
FEBS Letters 579 (2005) 1802–1807 FEBS 29329
Minireview

Re-analysis of data and its integration

Lars Juhl Jensen, Lars M. Steinmetz*

European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany

Accepted 1 February 2005

Available online 11 February 2005

Edited by Robert Russell and Giulio Superti-Furga
Abstract To understand a biological process it is clear that a
single approach will not be sufficient, just like a single measure-
ment on a protein – such as its expression level – does not de-
scribe protein function. Using reference sets of proteins as
benchmarks different approaches can be scaled and integrated.
Here, we demonstrate the power of data re-analysis and integra-
tion by applying it in a case study to data from deletion pheno-
type screens and mRNA expression profiling.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Biologists have begun to compare the output from one set of

high-throughput experiments to another, such as the overlap

between deletion phenotypes and protein–protein interactions

[1], subcellular localization and expression level [2], and

mRNA expression and protein abundance [3]. For such studies

Saccharomyces cerevisiae has emerged as the de facto standard

organism, with numerous genome-scale data sets having been

published on gene expression [4–7], deletion phenotypes

[8–11], protein–protein interactions [12–15], protein–DNA

interactions [16,17], protein abundance [3], and subcellular

localization of proteins [18,19].

One surprise finding of systematic comparisons of high-

throughput data has been the low overlap between mRNA

expression screens and deletion phenotype screens, both of

which are being applied as screens to identify new candidate

genes in a variety of organisms [20]. When deletion phenotype

screens were compared to mRNA expression screens in yeast,

the proposed genes identified by phenotype agreed surprisingly

poorly with those suggested based on equivalent expression

data; the overlap was only 17% for sporulation [9], 7% for

growth on non-fermentable carbon sources [11], and even

lower for growth in galactose, high pH, high salt and sorbitol

[10]. Finally, the number of genes with a fitness defect that

showed differential expression in response to DNA damaging

agents was no larger than expected by chance [8].
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Among high-throughput data, often poor agreement is ob-

served between experiments of the same type. It therefore re-

mains unclear whether the observed differences are

biologically relevant or if they are simply a result of a high er-

ror rate on either the expression and/or the phenotype data. To

address this, we here analyze expression and phenotype data

for sporulation and respiration as a case study, and use this

process to illustrate the importance of data re-analysis and

integration in general for characterizing components of a

system.
2. High-throughput experiments: reproducable yet different

High-throughput data sets have often been pointed out to

suffer from high error rates, which make it difficult to draw

firm conclusions from them. For example, one study has

pointed out a poor agreement between yeast genes identified

from different mitotic cell cycle expression time series [23].

However, in case of the mitotic cell cycle it was recently shown

that the disagreement is largely due to the analysis of the data

rather the data themselves: (1) Different methods were used for

the original analysis of each data set, which obviously causes

discrepancies. (2) Most methods developed for reanalyzing

the data turned out to perform worse on benchmark sets than,

the methods originally used. (3) Finally, most analyses pro-

posed more genes as being periodically expressed than the data

sets supported, which causes a large number of different genes

unrelated to the cell cycle to be suggested for each data set.

Reanalyzing all data using the best performing algorithms

and applying more stringent cutoffs considerably improved

the agreement between experiments [24].

The time courses published for the yeast meiosis/sporula-

tion [5,21] have not been reanalyzed to nearly the same ex-

tend as the mitotic cell cycle data. For that reason we have

picked this system as a case study to illustrate the benefit

of data reanalysis and integration. When comparing the lists

of differentially expressed genes obtained from their time

courses on the S. cerevisiae strains SKI and W303, Primig

et al. [21] found 915 of the �1600 genes suggested in each

experiment to be identified in both strains. They attributed

this relatively poor agreement to strain specific differences.

Chu et al. [5] independently generated an expression timeser-

ies in S. cerevisiae SKI.

We reanalyzed the three time courses, by simply ranking the

genes according to their root-mean-square of log-ratios. Fig.

1A shows a Venn diagram based on the top-300 ranking genes

from each data set. Of the 300 genes suggested by each
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Agreement of meiosis/sporulation-related gene sets identified
from high-throughput experiments. Venn diagrams illustrating the
agreement between expression time courses and mutant phenotype
screens. (A) Comparison of the top-300 ranking genes in each of the
sporulation expression time courses by Chu et al. [5] and Primig et al.
[21]. Equally good agreement is observed among the three sets. (B) The
systematic screens for sporulation deficient deletion strains by
Deutschbauer et al. [9] and Enyenihi et al. [22] also show good
agreement. (C) The core expression and phenotype gene sets obtained
from the two other Venn diagrams show poor agreement. Different
types of experiments thus identify different subsets of sporulation-
related genes.
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Fig. 2. Correlation of expression change and deletion phenotype
under the same perturbation. Expression change was calculated as the
log2(NF/F), where F and NF are the expression level under ferment-
able (F) and non-fermentable (NF) growth conditions, respectively
(data from Prokisch et al. [25]). Deletion phenotype was measured as
the difference in pooled growth rate between F and NF conditions –
larger values correspond to a greater defect under NF conditions (data
from Steinmetz et al. [11]). In red are genes whose protein products are
known to localize to the mitochondrial organelle. The genes with the
largest expression change tend not to have a deletion phenotype, and
the genes with the largest deletion phenotype tend not to be expression
regulated.
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method, 91 genes are confirmed by both of the other time ser-

ies and �150 by at least one other time series.

