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ABSTRACT
Motivation: DNA microarrays have been used extensively
to study the cell cycle transcription programme in a number
of model organisms. The Saccharomyces cerevisiae data in
particular have been subjected to a wide range of bioinfor-
matics analysis methods, aimed at identifying the correct and
complete set of periodically expressed genes.
Results: Here, we provide the first thorough benchmark of
such methods, surprisingly revealing that most new and more
mathematically advanced methods actually perform worse
than the analysis published with the original microarray data
sets. We show that this loss of accuracy specifically affects
methods that only model the shape of the expression profile
without taking into account the magnitude of regulation. We
present a simple permutation-based method that performs
better than most existing methods.
Supplementary Information: Results and benchmark sets
are available at http://www.cbs.dtu.dk/cellcycle

Contact: brunak@cbs.dtu.dk

1 INTRODUCTION
It has been clear for many years that certain genes are
expressed only at specific stages of the cell cycle (e.g. the
cyclins and the histones). These genes consequently exhi-
bit a periodic pattern of expression when monitored during
consecutive cell cycles. In 1998, the first genome-wide DNA
microarray studies were conducted inSaccharomyces cere-
visiae (Cho et al., 1998; Spellmanet al., 1998) to reveal
a large number of periodically expressed genes which peak
only once per cycle, also referred to as cell cycle regula-
ted genes. Similar investigations were later performed in
human fibroblasts (Choet al., 2001) and HeLa cells (Whit-
field et al., 2002), respectively. Most recently, an extensive
study has been carried out inSchizosaccharomyces pombe
(Rustici et al., 2004). Each of these studies have aimed at
defining the cell cycle regulated (or periodically expressed)
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subset of the genome in each organism. Although the periodic
signal is strong in most data sets (Shedden & Cooper, 2002;
Wichertet al., 2004), the experimental noise is also conside-
rable, as can be seen from the poor overlap between the gene
sets identified as periodic in different experiments within the
same organism (Zhaoet al., 2001; Shedden & Cooper, 2002;
Johanssonet al., 2003; de Lichtenberget al., 2003; Luan &
Li, 2004) as well as between organisms (Rusticiet al., 2004).

The budding yeast data sets in particular have driven the
development of various computational methods for identify-
ing periodically expressed genes, most of which have con-
cluded the periodically expressed subset of the yeast genome
to comprise about 300–800 genes. However, the agreement
is remarkably poor when different computational methods
are applied to the same data. In total, nearly 1800 diffe-
rent genes have been proposed to be periodic—that is almost
every third gene in theSaccharomyces cerevisiaegenome.
Here, we provide the first benchmark of these computatio-
nal methods by comparing the gene sets identified by the
different methods when applied to three yeast experiments
(Alpha, Cdc15 and Cdc28). A fourth, elutriation based expe-
riment in yeast (Spellmanet al., 1998) was not used, since
most published methods were not applied to this data and
because it only covers a single cell cycle. We benchmark
the methods by measuring their ability to identify genes from
three benchmark sets:

B1 113 genes previously identified as periodically expressed
in small scale experiments. The set encompasses the 104
genes used by Spellmanet al. (1998) and 9 genes added
by Johanssonet al. (2003).

B2 Genes whose promoters were bound (p-value below
0.01) by at least one of nine known cell cycle trans-
cription factors in both of the Chromatin IP studies by
Simonet al. (2001) and Leeet al. (2002). To obtain a
benchmark set that is independent of B1, we removed
all genes included in B1 (50). The resulting benchmark
set, B2, consists of 352 genes of which many should be
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expected to be cell cycle regulated, since their promo-
ters are associated with known stage specific cell cycle
transcription factors.

B3 Genes annotated in MIPS (Meweset al., 2002) as “cell
cycle and DNA processing”. From these, we remo-
ved genes annotated specifically as “meiosis” and genes
included in B1 (67), leaving 518 genes. As a large num-
ber of genes involved in the cell cycle are not subject
to transcriptional regulation (not periodic), and because
B1 was explicitly removed, a relatively small fraction
of these genes should be expected to be periodically
expressed.

