This Provisional PDF corresponds to the article as it appeared upon acceptance. The fully-formatted PDF version will become available shortly after the date of publication, from the URL listed below.

Structural Genomics of human proteins - target selection and generation of a public catalog of expression clones

Microbial Cell Factories 2005, 4:21 doi:10.1186/1475-2859-4-21

Konrad Bussow (buessow@molgen.mpg.de) Christoph Scheich (scheich@molgen.mpg.de) Volker Sievert (volker@volkerspage.de) Ullrich Harttig (ulrich.harttig@arcor.de) Jorg Schultz (Joerg.Schultz@biozentrum.uni-wuerzburg.de) Bernd Simon (simon@embl-heidelberg.de) Peer Bork (Peer.Bork@EMBL-Heidelberg.de) Hans Lehrach (lehrach@molgen.mpg.de) Udo Heinemann (heinemann@mdc-berlin.de)

ISSN 1475-2859

Article type Research

Submission date 23 May 2005

Acceptance date 5 Jul 2005

Publication date 5 Jul 2005

Article URL http://www.microbialcellfactories.com/content/4/1/21

This peer-reviewed article was published immediately upon acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright notice below).

Articles in *Microbial Cell Factories* are listed in PubMed and archived at PubMed Central.

For information about publishing your research in *Microbial Cell Factories* or any BioMed Central journal, go to

http://www.microbialcellfactories.com/info/instructions/

© 2005 Bussow et al., licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For information about other BioMed Central publications go to

http://www.biomedcentral.com/

© 2005 Bussow *et al.*, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Structural Genomics of human proteins – target selection and generation of a public catalogue of expression clones

Konrad Büssow^{1,2,9}, Christoph Scheich^{1,2}, Volker Sievert^{1,2}, Ulrich Harttig^{1,4,5}, Jörg Schultz^{3,8}, Bernd Simon³, Peer Bork³, Hans Lehrach^{1,2}, Udo Heinemann^{1,6,7}

- ¹ Protein Structure Factory, Heubnerweg 6, 14059 Berlin, Germany
- ² Max-Planck-Institut für Molekulare Genetik, Ihnestr. 73, 14195 Berlin, Germany
- ³ EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
- ⁴ RZPD German Resource Center for Genome Research GmbH, Heubnerweg 6, 14059 Berlin, Germany
- ⁵ Current address: DIFE, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- ⁶ Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13092 Berlin, Germany
- ⁷ Institut für Chemie/Kristallographie, Freie Universität, Takustr. 6, 14195 Berlin, Germany
 ⁸ Current address: Department of Bioinformatics, University of Würzburg, Biocenter, Am
- Hubland, 97074 Würzburg, Germany
- ⁹ Corresponding author

Abstract

Background

The availability of suitable recombinant protein is still a major bottleneck in protein structure analysis. The Protein Structure Factory, part of the international structural genomics initiative, targets human proteins for structure determination. It has implemented high throughput procedures for all steps from cloning to structure calculation. This article describes the selection of human target proteins for structure analysis, our high throughput cloning strategy, and the expression of human proteins in *Escherichia coli* host cells.

Results and Conclusion

Protein expression and sequence data of 1414 *E. coli* expression clones representing 537 different proteins are presented. 139 human proteins (18%) could be expressed and purified in soluble form and with the expected size. All *E. coli* expression clones are publicly available to facilitate further functional characterisation of this set of human proteins.

Background

The Protein Structure Factory

The Protein Structure Factory (PSF) is a joint endeavour of universities, research institutes and companies from the Berlin area [1, 2]. It takes part in the international structural genomics initiative [3, 4] and aims at the determination of human protein structures by X-ray diffraction methods and NMR spectroscopy using standardised high-throughput procedures. A complete pipeline has been established for this purpose that comprises cloning, protein expression in small and large scale, biophysical protein characterisation, crystallisation, X-ray diffraction and structure calculation.

It is known that eukaryotic proteins are often difficult to express in *Escherichia coli* [5]. Only a certain fraction of these proteins can be overproduced in *E. coli* in sufficient yield without formation of inclusion body aggregates or proteolytic degradation. Alternative expression systems include cell cultures of various eukaryotic organisms and cell-free, *in vitro* protein expression. These systems have been greatly improved since 1999, when the PSF project was initiated. In the meantime, *E. coli* [5-7] and wheat germ [8] *in vitro* protein synthesis is routinely used by structural genomics projects. At the PSF, yeast expression hosts, *Saccharomyces cerevisiae* and *Pichia pastoris*, were successfully established as alternative systems to *E. coli*, as described in detail previously [9-11]. We will focus here on the results obtained with the *E. coli* expression system.

E. coli strains and vectors

The T7 RNA polymerase-dependent *E. coli* expression vector system (pET-vectors) is a universal system to generate recombinant protein for structural analysis [12]. pET vectors are usually combined with the *E. coli* B strain BL21 and derivatives that are engineered to carry the T7 RNA polymerase gene. These strains, however, have limitations in cloning and stable propagation of the expression constructs. Expression vectors which are regulated by the *lac* operator are independent of the host strain. Recombination-deficient *E. coli* K-12 strains are suitable for cloning because of their high transformation rates and because they allow for stable propagation of recombinant constructs. The strain SCS1 (Stratagene; *hsd*R17($r_K^- m_K^+$) *recA1 endA1 gyrA96 thi-1 relA1 supE44*) was found to perform well at the PSF in cloning experiments. It grows relatively fast and allows for robust protein expression.

Affinity tags allow for standardised protein purification procedures. The first vector that was used routinely in the PSF, pQStrep2 (GenBank AY028642, Figure 1), is based on pQE-30 (Qiagen) and adds an N-terminal His-tag [13] for metal chelate affinity chromatography (IMAC) and a C-terminal Strep-tag II [14, 15] to the expression product. pQStrep2 allows for an efficient two-step affinity purification of the encoded protein, as demonstrated in a study of an SH3 domain [16]. The eluate of the initial IMAC is directly loaded onto a Streptactin column. Thereby, only full-length expression products are purified and degradation products are removed. However, the two tags, which are flexible unfolded peptides, remain on the

protein and may interfere with protein crystallisation, although we could show that crystal growth may be possible in their presence even for small proteins [16]. To exclude any negative influence by the affinity tags, another vector, pQTEV (GenBank AY243506, Figure 1), was constructed. pQTEV allows for expression of N-terminal His-tag fusion proteins that contain a recognition site of the tobacco etch virus (TEV) protease for proteolytic removal of the tag.