To evaluate overlaps between data sets, we split the actual

overlaps into two numbers: (1) the percentage of overlap that

remains after subtracting what would be expected at random,

and (2) the random expectation. Both of these percentages

were calculated relative to the smaller set; the random expecta-

tion corresponds to the proportion of genes in the larger set

out of all genes in the genome. The reason behind this ap-

proach is to correct for the increase in agreement that comes

by chance, when assessing overlaps between large data sets.

For the �150 genes identified from at least two time series,

the overlap corresponds to 46% agreement (plus 4% expected

at random) as compared to 32% agreement (plus 25% expected

at random) obtained for a comparison of the two original data

sets published by Primig et al. [21]. Compared to the original

analyses, the agreement between the sporulation expression

experiments is thus clearly improved by selecting a smaller,

more conservative set of genes, as was also observed for the

various expression time series on the mitotic cell cycle [24].

In addition to expression timeseries, phenotype screens were

performed for sporulation. In this case strains were monitored

that each lacked one gene product in the genome because of a

gene deletion. This process identified genes that when deleted

cause a defect in sporulation. Fig. 1B shows a comparison of

two deletion strain screens for genes involved in sporulation

[9,22]. As one of the two screens involved visual inspection

of the strains rather than quantitative measurements [22], it

was not possible to check if reanalysis of the data would im-
prove the agreement. However, the agreement is already quite

good with 52% (plus 10% expected at random) of the genes

identified by Deutschbauer et al. [9] being confirmed by Eny-

enhi et al. [22]. We thus generally observed good agreement be-

tween different high-throughput experiments of the same type,

be they microarray expression time series or phenotype screens

of deletion mutants.

There can be little doubt that the vast majority of the 91

genes that occur in the top-300 list for all three expression time

courses are in fact transcriptionally regulated during sporula-

tion. Similarly, it is safe to assume that the 162 genes identified

in both phenotype screens are important for S. cerevisiae to

properly sporulate. Yet, the agreement between the two sets

is remarkably poor as shown in Fig. 1C: only 16 genes are

present in both of these high-confidence sets, which corre-

sponds to 15% (plus 3% expected at random) of the genes iden-

tified from expression data being confirmed by deletion

phenotype. Although this is much lower than observed be-

tween different experiments of the same type, it should be

noted that 16 genes is higher than random expectation (hyper-

geometric test, P < 10�8).

In order to assess the generality of these findings on meiosis/

sporulation, we extended our analysis to an entirely different

biological system, namely yeast mitochondria. From analysis

of data sets of deletion phenotype and mRNA expression un-

der fermentable and non-fermentable conditions, the same pic-

ture emerges. Fig. 2 shows that there is hardly any correlation

between the genes that show a phenotype (specific growth de-

fect on non-fermentable carbon source) and the genes that

change in expression (growth on non-fermentable vs. ferment-

able carbon source).
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It would thus appear that data on phenotype and expression

often disagree. As the agreement between multiple experiments

of the same type is much better (Fig. 1), this cannot be ex-

plained by false predictions due to a high error rate on one

(or both) data types. Instead, the obvious explanation is that

the two assays disagree because they measure different proper-

ties of the biological system, which suggests that disagreement

should also be expected for other data types than the ones con-

sidered here. Moreover, it implies that a complete biological

systems in general cannot be identified using only a single

high-throughput experimental technique.
3. Agreement with current biological notion

Given that the different high-throughput experimental meth-

ods are able to identify different parts of a biology system, it is

natural to ask which method agrees better with the current

conception of biology. To answer this, we compared the gene

sets suggested by each method with a gold standard. For

benchmarking, two lists of genes were compiled from the

GeneOntology annotation in SGD [26]: one consisting of 191

genes with the terms ‘‘meiosis’’ or ‘‘sporulation’’ and another

of 325 with the term ‘‘mitochondrion’’.

Benchmarking the high-throughput experimental data

against known sporulation-related genes reveals that the two

phenotype data sets agree marginally better with curated bio-

logical knowledge than the three expression data sets (Fig.

3A). Each individual experiment can only reliably detect 30–

40% of the known sporulation genes. The figure also shows

that each expression experiment only supports a reliable pre-

diction for 300–500 genes, as the curves are parallel to the ran-

dom expectation curve from this point on. Nonetheless, Chu
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Fig. 3. Benchmark of high-throughput data. (A) The three expression time co
against known meiosis/sporulation genes from SGD [26]. The three expressio
The phenotype screens [9,22] are shown as single points since only lists wit
expectation from random sampling. (B) Two expression time courses and one
against known mitochondrion genes from SGD [26]. As expression data set
fermentable conditions by Prokisch et al. [25] as well as the time series by De
when yeast cells shift from fermentation to respiration. The Prokisch et al. d
et al. proposed a list of more than 1100 genes regulated in re-

sponse to sporulation [5], and Primig et al. suggested �1600

genes based on each of their two time courses [21].