We thus define a good method as one that is able to repro-
duce previous findings (B1), extract genes whose promoters
are associated with stage specific cell cycle transcription fac-
tors (B2), or enrich for genes that are known to play a role in
the cell cycle (B3). Included in the benchmark are six publis-
hed methods as well as a new permutation-based method
that separately quantifies both the periodicity and amplitude
of periodically expressed genes and estimates the time of
peak expression for each gene. Our benchmark analysis ena-
bles us to understand the strengths and weaknesses of each
computational approach, and to explain the obvious disagree-
ment between methods. We show that amplitude-independent
methods are outperformed by the amplitude dependent ones,
and that those methods that perform well in the benchmark
also provide a better overlap in genes identified in different
experiments.

2 METHODS
2.1 Statistical tests for regulation
The standard deviation can be easily calculated for each log-
ratio profile, giving a measure of the spread of the samples
around the mean. Heavily regulated genes will thus have
large standard deviations, whereas genes without significant
regulation display little deviation from the mean. To test
for the significance of regulation, we therefore compare the
observed standard deviation for each expression profile to a
randomly generated background distribution. 1,000,000 ran-
dom profiles were constructed by selecting at each time point
the log-ratio from a randomly chosen gene. A p-value for
regulation was calculated as the fraction of the simulated
profiles with standard deviations equal to or larger than that
observed for the real expression profile.

2.2 Statistical tests for periodicity
To estimate a p-value for periodicity, we compared the Fou-
rier score of the observed gene expression profile for each
gene to those of random permutations of the same gene. For
each gene,i, a Fourier score,Fi, was computed as

Fi =

√( ∑
t

sin(ωt) · xi(t)
)2

+
( ∑

t

cos(ωt) · xi(t)
)2

whereω = 2·π
T andT is the interdivision time. Similarly,

scores were calculated for 1,000,000 artificial profiles con-
structed by random shuffling of the data points within the
expression profile of the gene in question. The p-value for
periodicity was calculated as the fraction of artificial profiles
with Fourier scores equal to or larger than that observed for
the real expression profile.

The p-value for regulation is thus a comparison between
individual genes and the global distribution, whereas the p-
value for periodicity is a comparison involving only data
from the gene in question. To avoid any overestimation of
the significance of the p-values, we normalized all p-values
within each data set by the median p-value (prior).

2.3 Combined tests for regulation and periodicity
For each gene, a combined p-value of regulation was calcu-
lated by multiplying the separate p-values of regulation from
each of the three experiments. Analogously, a combined p-
value of periodicity was calculated. Subsequently, the p-value
of regulation and p-value of periodicity were multiplied to
obtain the total p-value. An undesirable feature of the total p-
value is that it may become very low (i.e. highly significant)
due to only one of the tests. Genes that are strongly regu-
lated but not periodic (or vice versa) will thus receive good
scores. To address this, we multiply the total p-value with
two penalty terms that weight down genes that are either not
significantly regulated or not significantly periodic. The final
score used for ranking is:

ptotal ·
[
1 +

(pregulation

0.001

)2]
·
[
1 +

(pperiodicity

0.001

)2]

The calculation was done for each experiment separately as
well as for the combined experiments.

2.4 Assigning the time of peak expression
Since we approximate each expression profile by a sine wave,
the time of peak expression for a gene in a single experiment
is trivially defined as the time where the sine wave is maxi-
mal. We refer to this as thepeak time. Due to differences
in experimental conditions, the time it takes the cell to com-
plete a cycle (the interdivision time) varies greatly between
the alpha, Cdc15 and Cdc28 experiments. In order to com-
pare the timing of peak expression across experiments, we
therefore transformed the time-scales from minutes to per-
cent of the cell cycle by dividing with the interdivision times
estimated by Zhaoet al. (2001).