Codon usage has a major influence on protein expression levels in *E. coli* [17], and eukaryotic sequences often contain codons that are rare in *E. coli*. Especially the arginine codons AGA and AGG lead to low protein yield [18]. This can be alleviated by introducing genes for overexpression of the corresponding tRNAs into the *E. coli* host cells. We have used the plasmid pSE111 (Figure 1) carrying the *argU* gene for this purpose. pSE111 is compatible with pQTEV and other common expression vectors. It carries the *lacl^Q* gene for overexpression of the Lac repressor, which is required when using promoters regulated by *lac* operators. pSE111 was used at the PSF in combination with the expression vectors pQStrep2 and pGEX-6P-1. Strains for overexpression of rare tRNAs are available from Invitrogen (BL21 Codon Plus) and Novagen (Rosetta). The Rosetta strain contains the chloramphenicol-resistant pRARE plasmid that supplies tRNAs for the codons AUA, AGG, AGA, CUA, CCC, GGA [19]. This plasmid is used at the PSF in combination with pQTEV and pGEX-6P-2.

The supplementary file psfClones.xml lists the vector and helper plasmid for overexpression of rare tRNAs that was used for each individual clone.

Selection of target proteins

We selected target proteins with higher-than-average chances of successful expression in *E. coli* and crystallisation [1]. Proteins were excluded for which sequence analysis predicted that structure determination would be difficult. Starting from the complete set of known human proteins, potentially difficult target proteins and proteins of known structure were excluded according to the following criteria:

- Membrane proteins are known to be complicated targets for structure determination and were excluded. Membrane proteins were identified with the program TMHMM [20, 21].
- Since very large proteins are often difficult to express, the maximal length of target proteins was set to 500 amino acids.
- Protein regions that are unstructured or only partially structured [22] may lead to difficulties during protein expression and purification. Unstructured regions are susceptible to proteolyic attack, and represent an obstacle to protein crystallisation. A large proportion of intrinsically unstructured protein sequences are characterised by sequence stretches of low complexity and tandem repeats [23]. Proteins with low

complexity regions of more than 20 amino acids length, detected by the SEG program, or with more than one region were excluded [24, 25].

- Coiled-coil proteins were excluded from our target list, since this fold is not novel, and structural analysis of coiled coils requires special attention. Many coiled coil proteins form hetero-complexes with other coiled-coil proteins and cannot be studied without their binding partner. Coiled-coils domains are long, extended structures which can usually only be crystallised as domains, i.e. expression constructs lacking other domains have to be prepared. To identify coiled-coil proteins, the program COILS was used [26-28].
- The cellular localisation of target proteins was assigned with the Meta_A(nnotator)
 [29, 30]. Target proteins annotated to be localised in the extracellular space,
 endoplasmic reticulum, Golgi stack, peroxisome or mitochondria were excluded from
 expression in *E. coli*. Many of these proteins require formation of disulphide bonds for
 correct folding, but these are generally not formed in the reducing environment of the *E. coli* cytoplasm. Therefore, these proteins were allocated only for extracellular
 expression by yeast host cells. Proteins with predicted intracellular localisation or
 which were not assigned with a localisation by Meta_A(nnotator) were expressed in
 the cytosol of *E. coli*.
- Potential target proteins were matched to the sequences of proteins with known structure at the Protein Data Bank (PDB) [31]. PSI-BLAST [32] was used to detect even very distinct homologies to PDB entries to rule out proteins with known folds. This filter was later replaced by a less stringent one, which considers the sequence identity and 'coverage' of matches to PDB sequences. The coverage is the length of the sequence match divided by the protein length. According to the less stringent filter, proteins with 60% or more sequence identity over 90% or more of the sequence length were excluded. Thereby target proteins could be included of which only a part, e.g. a single domain, has a known structure.

Results

Target lists

The first target list was generated in 1999, when the PSF project started, from the set of all human proteins known at that time. This set was filtered as described above. PSI-BLAST was used to match potential target proteins to the PDB and to include only proteins of presumably novel folds. To enable high-throughput cloning, we selected target proteins for which full-length cDNA clones were available. In 1999, cDNA clones of the IMAGE consortium represented the main public source of sequenced cDNA clones [33]. However, only partial sequence information existed for these clones – the EST sequences of the dbEST database [34] – and only a small proportion contained complete open reading frames (full-ORF clones).

490 proteins were selected which met the selection criteria, had no match to PDB detected by PSI-BLAST and for which full-ORF IMAGE cDNA clones were available.

In 2003, a second target list was compiled from novel full-length cDNAs discovered by the German cDNA consortium [35, 36]. The same filter criteria as for the first target list were applied, except that cellular localisation was not taken into account. Proteins with a PDB match of 60% or more sequence identity and 90% sequence coverage were excluded, resulting in a target list of 259 proteins.

A third set of target proteins was selected from a human cDNA expression library (hEx1), which was cloned in a bacterial expression vector. This library was screened for expression clones on high density arrays and by high-throughput protein expression and purification experiments [37-40]. This identified 2,700 clones expressing soluble His-tag fusion proteins that could be purified by affinity chromatography [39]. The cDNA inserts of these clones were sequenced and assigned to sequences of the Ensembl database [41]. 141 proteins represented by clones of the expression library where selected as targets for structural analysis [39]. These clones express soluble, full-length proteins, of which the three-dimensional structure was unknown.

The numbers of targets and success rates grouped by the type of target cDNA clone are summarised in Table 1.

Generation and characterisation of expression clones

We established a common cloning strategy that allows for easy shuttling of cDNA fragments between different *E. coli* and yeast vectors. We adopted a cloning system that adds only a minimal number of extra amino acids to the protein of interest and therefore decided to clone with restriction enzymes instead of using alternative systems, such as Invitrogen's Gateway system or ligation independent cloning [42].

The PSF has been working with more than a thousand target proteins to date. Suitable cDNA clones were selected and subcloned into the *E. coli* expression vectors pQTEV [GenBank: AY243506] and pQStrep2 [GenBank:AY028642] [16]. These vectors provide for an N-terminal His-tag; pQStrep2 also encodes an C-terminal Strep-tag-II. Some proteins have also been expressed as GST fusion proteins using the vectors pGEX-4T2 or pGEX-6P1 (Amersham Biosciences).

Expression of protein coding genes from multiple transformants per target was tested under multiple conditions. Standardisation and automation was introduced to achieve this throughput. Expression clones were characterised by small scale protein synthesis at different temperatures, 37 °C, 30 °C and 25 °C, in 1 ml volumes in deep-96-well microplates. Proteins were purified in parallel by a pipetting robot, as described previously [43]. 10% of the purified protein eluate from a 1 ml culture was analysed by SDS-PAGE. For each protein expression experiment, the size of the expression product was recorded and the amount of protein was classified into four categories: none, weak, moderate and strong expression. This classifica-

tion is arbitrary to a certain degree, however, we found it sufficient to select suitable clones for protein production scale-up.

