels. Clicking a column in the right
panel will cause the left panel to display the arrays most
important for the principal component in question. This allows
the user both to quickly get an overview of the global expres-
sion patterns of a set of genes across hundreds of arrays and to
look at individual arrays in more detail.
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Below the two panels, a table summarizes the most import-
ant information about the arrays currently shown in the left
panel, namely the experiment description from the Standford
Microarray Database (SMD) and contact information for the
person who performed the experiment.

DATA TRANSFORMATION, SCORING AND
BENCHMARKING

The spot intensities of the two channels (Cy3 and Cy5) on each
microarray were individually normalized using the Qspline
method (6) with a log-normal distribution as target
(M = ln 1000, S = ln 1000). For the majority of the arrays,
namely those where the relative location of the spots was
provided by SMD, the channels were further normalized to
correct for spatial biases using a Gaussian smoother with
s = 0.8 (6). After adding a regularization background intensity
of 100 to the normalized intensities, a log-ratio was calculated
for each gene on each spotted array. This value was semi-
empirically chosen to make the spread of log-ratios indepen-
dent of the spot intensities.

Currently, arrays have been included from six eukaryotes,
namely Arabidopsis thaliana, Caenorhabditis elegans,
Drosophila melanogaster, Homo sapiens, Mus musculus
and Saccharomyces cerevisiae, as well as six prokaryotes,
namely Bacillus subtilis, Campylobacter jejuni, Escherichia
coli, Helicobacter pylori, Salmonella typhi and Vibrio cho-
lerae. For each, the log-ratios for all arrays were combined
into a matrix, assigning a log-ratio of zero in the case of
missing values. We used our gene synonyms resource for
solving the problem that the same gene is not always referred
to by the same name/identifier on all arrays (http://www.
bork.embl.de/synonyms/).

One problem when analyzing microarray data is that dif-
ferent arrays may be strongly correlated, e.g. replicate arrays,
adjacent time points in time series or similar experiments
performed by different laboratories. Singular value decomposi-
tion, a powerful method for dealing with such correlations,
was used to obtain a new basis (the principal components) for
which the covariance matrix of the data is diagonal. The

principal components can be interpreted in a biological context
by studying the loading factors and the classification of the
arrays contributing most to each principal component. As the
log-ratios of each array are already guaranteed to be centered
at 0 due to the normalization procedure described above, the
missing values have a minimal influence on the components.
For the subsequent analysis, each gene was represented by its
projection onto the principal component basis.

Raw log-odds scores for a functional association between
any two genes were calculated with reference to KEGG maps
(7). Two genes are thus considered to be functionally related
if their protein products co-occur in at least one KEGG map.
Similarly, non-related genes were defined as genes with
KEGG assignment but no shared assignment.

For each separate principal component, a two-dimensional
Gaussian kernel density estimate was calculated for pairs of
related genes [ frelated(x1, x2)]. Similarly, a one-dimensional
Gaussian kernel density estimate was calculated for
all genes ( fall(x)), allowing a log-odds score for the projection
of a gene pair onto a principal component to be calculated as
follows:

logodds x1, x2ð Þ = log
frelated x1, x2ð Þ

fall x1ð Þ � fall x2ð Þ :

A total log-odds score for a given pair of genes is calculated as
the sum of log-odds scores from the first N principal compon-
ents. To include only components with a good signal-to-noise
ratio, for each species Nwas determined by visually inspecting
a logarithmic plot of the singular values as a function of
component number.

Using raw log-odds scores causes certain genes, in particu-
lar those encoding cell cycle proteins, to have high log-odds
scores to hundreds of other genes, many of which are not
functionally related. We therefore down-weighted the log-
odds score between two genes by the number of higher-scoring
links for the most highly connected of the two genes. This way,
we penalize links to the most highly connected genes, which
improves the overall accuracy of the predicted associations
considerably.

Figure 1. Sample output using CDC15 as query gene. Querying the ArrayProspector resource with the Saccharomyces cerevisiae cell cycle gene CDC15 correctly
associates CDC15 with other cell cycle-related genes. This is remarkable considering that the CDC15 transcript level has not been suggested to vary periodically
through the cell cycle (3–5). Consistent with this, the cell cycle experiments contribute little to the most important principal components for these predictions. For an
explanation of how to interpret the visualization, see the section ‘Usage and visualization of predictions’.
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For each species, we benchmarked the final predicted asso-
ciations against co-occurrence on KEGG maps. Figure 2
shows the number and accuracy of our predictions for
six model eukaryotes. At a specificity of 80%, more than
1000 true positive associations are predicted for 4 of the
6 eukaryotes and more than 10 000 true positives are predicted
for S.cerevisiae alone. Assuming that this performance is re-
presentative of the performance functionally uncharacterized
proteins, ArrayProspector contains in excess of 200 000
correct functional associations.

Calibration curves for converting the down-weighted log-
odds scores to probabilistic confidence scores were obtained
by fitting sigmoid functions to plots of specificity versus score.
This calibration strategy is consistent with the one used for
genomic context evidence in the STRING server (2).

DATA SOURCES AND STORAGE

All spotted microarray data available from SMD were
downloaded for A.thaliana (591 arrays), C.elegans (291),
D.melanogaster (170), H.sapiens (2413), M.musculus (113),
S.cerevisiae (718) and six bacteria (465) (8).

We use a relational database system (PostgreSQL) for
storing all data required for the web interface, namely expres-
sion log-ratios, their projections onto principal components,
raw log-odds scores (both the total and the contribution from
each component), confidence scores as well as text descrip-
tions of both genes and arrays. Storing these many intermedi-
ary values allows the user to quickly navigate the large
quantity of data.

CONCLUDING REMARKS

We make available a resource, ArrayProspector, that enables
biologists to mine spotted array data for functional asso-
ciations in a number of organisms. Arrays have been re-
normalized to correct for both non-linear intensity biases
and spatial effects. Subsequently, we have linked expression
data for each gene across arrays (using our synonyms
resource) and applied a novel algorithm for predicting func-
tional associations between genes. In addition to making
available these pre-computed associations, ArrayProspector
enables the user to manually investigate the source of each
prediction.
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