Subsequently, differences in release point of the synchro-
nization techniques were corrected for by aligning the time
scales of the three experiments. The optimal offsets for the
experiments were determined by minimizing an error func-
tion, E1 =

∑
i E1i, that measures the disagreement in

the time of peak expression of the same gene in different
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experiments:

E1i = walpha
i wcdc15

i dist(talpha
i , tcdc15

i )2

+ walpha
i wcdc28

i dist(talpha
i , tcdc28

i )2

+ wcdc15
i wcdc28

i dist(tcdc15
i , tcdc28

i )2

As weights (walpha
i , wcdc15

i , andwcdc28
i ), the negative loga-

rithm of the respective total p-values were used. The function
dist refers to the shortest possible distance between two
points on a circle. This alignment results in an arbitrary zero
time. We chose to define zero time as the M/G1 transition,
i.e. the time of cell division. This time point was estimated
from the combined peak times of 19 knownM/G1 genes (see
Figure 5), all among the top 500 genes in our final gene list.
The resulting offsets for the alpha factor, Cdc15, and Cdc28
experiments were 78%, 84%, and 93%, respectively.

Combining peak times from different experiments into one
is a non-trivial task, since the assignment should not be tru-
sted in those experiments where the expression profile is not
sufficiently periodic. To compensate for this, we weighted the
individual peak times when computing the global, combined
peak time. For each gene, a combined peak time (ti) was cal-
culated from the three individual peak times (talpha

i , tcdc15
i ,

andtcdc28) by minimizing the following error function:

E2i(ti) = dist(talpha
i , ti)2w

alpha
i /W

+ dist(tcdc15
i , ti)2wcdc15

i /W

+ dist(tcdc28
i , ti)2wcdc28

i /W

whereW = walpha
i + wcdc15

i + wcdc28
i and the weights are

defined as inE1i.

2.5 Renormalization of Cdc28 data
Cho et al. (1998) used the temperature-sensitive mutant
strain CDC28-13 to produce a synchronized cell culture from
which 17 samples were taken at 10 min intervals and hybri-
dized to Affymetrix chips. Getting the original images or
scanner reads was not possible, but the final data was down-
loaded fromhttp://yscdp.stanford.edu/yeast_
cell_cycle/full_data.html . The paper contains no
information on how these data were processed. We therefore
renormalized the data with the signal dependent non-linear
Qspline method (Workmanet al., 2002). Multiple probes
against the same gene were collapsed by taking the median
of their intensities. To avoid negative expression values, the
scale was shifted by +750. The data werelog2 transformed
and the mean expression value over all time points was sub-
tracted to center the profile at zero (as in Spellmanet al.
(1998)).

3 RESULTS
In our benchmark, we included six methods that have all been
applied to the data sets (Alpha, Cdc15 and Cdc28) published
by Spellmanet al. (1998):

M1 Choet al. (1998) visually inspected the expression pro-
files of all genes regulated more than two-fold during
the Cdc28 experiment, classifying 421 of them as “peri-
odic”.

M2 Spellmanet al. (1998) computed a score for every gene
that was based partly on the correlation to one of five
idealized gene profiles, and partly on a Fourier-like score
yielding the signal strength at a period similar to the
interdivision time. The genes were ranked based on
their combined score and truncated to 800 genes as this
corresponds to a sensitivity of 90% on B1.

M3 Johanssonet al. (2003) used partial least squares regres-
sion to analyze the three data sets individually and in
combination. The approach was based on fitting of sine
curves and thus also yields an estimate of the time of
peak expression. Thresholds were estimated based on
random permutations of the data.

M4 Zhaoet al. (2001) reanalyzed each of the three data sets
individually using a statistical single–pulse model. The
resulting score, describing how well a profile fits the
model, is independent of the magnitude of regulation.
An appealing feature of the model is that it also estimates
the time of activation and deactivation of the gene.