1414 clones for 537 target proteins were successfully cloned in *E. coli* expression vectors, with 473, 191 and 94 target proteins corresponding to target lists one (IMAGE clones), two (DKFZ clones) and three (hEx1 clones), respectively. Clones for 139 different target proteins were found to be expressed in soluble form by *E. coli*. Figure 2 and Table 2 show the result of small scale expression and purification of these proteins. The yield varied significantly among different target proteins. The supplementary file psfClones.xml contains further details on the expression clones, such as vector, strain and helper plasmid for overexpression of rare tRNAs.

Biophysical properties of proteins which could be expressed in soluble form in *E. coli* were compared against all tested proteins. We found no significant correlation between expression success and either protein length or mean net charge (data not shown). However, when analysing the mean hydrophobicity, we found that hydrophobic proteins are less likely to be expressed in soluble form. Only one of 139 well expressed proteins has a mean hydrophobicity of more than 0.2, while 8% of the other proteins are above this value. This group of proteins does not contain transmembrane helices according to TMHMM, and therefore may represent peripheral membrane proteins with hydrophobic surface regions.

The *E. coli* expression clones of the PSF are publicly available from the RZPD German Resource Center [44]. The supplementary file 1 is an XML list of these clones. It can be viewed in a web browser (Figure 3). The supplementary file contains, for each clone:

- Gene ID and name,
- Accession number,
- Cloning details,
- Strain and vector,
- Expected sequence,
- Protein expression results,
- Sequence verification.

Solved structures

As a result of the target selection and cloning described in this paper, ten novel X-ray structures of human proteins were determined (

Table 3). The structure of one protein, TRAPPC3/BET-3, was determined after protein expression in *S. cerevisae*, while the other proteins were produced in *E. coli*.

Discussion

We describe here the strategies and experiments of our structural genomics project on human proteins. In addition to the expression of full length proteins, the Protein Structure Factory has also studied protein domains by NMR spectroscopy, which has been described elsewhere [45-47]. Our selection of full length target proteins was mainly determined by the availability of full length cDNA clones. In addition, biophysical and bioinformatical criteria were applied, leading to a biased selection of target proteins from the human proteome. Therefore, we expect that the percentage of proteins that we could express and purify in soluble form, 18%, is higher than it would be in a randomly selected set. The low proportion of successfully expressed proteins indicates that *E. coli* is not the appropriate expression host for many full length human proteins. High throughput protein expression in alternative system such as yeast [9-11] or insect cells/baculovirus [48] has been established and will lead to better success rates in future projects.

Generally, clones that did express a soluble protein were verified by DNA sequencing, while clones that did not express or expressed an insoluble product were usually not sequence verified. It cannot be ruled out that some of the unsuccessful clones contain sequence errors introduced during cloning. Since template cDNA clones of the IMAGE consortium with only partial sequence information were used for most cloning experiments, expression clones that were not sequence verified might represent splice variants or isoforms of the original target. The distribution of mean net charge and length was similar among successfully expressed and all proteins, while very hydrophobic proteins were generally not expressed well in our *E. coli* expression system.

Future efforts in structural genomics of mammalian proteins will benefit from a much better supply of full length cDNA clones. Clones prepared for protein expression by resource centres and commercial suppliers are becoming available now. With such resources, alternative target selection strategies will become feasible that will not be restricted by the availability of cDNA clones. Instead, all potential target proteins, including splice variants, could be clustered by similarity and the most suitable members of each cluster could be selected by appropriate criteria as outlined in the Background section.

In our approach, we have excluded certain types of proteins such as membrane proteins and very large proteins. A structural genomics approach that includes membrane proteins would require standard protocols to optimise expression conditions and detergents [49]. The best strategy to study large proteins is to divide them into domains and smaller regions. However, such smaller constructs usually have to be designed manually.

All clones listed in the supplementary file and Table 2 are available to the research community. Thereby we hope to facilitate further functional characterisation of this set of human proteins.

Materials and Methods

Cloning with restriction enzymes

cDNA inserts were amplified by PCR primers carrying tails with *Bam*HI and *Not*I sites and cloned into the respective sites of one of the expression vectors pQTEV, pQStrep2 or pGEX-6p1. This had the drawback that the restriction sites chosen for cloning might occur in the insert. In such cases, compatible overhangs were produced by alternative enzymes or by the hetero-stagger cloning method [50]. Alternative enzymes are *BgI*II for *Bam*HI and the type IIs enzymes *Bpi*I, *Eco*31I, *Esp*3I, which can replace both *Bam*HI and *Not*I. Type IIs enzymes cut outside their recognition sequence and can produce arbitrary overhangs.

PCR Primer design

PCR primers with tails carrying restriction enzyme cleavage sites were designed automatically by a Perl program. The primer design program adjusts the length of the primers to achieve a melting temperature close to a common default. Then, restriction enzymes that do not cut within the respective cDNA sequence are selected by the program and restriction enzyme sites are attached to the primer sequences. Finally, since restriction enzymes do not cut well at the very end of a DNA molecule, an additional short nucleotide tail is automatically attached to the primers. The sequence of this tail is optimised to minimise formation of secondary structure, hairpins or dimerisation. A Java version of the primer design software, 'ORFprimer', is publicly available [51].

Automated high-throughput cloning, protein expression and purification

PCR primers and cDNA clones were delivered in 96-well microplate format. Upon delivery, plates with PCR primers and template clones were reformatted to obtain corresponding plate positions by a Zinsser Speedy pipetting robot. The PCR master mix (Roche Expand) and cDNA primers (10 µM stocks) were pipetted into a PCR microplate with a multichannel pipet. Template clone bacteria were added with a 96-pin steel replicating device from overnight cultures in microtitre plates. PCR product size and yield was determined by agarose gel electrophoresis and the software Phoretix 1D Quantifier (Nonlinear dynamics). PCR products were purified with magnetic beads on the pipetting robot with a system that has been developed at the Max Planck Institute of Molecular Genetics in collaboration with Bruker Daltonics (Bruker genopure kit). The correct restriction enzyme master mixes were automatically added and the digested fragments were purified again, analysed by agarose gel electrophoresis and then adjusted DNA concentrations to a common default by dilution. Ligations were set up manually with a multichannel pipet, and SCS1 *E. coli* cells carrying pRARE

were transformed in a PCR microplate by chemical transformation on a PCR machine [52]. Transformed cells were manually plated on individual agar plates. Four clones were picked per transformation and were checked by PCR using vector primers. *E. coli* expression clones were ready for protein expression at this stage.

Primer sequences and template clones for cloning of the target cDNAs are listed in the supplementary XML file.