In contrast, for the mitochondrial system, expression and

phenotype experiments do not agree equally well with Gene-

Ontology annotation. As already hinted at by Fig. 2, genes

that encode mitochondrial localizing proteins are neither spe-

cifically expressed when cells are grown on a non-fermentable

carbon source, nor are they among the genes that show the

largest change in expression during the diauxic shift (Fig.

3B). Conversely, about 30% of the known mitochondrial genes

result in detectable growth defects under non-fermentable con-

ditions (Fig. 3B).

The analysis shows that phenotype data appears to generally

agree well with curated biological knowledge, while expression

data only agrees in some cases (Fig. 3). One part of the expla-

nation is likely that phenotype data have long been used to as-

sign gene function, which is not generally the case for

expression data. More expression regulation may occur than

in functional [20]. Moreover, because it is not necessary to reg-

ulate the expression of all subunits of a complex in order to con-

trol assembly and thus activity of a complex, there may be

many genes involved in a process that need not change expres-

sion level and would not be detected by expression assays [27].
4. Analyzing proteins in network context

Large-scale screens for protein–protein and protein–DNA

interactions provide an entirely different type of data, which

creates a context for integrating predictions made by different

high-throughput methods. So far, genome wide chromatin-IP

screens for transcription factor binding sites [16,17] and most
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large-scale protein–protein interaction screens [12–15] have

been performed on yeast, although large yeast two-hybrid

screens have also been published for both Drosophila melano-

gaster [28] and Caenorhabditis elegans [29]. Moreover, several

methods have been developed for transferring interaction evi-

dence between species based on homology/orthology [29–31].

The data obtained from interaction screens have, perhaps

more than any other type of experiment, been criticized for

being highly error prone. Indeed, several groups have esti-

mated the rate of false positives to be in the order of 50% using

several independent criteria for evaluation [32–38]. However,

the reliability of individual interactions can be assessed using

topology-based quality scores that rely on the local connectiv-

ity [39,27], thus allowing many of the erroneous interactions to

be removed. The quality of an interaction set can be further

improved by filtering interactions based on subcellular locali-

zation information [27], or by only considering interactions

within a well defined system [27].

In addition to being important in their own right, interaction

data are crucial for the interpretation of large-scale data, be-

cause they provide a network context for proteins identified

by high throughput approaches. Simple examples include the

two sporulation-related binary complexes shown in Fig. 4A,
Fig. 4. Sporulation-related protein complexes. Proteins are colored
according to sporulation expression change and deletion phenotype.
Different shades of blue signify whether the gene was among the top-
300 most regulated in one, two, or three (most intense) of the
expression time courses. Genes exhibiting a sporulation-deficient
deletion phenotype are shown in red, and genes detected by both the
phenotype screen and the expression screen are magenta. The genes
shown in white were identified as sporulation-related only through
their protein–protein interactions. (A) Two examples of binary
complexes, each consisting of a subunit of unknown function,
identified only by expression time series, and a known sporulation-
related gene identified only by deletion phenotype screens. (B) Module
consisting of three proteins that play different roles during meiosis/
sporulation. Hrr25p is only identified due to its interactions with Pfslp.
(C) While the core expression and phenotype gene sets only detect two
of the septin ring components as being involved in sporulation, the
entire complex can be implicated in this process by integration of
expression and phenotype data with protein–protein interactions.
which both consist of a mixture of genes identified in expres-

sion and phenotype screens. In addition to linking proteins al-

ready identified by one or the other screen, interaction

networks also allow the discovery of additional proteins that

may have been missed by all assays (e.g., Hrr25p, Fig. 4B).

Of the four proteins in the septin complex (Fig. 4C) that are

part of neither the expression nor the phenotype core set,

two are among the top-300 most regulated genes in at least

one of the three experiments (Fig. 4C, lighter shades of blue).

This illustrates how protein–protein interaction data can be

used to integrate other types of experimental data, thereby

allowing high-confidence predictions to be made for entire

complexes based on weaker evidence from individual compo-

nents. The approach is equally applicable to other types of

functional modules, e.g., based on associations derived from

genomic context methods or literature mining [31], and can

be used for the integrating of many other types of data than

expression and phenotype data.
5. Conclusion

Proteins do not function in isolation, rather their activity de-

pends on a multitude of other factors in the cell, such as other

proteins, small molecules, and ions. Analyzing proteins in the

context of their physical and functional interaction is therefore

an important step towards moving from a list of proteins to an

understanding of cellular processes. To achieve this it is neces-

sary to integrate complementary datasets and to evaluate the

resultant data sets in the context of networks. Data integration

will in many cases require re-analysis of the data using com-

mon benchmarks and integration schemes. Our case examples

show that high-throughput data can be reproducible if ana-

lyzed using identical methods. Data sets coming from different

approaches, like expression and deletion phenotype screens,

may not agree because they measure different aspects of the

biological system. For this reason data sets should be

integrated to make full use of available complementary

information.
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