M5 Luan & Li (2004) used a modeling approach based on
cubic splines, rather than sine waves. The sets were
analyzed individually and the statistical nature of the
method enabled the authors to identify thresholds that
satisfied a given false discovery rate.

M6 Lu et al. (2004) used Bayesian modeling techniques to
estimate a periodic–normal mixture model based on five
microarray time courses. The authors provide a ranked
list of 822 genes based on all five data sets.

In addition to the methods M1–M6, we also include a new
and simple statistical approach (M7) based on permutations.
Its score is composed of two terms: one quantifies only the
magnitude of regulation, whereas the other measures the peri-
odicity of the expression profile. The combined score ensures
that high ranking genes are both significantly regulated and
periodic (see Methods for details).

Figure 1 shows the performance of each method on each
individual microarray expression data set as well as on all
three sets in combination. Studies in which a ranked list
was published are plotted as curves, showing the percentage
of genes in a benchmark set recovered (i.e. coverage) as a
function of rank. Where only an unranked list was propo-
sed, the performance is represented as a single point. The
three benchmark sets and the lists of genes proposed by each
computational method are all available from the web site
http://www.cbs.dtu.dk/cellcycle .

Although some methods are clearly better than others,
there is no single best method. All methods perform signi-
ficantly better than random on the two primary benchmark

3



de Lichtenberg et al

Alpha

0

0.2

0.4

0.6

0.8

1

B
1:

 S
m

al
l-s

ca
le

 e
xp

.
F

ra
ct

io
n 

of
 s

et
 id

en
tif

ie
d

Cdc15 Cdc28 Combined

0

0.1

0.2

0.3

0.4

B
2:

 C
hr

om
at

in
 IP

F
ra

ct
io

n 
of

 s
et

 id
en

tif
ie

d

0 200 400 600
Number of genes identified

0

0.1

0.2

0.3

B
3:

 M
IP

S
 c

el
l c

yc
le

F
ra

ct
io

n 
of

 s
et

 id
en

tif
ie

d

0 200 400 600
Number of genes identified

0 200 400 600
Number of genes identified

0 200 400 600 800 1000
Number of genes identified

Fig. 1. Comparison of published methods.The fraction of the benchmark set that is identified is plottted as a function of gene rank for
each method, experiment, and benchmark set. The different methods are colored as follows: Choet al. (1998) (M1, cyan), Spellmanet al.
(1998) (M2, black), Johanssonet al. (2003) (M3, blue), Zhaoet al. (2001) (M4, green), Luan & Li (2004) (M5, magenta), Luet al. (2004)
(M6, orange), and our permutation-based approach (M7, red). Random performance is shown as a black dotted line.

sets (B1 and B2), meaning that they all enrich for genes
previously identified as periodic and genes associated with
known cell cycle transcription factors. The best perfor-
ming methods across all data sets are M2, M3, and our
permutation-based approach M7. However, these methods
all show close to random performance on benchmark set B3,
where the methods M4–M6 seem to work slightly better. The
sets of genes identified as periodic from each of the indivi-
dual experiments are all highly enriched in genes from the
benchmark sets B1 and B2, indicating that all three experi-
ments are valuable. The enrichment of genes whose promoter
regions are bound by known cell cycle transcription factors
(B2) demonstrates that the genes identified as periodic in the
microarray data are biologically meaningful. The chromatin
IP technique measures physical association of transcription
factors with the promoter regions of individual genes and the
experiments were performed in freely growing cells, unlike
the small scale and microarray experiments (Spellmanet al.,

1998) which use various methods to synchronize the cells.
The B2 set is thus independent of the microarray experiments
on cell cycle regulation and the observed correlation between
these two data sources is thus reassuring.