The characterisation of expression clones by parallel expression and protein purification is described in reference [43].

Sequence analysis

Sequence analysis software was run with default settings unless indicated otherwise. The mean charge of a protein was calculated as the difference of the number of positive and negatively charged amino acids (Lys, Arg and Glu, Asp, respectively) divided by the protein length. The mean hydrophobicity was calculated with the Kyte and Doolittle hydropathy index [53], obtained from the EMBOSS package [54]. The index values were added up for a given protein and divided by the protein length.

Authors' contributions

- Study design and coordination: KB, HL, UHe
- Bioinformatics: UHa, BS, JS, PB, VS, KB
- E. coli cloning: VS, KB
- E. coli protein work: CS, KB
- Manuscript, figures, XML file preparation: KB

Acknowledgements

We wish to thank Ulf Lenski for help with sequence analysis and Janett Tischer for technical assistance. This work was funded by the German Federal Ministry of Education and Research (BMBF) through the Leitprojektverbund Proteinstrukturfabrik and the National Genome Network NGFN (FKZ 01GR0471, 01GR0472) and with support by the Fonds der Chemischen Industrie to U.H. Support by the Berlin Senate and the European Fund for Regional Development (EFRE) is also gratefully acknowledged.

References

- 1. Heinemann U, Büssow K, Mueller U, Umbach P: Facilities and methods for the high-throughput crystal structure analysis of human proteins. Accounts of Chemical Research 2003, **36**(3):157-163.
- 2. **Protein Structure Factory** [http://www.proteinstrukturfabrik.de]
- 3. Zhang C, Kim SH: **Overview of structural genomics: from structure to function**. *Current Opinion in Chemical Biology* 2003, **7**(1):28-32.

- 4. Todd AE, Marsden RL, Thornton JM, Orengo CA: **Progress of structural genomics initiatives: an analysis of solved target structures**. *Journal of Molecular Biology* 2005, **348**(5):1235-1260.
- 5. Gilbert M, Albala Joanna S: Accelerating code to function: Sizing up the protein production line. *Current Opinion in Chemical Biology* 2002, **6**(1):102-105.
- 6. Yokoyama S: Protein expression systems for structural genomics and proteomics. *Current Opinion in Chemical Biology* 2003, **7**(1):39-43.
- Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S: Cell-free production and stable-isotope labeling of milligram quantities of proteins. *FEBS Letters* 1999, 442(1):15-19.
- 8. Tyler RC, Aceti DJ, Bingman CA, Cornilescu CC, Fox BG, Frederick RO, Jeon WB, Lee MS, Newman CS, Peterson FC *et al*: **Comparison of cell-based and cell-free protocols for producing target proteins from the Arabidopsis thaliana genome for structural studies**. *Proteins* 2005.
- 9. Holz C, Hesse O, Bolotina N, Stahl U, Lang C: A micro-scale process for highthroughput expression of cDNAs in the yeast Saccharomyces cerevisiae. *Protein Expression & Purification* 2002, **25**(3):372-378.
- 10. Boettner M, Prinz B, Holz C, Stahl U, Lang C: **High-throughput screening for** expression of heterologous proteins in the yeast Pichia pastoris. *Journal of Biotechnology* 2002, **99**(1):51-62.
- 11. Holz C, Prinz B, Bolotina N, Sievert V, Büssow K, Simon B, Stahl U, Lang C: Establishing the yeast Saccharomyces cerevisiae as a system for expression of human proteins on a proteome-scale. *Journal of Structural and Functional Genomics* 2003, 4(2/3):97-108.
- 12. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW: Use of T7 RNA polymerase to direct expression of cloned genes. *Methods in Enzymology* 1990, 185:60-89.
- 13. Hochuli E, Dobeli H, Schacher A: New metal chelate adsorbent selective for proteins and peptides containing neighboring histidine residues. *Journal of Chromatography* 1987, **411**:177-184.
- 14. Schmidt TG, Skerra A: The random peptide library-assisted engineering of a Cterminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. *Protein Engineering* 1993, 6(1):109-122.
- 15. Schmidt TGM, Koepke J, Frank R, Skerra A: Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. *Journal of Molecular Biology* 1996, **255**(5):753-766.
- 16. Mueller U, Büssow K, Diehl A, Bartl FJ, Niesen FH, Nyarsik L, Heinemann U: **Rapid** purification and crystal structure analysis of a small protein carrying two terminal affinity tags. *Journal of Structural and Functional Genomics* 2004, **4**:217-225.
- 17. Kane JF: Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. *Current Opinion in Biotechnology* 1995, **6**(5):494-500.
- 18. Brinkmann U, Mattes RE, Buckel P: **High-level expression of recombinant genes** in Escherichia coli is dependent on the availability of the DNAY gene product. *Gene* 1989, **85**(1):109-114.
- 19. Novy R, Drott D, Yaeger K, Mierendorf R: **Overcoming the codon bias of E.coli for** enhanced protein expression. *inNovations* 2001, **12**:1-3.
- 20. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL: **Predicting transmembrane** protein topology with a hidden Markov model: Application to complete genomes. *Journal of Molecular Biology* 2001, **305**(3):567-580.
- 21. **TMHMM** [http://www.cbs.dtu.dk/services/TMHMM/]
- 22. Dyson HJ, Wright PE: **Coupling of folding and binding for unstructured proteins**. *Current Opinion in Structural Biology* 2002, **12**(1):54-60.
- 23. Wootton J, Federhen S: Analysis of compositionally biased regions in sequence databases. *Methods in Enzymology* 1996, **266**:554-571.
- 24. Wootton JC, Federhen S: Statistics of local complexity in amino acid sequences and sequence databases. *Computers & Chemistry* 1993, **17**:149-163.
- 25. Wootton J: Non-globular domains in protein sequences: automated segmentation using complexity measures. *Computers & Chemistry* 1994, 18(3):269-285.

- 26. **COILS** [http://www.russell.embl.de/cgi-bin/coils-svr.pl]
- 27. Lupas A, Van Dyke M, Stock J: **Predicting coiled coils from protein sequences**. *Science* 1991, **252**(5010):1162-1164.
- 28. Lupas A: **Prediction and analysis of coiled-coil structures**. *Methods in Enzymology* 1996, **266**:513-525.
- 29. Eisenhaber F, Bork P: Wanted: Subcellular localization of proteins based on sequence. *Trends in Cell Biology* 1998, **8**(4):169-170.
- 30. **Meta_Annotator** [http://mendel.imp.univie.ac.at/aat/CellLoc_MetaA]
- 31. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S *et al*: **The protein data bank**. *Acta Crystallographica Section D* 2002, **58**(Pt 6 Pt 1):899-907.
- Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research 1997, 25(17):3389-3402.
- 33. Lennon G, Auffray C, Polymeropoulos M, Soares MB: **The I.M.A.G.E. consortium:** an integrated molecular analysis of genomes and their expression. *Genomics* 1996, **33**:151-152.
- 34. **dbEST** [http://www.ncbi.nlm.nih.gov/dbEST]
- 35. Bannasch D, Mehrle A, Glatting KH, Pepperkok R, Poustka A, Wiemann S: LIFEdb: a database for functional genomics experiments integrating information from external sources, and serving as a sample tracking system. *Nucleic Acids Research* 2004, **32**(Special Issue SI):D505-D508.
- 36. Wiemann S, Weil B, Wellenreuther R, Gassenhuber J, Glassl S, Ansorge W, Bocher M, Blocker H, Bauersachs S, Blum H *et al*: Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. *Genome Research* 2001, **11**(3):422-435.
- 37. Büssow K, Nordhoff E, Lübbert C, Lehrach H, Walter G: **A human cDNA library for high-throughput protein expression screening**. *Genomics* 2000, **65**(1):1-8.
- 38. Büssow K, Čahill D, Nietfeld W, Bancroft D, Scherzinger E, Lehrach H, Walter G: A method for global protein expression and antibody screening on high-density filters of an arrayed cDNA library. *Nucleic Acids Research* 1998, **26**(21):5007-5008.
- 39. Büssow K, Quedenau C, Sievert V, Tischer J, Scheich C, Seitz H, Hieke B, Niesen FH, Götz F, Harttig U *et al*: A catalogue of human cDNA expression clones and its application to structural genomics. *Genome Biology* 2004, **5**:R71.
- 40. **The hEx1 Database** [http://www.proteinstrukturfabrik.de/hex1]
- 41. Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T *et al*: **The Ensembl genome database project**. *Nucleic Acids Research* 2002, **30**(1):38-41.
- 42. Aslanidis C, de Jong PJ: Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Research 1990, 18(20):6069-6074.
- 43. Scheich C, Sievert V, Büssow K: An automated method for high-throughput protein purification applied to a comparison of His-tag and GST-tag affinity chromatography. *BMC Biotechnology* 2003, **3**:12.
- 44. German Resource Centre (RZPD) [http://www.rzpd.de]
- 45. Scheich C, Leitner D, Sievert V, Leidert M, Schlegel B, Simon B, Letunic I, Büssow K, Diehl A: Fast identification of folded human protein domains expressed in E. coli suitable for structural analysis. *BMC Structural Biology* 2004, **4**:4.
- 46. Brockmann C, Leitner D, Labudde D, Diehl A, Sievert V, Büssow K, Kühne R, Oschkinat H: The solution structure of the SODD BAG domain reveals additional electrostatic interactions in the HSP70 complexes of SODD subfamily BAG domains. FEBS Letters 2004, 558(1-3):101-106.
- 47. Soukenik M, Diehl A, Leidert M, Sievert V, Büssow K, Leitner D, Labudde D, Ball LJ, Lechner A, Nagler DK *et al*: **The SEP domain of p47 acts as a reversible competitive inhibitor of cathepsin L**. *FEBS Letters* 2004, **576**(3):358-362.
- 48. McCall EJ, Danielsson A, Hardern IM, Dartsch C, Hicks R, Wahlberg JM, Abbott WM: Improvements to the throughput of recombinant protein expression in the baculovirus/insect cell system. *Protein Expr Purif* 2005, **42**(1):29-36.

- 49. Eshaghi S, Hedren M, Nasser MI, Hammarberg T, Thornell A, Nordlund P: **An** efficient strategy for high-throughput expression screening of recombinant integral membrane proteins. *Protein Sci* 2005, **14**(3):676-683.
- 50. Li C, Evans RM: Ligation independent cloning irrespective of restriction site compatibility. *Nucleic Acids Research* 1997, **25**(20):4165-4166.
- 51. **ORFprimer** [http://www.proteinstrukturfabrik.de/ORFprimer]
- 52. Inoue H, Nojima H, Okayama H: **High efficiency transformation of Escherichia coli with plasmids**. *Gene* 1990, **96**(1):23-28.
- 53. Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. *Journal of Molecular Biology* 1982, **157**(1):105-132.
- 54. Rice P, Longden I, Bleasby A: **EMBOSS: the European Molecular Biology Open Software Suite**. *Trends in Genetics* 2000, **16**(6):276-277.
- 55. Manjasetty BA, Quedenau C, Sievert V, Büssow K, Niesen F, Delbrück H, Heinemann U: X-ray structure of human gankyrin, the product of a gene linked to hepatocellular carcinome. *Proteins: Structure, Function and Genetics* 2004, 55(1):214-217.
- 56. Manjasetty BA, Niesen FH, Delbruck H, Gotz F, Sievert V, Bussow K, Behlke J, Heinemann U: X-ray structure of fumarylacetoacetate hydrolase family member homo sapiens FLJ36880. *Biological Chemistry* 2004, **385**(10):935-942.
- 57. Manjasetty BA, Delbrück H, Pham D-T, Mueller U, Fieber-Erdmann M, Scheich C, Sievert V, Büssow K, Niesen F, Weihofen W *et al*: **Crystal structure of Homo sapiens protein hp14.5**. *Proteins: Structure, Function and Bioinformatics* 2004, **54**:797-800.
- 58. Turnbull AP, Kümmel D, Prinz B, Holz C, Schultchen J, Lang C, Niesen FH, Hofmann KP, Delbrück H, Behlke J *et al*: **Structure of palmitoylated BET3: insights into TRAPP complex assembly and membrane localization**. *EMBO Journal* 2005, **24**(5):875-884.
- 59. Kümmel D, Müller JJ, Roske Y, Misselwitz R, Büssow K, Heinemann U: Structure of the TRAPP subunit TPC6 suggests a model for a TRAPP subcomplex. *EMBO Reports* 2005, in press.
- 60. Werner E, Ziegler M, Lerner F, Schweiger M, Heinemann U: Crystal structure of human nicotinamide mononucleotide adenylyltransferase in complex with NMN. *FEBS Letters* 2002, **516**(1-3):239-244.

Figures and Tables

Figure 1, Vector maps.

Vector maps of pQStrep2, pQTEV and pSE111

Figure 2, SDS-PAGE of purified human proteins.

15% SDS-PAGE (Coomassie-stained) of proteins expressed in small scale in *E. coli* and purified by automated immobilised metal chelate affinity chromatography as described in [43]. The identities of the purified proteins are indicated in Table 2. Protein expression was induced at the temperature that is optimal for the individual clone. These temperatures are listed in the supplementary file psfClones.xml. M: Molecular weight marker.

Figure 3, The supplementary XML file displayed in a web browser.