For benchmark sets B1 and B2, the curves rise steeply in
the beginning with the fraction of benchmark genes gradually
decreasing with rank. Judging from the shape of the curves,
there does not seem to be one natural value for threshol-
ding. Depending on the relative importance of accuracy vs.
coverage, anywhere from 300 to 800 genes should be inclu-
ded. Ranked lists should therefore generally be preferred over
non-ranked ones. As a consequence, methods that provide a
combined score based on all experiments are preferable over
simple voting schemes.

The good performance of the method M2 on B1 was anti-
cipated since the scoring scheme makes use of the correlation
with the expression profiles of these genes. Surprisingly,
Figure 1 demonstrates that this approach works equally well
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Fig. 2. Regulation vs. periodicity.As in Figure 1, the fraction of the benchmark set that is identified is plotted as a function of gene rank
for each method, experiment, and benchmark set. For the original data sets, the regulation score alone (blue), periodicity score alone (green),
and combined score (red, also shown in Figure 1) are shown. Results using the renormalized Cdc28 data are shown in black. Also shown is
the combined score with peak time consistency filter (cyan). Random performance is shown as a black dotted line.

on the benchmark set B2, which includes no genes from
B1. However, it remains unclear whether the performance
should primarily be attributed to the Fourier term or to the
correlation term.

The performance of the visual analysis of Choet al.(1998)
on the B1 and B3 sets is remarkable. None of the computa-
tional methods perform as well on these two benchmark sets,
yet the results of computational and visual analyses are com-
parable on B2. The major difference between B2 and B1/B3
is that the latter sets consist of genes known to be invol-
ved in the cell cycle. In contrast, B2 is not biased towards
genes of known function. The visual inspection was not done
blindly (L. Steinmetz, personal communication), which has
likely introduced an unintentional bias in the border line
cases towards genes with known roles in the cell cycle.

Most surprising is the poor performance of M4–M6 on B1
and B2. Particularly, the M6 analysis disappoints with respect

to finding cell cycle regulated genes, considering that additio-
nal experimental data were used. These methods differ from
the better performing methods in two respects: they model
the peak shape more accurately than simple sine waves and
their scores only depend on the shape of the expression pro-
file, not on the magnitude of regulation. Whereas the first
is likely to yield improvements, the second discards rele-
vant information, which explains the poor performance (see
below).

3.1 Shape vs. magnitude
Our permutation-based scoring scheme combines two stati-
stical tests. One term measures the significance of regulation,
i.e. simply ranks genes according to the standard deviation of
their expression profiles. The other term is a magnitude inde-
pendent test that compares the periodicity of the observed
profile to that of permutations of the profile.

To explore the relative importance of profile shape ver-
sus magnitude of regulation, we benchmarked the regulation

5



de Lichtenberg et al

and periodicity terms separately (see Figure 2). The sim-
ple ranking by regulation yields strikingly good results and
even outperforms the periodicity ranking on some sets. As
expected, the periodicity term alone yields results that closely
resemble those of the magnitude-independent methods (M4–
M6). In general, combining both terms significantly improves
the results, consistent with the better performance of all
magnitude dependent methods. It is thus clear that taking into
account both regulation and periodicity is far more important
than accurately modeling the shape of the expression profile.

Comparison of the regulation and periodicity terms also
reveals compositional differences between the three bench-
mark sets. On B1, regulation works well on its own, indica-
ting that the genes identified in small scale experiments are,
not surprisingly, biased toward genes that are both periodi-
cally expressed and strongly regulated. In contrast, the B3 set
is comprised of genes that are annotated as cell cycle rela-
ted, but not necessarily periodically expressed. Additionally,
genes already included in B1 were specifically removed from
B3. On this set, periodicity alone works better than both
regulation and the combined score, indicating a bias towards
periodic genes that are only weakly regulated. In fact, regu-
lation alone is poorer than random expectation, showing that
the most strongly regulated genes that are not in B1 specifi-
cally belong to pathways not related to the cell cycle. The B2
set is probably the least biased of our three benchmark sets,
since it is derived from genome-wide chromatin IP data. This
set is not biased by current biological knowledge and contains
a considerable proportion of genes of unknown function.
From the performance of the various methods, benchmark
set B2 indeed appears to be a compromise between the two
other sets. To conclude, we regard B1 and B2 to be the most
informative benchmark sets.