Supplementary Files

psfClones.xml

XML list of PSF clones available at the RZPD. 1414 Clones for 537 target proteins are described in this file. It lists the gene, cloning details, expected sequence, protein expression results and the degree of sequence verification for each clone. The file can be viewed in a current web browser like Mozilla or Internet Explorer with the supplied style sheet.

psfToHtml.xsl

XSL style sheet for PsfExpressionClones.xml. To display the XML file in a web browser, place it in the same folder with psfToHtml.xsl.

Tables

Table 1, Origin of template cDNA clones

Numbers of targets grouped by type of template cDNA clone							
Target list	Number of targets	Number of successfully cloned cDNA	Number of proteins with soluble expression	Number of structures			
1 – IMAGE clones	490	264	54	3			
2 – cDNA consortium	259	185	34	2			
3 – hEx1 library	141	88	51	3			
all	890	537	139	8			

Table 2, PSF *E. coli* expression clones with soluble expression products.

The table corresponds to the proteins shown in Figure 2. More detailed information is available in the supplementary XML file.

NCBI Entrez gene ID	Gene symbol, name	Protein accessio n	RZPD clone ID	Sequence verified, non- silent mutations	Clone accessio n	Protei n size [Da]	Protei n gel, lane
39	ACAT2, acetyl- Coenzyme A acetyltransferase 2	[GenBan k:AAM00 223]	PSFEp250C0 82	partly, none		44,17 7	D, 24
203	AK1, adenylate kinase 1	[GenBan k:BAA78 534]	PSFEp250B1 12	yes, none	[GenBan k:DQ000 549]	24,55 8	C, 21
689	BTF3, basic transcription factor 3	[GenBan k:CAA37 376]	PSFEp758D0 224	no		20,62 2	A, 27
830	CAPZA2, capping protein (actin filament) muscle Z- line, alpha 2	[GenBan k:AAC60 382]	PSFEp758H1 226	no		59,64 9	A, 4
1036	CDO1, cysteine dioxygenase, type I	[GenBan k:BAA12 872]	PSFEp758D0 124	yes, none	[GenBan k:DQ000 531]	25,89 5	E, 16
1428	CRYM, crystallin, mu	[GenBan k:AAC16 914]	PSFEp758B0 810	yes, none	[GenBan k:DQ000 499]	36,27 5	D, 4
1460	CSNK2B, casein kinase 2, beta polypeptide	[GenBan k:CAA34 379]	PSFEp758H0 422	no		26,20 9	B, 12
1606	DGKA, diacylglycerol kinase, alpha 80kDa	[GenBan k:AAC34 806]	PSFEp758F0 324	yes, none	[GenBan k:DQ000 529]	16,40 8	A, 23
1627	DBN1, drebrin 1	[GenBan k:AAH07 567]	PSFEp250C0 52	partly, none		74,35 4	C, 31
1635	DCTD, dCMP deaminase	[GenBan k:AAC37 579]	PSFEp250B1 21	yes, none	[GenBan k:DQ000 535]	22,93 8	E, 25
1937	EEF1G, eukaryotic translation elongation	[GenBan k:AAH15	PSFEp250H0 61	partly, none		53,04 5	C, 11

NCBI Entrez	Gene symbol, name	Protein accessio	RZPD clone ID	Sequence verified, non-	Clone accessio	Protei n size	Protei n gel,
gene ID		n		silent mutations	n	[Da]	lane
	factor 1 gamma	813]					
1974	EIF4A2, eukaryotic translation initiation factor 4A, isoform 2	[GenBan k:AAH48 105]	PSFEp250H0 52	partly, none		49,30 1	D, 20
2963	GTF2F2, general transcription factor IIF, polypeptide 2, 30kDa	[GenBan k:CAA42 419]	PSFEp250B0 12	yes, none	[GenBan k:DQ000 547]	31,30 4	C, 17
2992	GYG, glycogenin	[GenBan k:AAB00 114]	PSFEp758H1 122	yes, none	[GenBan k:DQ000 517]	40,40 3	B, 4
3151	HMGN2, high-mobility group nucleosomal binding domain 2	[GenBan k:AAA52 678]	PSFEp250E1 02	yes, none	[GenBan k:DQ000 559]	12,31 4	D, 27
3312	HSPA8, heat shock 70kDa protein 8	[GenBan k:BAB18 615]	PSFEp250E0 22	partly, none		56,44 4	D, 31
3735	KARS, lysyl-tRNA synthetase	[GenBan k:AAH04 132]	PSFEp250D0 32	partly, A116G		70,97 6	D, 16
3925	STMN1, stathmin 1/oncoprotein 18	[GenBan k:CAC16 020]	PSFEp250F0 72	yes, none	[GenBan k:DQ000 556]	20,22 5	D, 19
4043	LRPAP1, low density lipoprotein receptor- related protein associated protein 1	[GenBan k:AAC67 373]	PSFEp250G0 31	yes, none	[GenBan k:DQ000 540]	44,39 1	C, 22
4695	NDUFA2, NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2	[GenBan k:AAD27 762]	PSFEp250D0 91	no		13,84 3	C, 13
4698	NDUFA5, NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5	[GenBan k:AAD21 526]	PSFEp250A0 510	no		16,38 1	A, 13
5184	PEPD, peptidase D	[GenBan k:AAH28 295]	PSFEp250H1 22	yes, none	[GenBan k:DQ000 560]		D, 29
5202	PFDN2, prefoldin 2	[GenBan k:AAF172 18]	PSFEp250D1 12	yes, none	[GenBan k:DQ000 555]	19,57 0	D, 17
5412	UBL3, ubiquitin-like 3	[GenBan k:AAD02 323]	PSFEp758A0 510	yes, none	[GenBan k:DQ000 501]	15,65 7	
5502	PPP1R1A, protein phosphatase 1, regulatory (inhibitor) subunit 1A	[GenBan k:AAB02 402]	PSFEp758G0 124	yes, none	[GenBan k:DQ000 526]	21,86 2	A, 15
5716	PSMD10, proteasome (prosome, macropain) 26S subunit, non- ATPase, 10 (gankyrin)	[GenBan k:AAH11 960]	PSFEp250A0 62	yes, none	[GenBan k:DQ000 544]	27,35 1	C, 9
5717	PSMD11, proteasome (prosome, macropain) 26S subunit, non- ATPase, 11	[GenBan k:AAH04 430]	PSFEp250B1 22	yes, none	[GenBan k:DQ000 548]	50,39 0	C, 19