Clear differences between the three experiments can also
be observed in Figures 1 and 2. The alpha factor and
Cdc15 results are generally better than those of the Cdc28
experiment. On the alpha experiment, the regulation term
alone significantly outperforms the periodicity term (and
even the combined approach) on benchmark sets B1 and B2
(Figure 2). Our interpretation is that only genes involved in
the cell cycle are significantly regulated in this experiment.
In contrast, many of the most highly regulated genes in the
Cdc28 experiment are unrelated to the cell cycle. This is to
a lesser extent also true for the Cdc15 experiment. In the
two latter experiments, cells are released from arrest by an
abrupt drop in temperature, which likely results in changes in
expression of e.g. heat shock genes. Taken together, this sug-
gests alpha factor synchronization to be the least perturbing
of the three synchronization methods.

It is clear that the treatment of the cells can introduce arti-
facts that would not occur in freely growing cells. These
response genes are only up- or down-regulated in the begin-
ning of the experiments and most likely specific to the arrest
method used. Such profiles will not receive high scores from

the computational methods, although some contamination
with false positives should be expected for all methods. We
have, however, found no indications or reasons to believe
that synchronization artifacts manifest themselves as periodic
patterns of expression reproduced over multiple cycles or in
multiple experiments.

3.2 Renormalizing expression data
Since the publication of the cell cycle gene expression data,
extensive research has gone into developing advanced bioin-
formatics methods for normalizing microarray data to correct
for systematic biases. However, these techniques have not
been utilized by any of the groups developing methods for
identification of periodically expressed genes. To test the
possible benefits of renormalizing the raw data prior to peri-
odicity analysis, we applied the signal dependent non-linear
Qspline method (Workmanet al., 2002) to the Cdc28 data.
As shown in Figure 2 (black curve), this considerably impro-
ved the performance of our permutation-based approach. It
thus appears that many of the errors in the Cdc28 experiment
are due to systematic array biases rather than artifacts of the
syncronization method.

We also attempted to renormalize the raw alpha fac-
tor and Cdc15 data as obtained from Stanford Microar-
ray Database (Gollubet al., 2003). Unfortunately, this
analysis was inconclusive due to numerous discrepan-
cies between the data deposited in SMD and those ori-
ginally published (http://genome-www.stanford.
edu/cellcycle/data/rawdata/ ).

3.3 Overlap between experiments
An alternative strategy for evaluating the performance of
methods for extracting periodically expressed genes is to
examine the overlap in genes identified in different experi-
ments. For each of the methods that provide a ranked list
of genes for each individual experiment, top 300 lists were
extracted and their overlap visualized as Venn diagrams (see
Figure 3). The results are consistent with those obtained from
the benchmark sets. The results of M4, a representative of
the magnitude-independent methods, shows by far the least
agreement between the three experiments. In comparison,
M3 and M7 identify almost twice as many genes that agree
in all three experiments. For all computational methods, the
alpha factor experiment shows the best overlap with the two
other experiments, while the Cdc28 experiment overlaps the
least. This supports our previous observations with regard to
the quality of the individual experiments. The lower right
Venn diagram in Figure 3 illustrates that a renormalization
of the Cdc28 data improves the agreement with the two other
experimental data sets, in addition to improving performance
on the benchmark sets (Figure 2). When including the renor-
malized Cdc28 data in our analysis, two thirds of the genes
detected from the alpha factor synchronization are confirmed
by at least one other experiment. The fact that the overlap
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Fig. 3. Agreement across experiments.Venn diagrams based on
the top 300 genes from each experiment are shown for the methods
that provide ranked lists for the individual experiments. The lower
two diagrams show the results of our analysis using the original and
renormalized Cdc28 data, respectively.

can be improved through renormalization and use of better
computational methods suggests that experimental noise, rat-
her than synchronization artifacts, accounts for much of the
variation.

3.4 Consistent timing of expression
So far, we have addressed the issues of finding periodically
expressed genes and asked if the same genes are identified
in different experiments. It is, however, equally important to
check that those genes behave similarly across experiments,
i.e. that their expression profiles peak at the same stage in the
cell cycle. As a consequence of differences in experimental
protocols, the interdivision time varies between experiments.
Furthermore, the synchronization methods release cells at
different points in the cycle. To enable cross-experiment
comparisons, we represent time in percent of the cell cycle
(0% being the time of cell division) and align the time axes
of the experiments relative to each other (see Methods). For
each gene, we can thus assign a time of peak expression in
each experiment and compare these across experiments. To
examine the degree of consistency between thesepeak times
in different experiments, we computed the largest peak time
difference for each gene. Figure 4 shows the distribution of
these differences for the set of 89 genes that were identified as
periodic in all three experiments (see Figure 3). For 87 of the

0 10 20 30 40 50

Maximum difference in time of peak expression

0

10

20

30 Maximumdifference

Fig. 4. Consistency of peak expression.For the 89 genes identified
in all three experiments (see bottom right diagram in Figure 3) the
largest difference in peak time was computed and summarized as a
histogram.

89 genes, all three peak times fall within an interval of 15% of
a cell cycle, clearly demonstrating the reproducibility of peak
expression by different synchronization methods. For genes
that appear periodic in all three experiments, an average peak
time could easily be computed. At lower ranks, however,
the genes may not appear equally periodic or regulated in
all experiments. To account for this, we instead compute a
weighted average of the three experiments. This procedure
also allows us to calculate a variance measure to assess the
reliability of each combined peak time.

As a final check of the reproducibility, we investigated the
timing of peak expression for four sets of known phase speci-
fic genes across the three experiments. B1 was subdivided by
Spellmanet al. (1998) into phase-specific groups according
to their reported peak expression in the small scale expe-
riments. The distribution of peak times within each group
is visualized in Figure 5, along with the distribution of our
combined peak times. From this, it is clear that the pha-
ses occur in the same order, with the same length, and at
the same time in all three experiments. It thus appears that
the synchronization methods cause no abnormalities of the
cell-cycle transcriptional program. Together, Figures 4 and
5 show that the combined peak time is a meaningful mea-
sure that accurately describes when in the cell cycle a gene is
expressed.

At lower ranks, we found a small number of genes with
inconsistent peak times. Removing these from the ranked
list based on the weighted variance score (see Methods for
details) led to marginal improvements in performance (see
Figure 2, cyan curve). Among the top 300 genes, only 4 were
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Fig. 5. Expression of phase-specific genes.For the phase-specific
gene sets identified in small scale experiments, the distribution of
peak times is shown for each experiment: cdc28 (black), cdc15
(blue), alpha (green), and the three experiments in combination
(red). The mode of the peak time distribution for the M/G1 group
was chosen to define the zero time point. Within each experiment,
only genes in the top 500 of our periodicity analysis were included.

removed by the filter, while 27 of the next 200 genes were dis-
carded. In addition to improving the performance, the filter
ensures that all remaining genes on the list can be confidently
assigned to a unique point in the cell cycle. This ranked list is
available from the web sitehttp://www.cbs.dtu.dk/
cellcycle . It is based on renormalized Cdc28 data and
only contains genes that show consistency in their time of
peak expression. In the benchmarks analysis (Figure 2), its
performance is better than or comparable to all other publis-
hed lists. This analysis shows a steep increase in the B1 and
B2 curves for the first 300 genes identified. Beyond this point,
a clear enrichment is seen also in B3, which continues until
500–600 genes are included, at which point the B1 also set
saturates. Enrichment is still seen in B2, but dies out around
800. Based on these observations, we chose to define a high-
confidence set as top-300, a medium-confidence at top-500,
but also include the lower-confidence top-800 set. Using the
total p-values, we employed the Benjamini-Hochberg mul-
tiple testing procedure (Reineret al., 2003) to estimate the
false discovery rate (FDR) at different cutoffs. For the hig-
hest scoring 300, 500 and 800 genes we estimate the FDR to
be3 · 10−6, 4 · 10−4 and8 · 10−3, respectively.