NCBI	Gene symbol, name	Protein	RZPD clone	Sequence	Clone	Protei	Protei
Entrez		accessio	ID	verified, non-	accessio	n size	n gel,
gene ID		n		silent	n	[Da]	lane
5877	RABIF. RAB interacting	[GenBan	PSFEp250C0	no		16.76	E. 23
	factor	k:AAB18 264]	21			1	,
6133	RPL9, ribosomal protein	[GenBan	PSFEp758E0	yes, none	[GenBan	24,78	A, 28
	L9	k:BAA03 401]	124		k:DQ000 524]	6	
6156	RPL30, ribosomal protein	[GenBan	PSFEp758A1	yes, none	[GenBan	15,28	D, 6
	L30	k:CAA55 820]	113		k:DQ000 503]	4	
6191	RPS4X, ribosomal	[GenBan	PSFEp758A0	no		28,67	
	protein S4, X-linked	k:BC0073	923			0	
6342	SCP2, sterol carrier	[GenBan	PSFEp758C0	yes, none	[GenBan	16,66	B, 1
	protein 2	k:AAA03 5591	723	-	k:DQ000 515]	8	
6451	SH3BGRL, SH3 domain	[GenBan	PSFEp758C0	no	.	15,27	D, 2
	binding glutamic acid-rich protein like	k:AAC27 4451	713			4	
6728	SRP19, signal	[GenBan	PSFEp758E0	no		41,15	
	recognition particle	k:CAA31	317			6	
6888	TALDO1. transaldolase 1	[GenBan	PSFEp758B0	partly, none		40.04	D. 1
		k:AAB53 943]	711	pa,		0	_, .
6990	TCTE1L, t-complex-	[GenBan	PSFEp758D0	no		38,06	A, 3
	associated-testis-	k:AAA57	814			2	
6993	TCTFL1 t-complex-	[GenBan	PSEEn758E1	ves none	[GenBan	13 71	A 14
0000	associated-testis-	k:BAA09	123	yes, none	k:DQ000	9	7, 14
	expressed 1-like 1	317]			521]		
7001	PRDX2, peroxiredoxin 2	[GenBan	PSFEp250A0	yes, none	[GenBan	24,81	C, 30
		K:AAH03 0221	42		K:DQ000 5461	5	
7178	TPT1, tumor protein,	[GenBan	PSFEp250G0	yes, none	[GenBan	22,51	C, 14
	translationally-controlled	k:CAA34	11	-	k:DQ000	8	
7047	1 TSN translin	200]	DOEE DOE0 D1		539]	20.10	<u>C 12</u>
1241	i Sin, transim	k CAA55	РЭГЕР250ВТ 11	yes, none	k.DO000	29,10 6	0, 12
		341]			538]	•	
7353	UFD1L, ubiquitin fusion	N[GenBa	PSFEp758G0	yes, none	[GenBan	41,77	D, 9
	degradation 1-like	nk:P_005	123		k:DQ000 5191	7	
7390	UROS, uroporphyrinogen	[GenBan	PSFEp758G0	no	515]	29.89	D. 11
	III synthase	k:AAA60 273]	323			4	_,
7518	XRCC4, X-ray repair	[GenBan	PSFEp250A0	partly, none		41,21	D, 26
	complementing defective	k:AAH16	33			1	
	cells 4	314]					
7531	YWHAE, tyrosine 3-	[GenBan	PSFEp250H0	yes, A146G	[GenBan	32,09	C, 24
	monooxygenase/tryptoph	k:AAH01	41	-	k:DQ000	7	
	an 5-monooxygenase	440]			541]		
8125	ANP32A acidic (leucine-	[GenBan	PSEEp250D0	ves none	[GenRan	31.50	D 22
	rich) nuclear	k:AAB91	92	,,	k:DQ000	9	-,

NCBI Entrez gene ID	Gene symbol, name	Protein accessio n	RZPD clone ID	Sequence verified, non- silent mutations	Clone accessio n	Protei n size [Da]	Protei n gel, lane
	phosphoprotein 32 family, member A	548]			553]		
8214	DGCR6, DiGeorge syndrome critical region gene 6	[GenBan k:CAA65 339]	PSFEp758G0 324	yes, none	[GenBan k:DQ000 533]	12,11 1	E, 19
8407	TAGLN2, transgelin 2	[GenBan k:BAA04 802]	PSFEp250F0 62	yes, none	[GenBan k:DQ000 550]	25,31 4	C, 27
8544	PIR, pirin	[GenBan k:CAA69 195]	PSFEp758A0 213	yes, none	[GenBan k:DQ000 498]	34,61 3	C, 1
8575	PRKRA, protein kinase, interferon-inducible double stranded RNA dependent activator	[GenBan k:CAB66 550]	PSFEp250D0 14	yes, none	[GenBan k:DQ000 578]	37,32 8	E, 9
8677	STX10, syntaxin 10	[GenBan k:AAC05 087]	PSFEp250D1 02	yes, none	[GenBan k:DQ000 552]	25,36 9	D, 18
8724	SNX3, sorting nexin 3	[GenBan k:AAC16 040]	PSFEp758A0 323	yes, none	[GenBan k:DQ000 514]	20,02 9	B, 15
8896	G10, maternal G10 transcript	[GenBan k:AAH22 821]	PSFEp250F0 11	yes, A394G	[GenBan k:DQ000 536]	19,76 6	C, 16
8926	SNURF, SNRPN upstream reading frame	[GenBan k:AAD31 391]	PSFEp250A0 610	no		11,33 4	C, 25
9049	AIP, aryl hydrocarbon receptor interacting protein	[GenBan k:AAB59 004]	PSFEp758F1 024	yes, none	[GenBan k:DQ000 528]	40,58 9	A, 21
9158	FIBP, fibroblast growth factor (acidic) intracellular binding protein	[GenBan k:CAG33 030]	PSFEp250B0 22	partly, T602C		44,80 3	C, 20
9168	TMSB10, thymosin, beta 10	[GenBan k:AAB25 225]	PSFEp758A0 124	yes, none	[GenBan k:DQ000 522]	6,292	A, 18
9337	CNOT8, CCR4-NOT transcription complex, subunit 8	[GenBan k:AAH17 366]	PSFEp758E0 524	yes, none	[GenBan k:DQ000 523]	36,35 4	A, 24
9453	GGPS1, geranylgeranyl diphosphate synthase 1	[GenBan k:AAH05 252]	PSFEp250E0 52	partly, none		37,79 5	D, 23
9465	AKAP7, A kinase (PRKA) anchor protein 7	[GenBan k:AAC39 715]	PSFEp758E0 415	no		34,00 0	A, 1
9796	PHYHIP, phytanoyl-CoA hydroxylase interacting protein	[GenBan k:BAA13 402]	PSFEp758C1 124	yes, T806C	[GenBan k:DQ000 530]	40,49 7	A, 29
10000	AKT3, v-akt murine thymoma viral oncogene homolog 3	[GenBan k:CAB55 977]	PSFEp250B0 63	yes, none		56,51 6	E, 20
10063	COX17, COX17 homolog, cytochrome c oxidase assembly protein (yeast)	[GenBan k:AAA98 114]	PSFEp758D0 723	yes, none	[GenBan k:DQ000 516]	8,182	B, 3