4 DISCUSSION
Naturally, the results of our benchmark (Figures 1 and 2)
depend on the selected benchmark sets B1-B3. As none of
the sets can be assumed to be perfect gold standards, it is not
possible to assess how good each method is on an absolute

scale. We are, however, able to evaluate the computational
methods relative to each other by measuring their ability to
recover genes from these sets. The methods that perform
best on B1-B3 also provide the best overlap between genes
identified across different experiments (Figure 3). We thus
believe that our analyses together provide a fair and unbiased
assessment of the relative performance of the computational
methods.

The budding yeast experiments (Alpha, Cdc15 and Cdc28)
used in our study were all synchronized by arrest-release
techniques (whole-culture synchronization). Such techniques
block progression at a certain point in the cell cycle, from
which all cells can later be released simultaneously, e.g. by
lowering of the temperature. Recently, the interpretation and
validity of such block–release experiments has been lively
debated (Cooper, 2004a,b; Spellman & Sherlock, 2004a,b).

From the perspective of our analysis, we can conclude that
there are many more genes that appear periodic than can be
explained by mere chance. The genes are largely the same
across different experiments, as shown in Figure 3 and by the
overlap with B1 (Figure 1). With few exceptions, the genes
peak at the same point in the cell cycle across different expe-
riments (Figure 4). Also, the characteristic cell cycle phases
occur in the same, correct order in all experiments and with
the same relative length (Figure 5). Finally, the genes that
appear periodic in the synchronized cell cultures are heavily
overlapping (Figures 1 and 2) with those physically asso-
ciated with cell cycle transcription factors in Chromatin IP
experiments performed on freely growing cells (Simonet al.,
2001; Leeet al., 2002).

In summary, the microarray data obtained from the syn-
chronized cell cultures appears to draw a reproducible and
biologically meaningful picture of the yeast cell cycle that is
consistent with complementary experiments from freely gro-
wing cells. Both false positives and false negatives should be
expected from the experiments and their subsequent analysis,
given the considerable level of noise and the large num-
ber of expression profiles investigated. Artifacts that would
not occur in freely growing cell may also be introduced by
synchronization methods, e.g. induction of stress response
genes. However, these would most likely be specific to each
arrest method and manifest themselves in the beginning of
an experiment. It is difficult to see how responses to diffe-
rent treatments of the cells could induce consistent, periodic
patterns of expression that persists through several cycles, as
proposed by Cooper (2004a,b).

5 CONCLUSIONS
Most surprisingly, our benchmark analysis reveals that most
of the new and more mathematically advanced methods for
identifying periodically expressed genes perform considera-
bly worse than the early method by Spellmanet al. (1998)
(M2). These results should encourage developers of future
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computational methods to evaluate the performance of their
methods carefully. We show that the performance gap is due
to the magnitude-independence of most newer methods. This
independence may improve their ability to discover novel
weakly regulated cell cycle genes, however, as the magnitude
of regulation contains a large part of the signal, this should be
exploited in order to derive the most accurate set of cell cycle
regulated genes.

Using the periodicity score alone yields results similar
to those of other magnitude-independent methods, while
our combined score performs as well as the best existing
methods. In comparison to other methods, ours have two
main advantages. First, genes ranked high on our list are
guaranteed to be both significantly regulated and signifi-
cantly periodic. Second, we require consistency in peak time
across experiments, which allows us to assign a time of peak
expression to each gene.
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