NCBI	Gene symbol, name	Protein	RZPD clone	Sequence	Clone	Protei	Protei
Entrez		accessio	ID	verified, non-	accessio	n size	n gel,
gene ID		n		mutations	n	[Da]	lane
10094	ARPC3, actin related	[GenBan	PSFEp758G0	yes, none	[GenBan	23,04	D, 7
	protein 2/3 complex, subunit 3	k:AAB64 191]	811	•	k:DQ000 507]	7	
10169	SERF2, small EDRK-rich factor 2	[GenBan k:AAC63	PSFEp250A0 57	no		9,821	C, 23
10228	STX6 syntaxin 6	516j [GonBan	PSEEn758G0	ves none	[GonBan	32 10	B 7
10220	STX0, Syntaxin S	k:AAH09 944]	526	yes, none	k:DQ000 509]	0	D, 7
10247	HRSP12, heat- responsive protein 12 (14.5 kDa translational inhibitor protein, p14.5)	[GenBan k:CAA64 670]	PSFEp758H0 822	yes, none	[GenBan k:DQ000 518]	15,76 0	D, 12
10290	APEG1, aortic preferentially expressed protein 1	[GenBan k:AAH06 346]	PSFEp250B0 82	yes, none	[GenBan k:DQ000 543]	15,61 4	E, 18
10539	TXNL2, thioredoxin-like 2	[GenBan k:AAH05 289]	PSFEp250A0 22	partly, none	-	40,35 7	C, 26
10588	MTHFS, 5,10- methenyltetrahydrofolate synthetase	[GenBan k:AAC41 945]	PSFEp758B0 824	no		24,52 2	D, 15
10589	DRAP1, DR1-associated protein 1 (negative cofactor 2 alpha)	[GenBan k:AAH10 025]	PSFEp250C0 42	yes, none	[GenBan k:DQ000 542]	25,27 3	E, 3
10598	AHSA1, AHA1, activator of heat shock 90kDa protein ATPase homolog 1 (yeast)	[GenBan k:AAD09 623]	PSFEp250B0 91	no		41,19 9	C, 15
10606	PAICS, phosphoribosylaminoimid azole carboxylase	[GenBan k:AAH19 255]	PSFEp758G0 226	partly, none		50,00 5	A, 5
10842	C7orf16, chromosome 7 open reading frame 16	[GenBan k:AAF035 37]	PSFEp758F0 923	no		19,13 2	B, 2
10856	RUVBL2, RuvB-like 2 (E. coli)	[GenBan k:AAH04 531]	PSFEp250C0 72	partly, none		54,08 3	D, 25
10912	GADD45G, growth arrest and DNA-damage- inducible, gamma	[GenBan k:AAC83 329]	PSFEp758F0 111	yes, none	[GenBan k:DQ000 504]	19,62 1	C, 4
10933	MORF4L1, mortality factor 4 like 1	[GenBan k:AAH22 845]	PSFEp250G0 51	partly, none		40,15 5	C, 10
10963	STIP1, stress-induced- phosphoprotein 1	[GenBan k:AAA58 682]	PSFEp250A0 12	partly, A86C		65,56 6	C, 28
11140	CDC37, CDC37 cell division cycle 37 homolog (S. cerevisiae)	[GenBan k:AAH08 793]	PSFEp250E0 42	partly, none		47,39 4	D, 28
11316	COPE, coatomer protein complex, subunit epsilon	[GenBan k:AAH07 250]	PSFEp758G1 126	yes, none	[GenBan k:DQ000 510]	37,40 6	B, 9
11333	PDAP1, PDGFA associated protein 1	[GenBan k:AAH07	PSFEp250A0 73	yes, none	[GenBan k:DQ000	23,55 3	D, 30

NCBI	Gene symbol, name	Protein	RZPD clone	Sequence	Clone	Protei	Protei
Entrez		accessio	ID	verified, non-	accessio	n size	n gel,
ID		11		mutations	11	[Da]	lane
		8731		matatione	5541		
11337	GABARAP, GABA(A)	[GenBan	PSFEp758H0	no		15,18	D, 10
	receptor-associated	k:AAD02	922			5	
	protein	337]					
11344	PTK9L, PTK9L protein	N[GenBa	PSFEp758A0	yes, none	[GenBan	42,47	E, 13
	tyrosine kinase 9-like	nk:P_009	127		k:DQ000	3	
	(A6-related protein)	215]			525]		
22818	COPZ1, coatomer protein		PSFEp/58A0	yes, none	[GenBan	22,69	D, 3
	complex, subunit zeta 1	1151 K:AAD34	812		K:DQ000	8	
22010	MARRE1 microtubulo	[ConBan	DSEEn250C1	Voc nono	[GonBan	32.02	D 21
22919	associated protein	k·CAB53	12	yes, none		3	D, 21
	RP/EB family, member 1	0721	12		5571	0	
22931	RAB18, RAB18, member	[GenBan	PSFEp250C1	no	001]	25.90	B. 27
	RAS oncogene family	k:CAB66	18 '			0	,
		668]					
23589	CARHSP1, calcium	[GenBan	PSFEp778D0	no		40,93	
	regulated heat stable	k:AAD25	72			4	
0.50.40	protein 1	021]					
25842	ASF1A, ASF1 anti-	[GenBan	PSFEp758E1	yes, none	[GenBan	25,89	E, 17
	silencing function 1	K:AAD34	224		K:DQ000	1	
25843	PREI2 proimplantation	[ConBan	DSEEn758B0	Voc nono	[GonBan	28 53	<u> </u>
20040	protein 3		812	yes, none		20,00	0, 2
	protein o	0901	012		5001	2	
25996	DKFZP566E144, small	[GenBan	PSFEp758G0	ves, none	[GenBan	25.02	D, 13
	fragment nuclease	k:AAD34	423		k:DQ000	1	
		109]			520]		
26289	AK5, adenylate kinase 5	[GenBan	PSFEp250G0	yes, 3 bp	[GenBan	24,89	E, 14
		k:AAH12	42	insertion at	k:DQ000	7	
00050		467]		3' end	558]	04.50	D 40
26353	HSPB8, neat shock		PSFEp250G1	yes, none		24,52	В, 16
	22kDa protein 8	K.CAD00 8701	20		K.DQ000 5651	/	
27095	TBAPPC3 trafficking	[GenBan	PSEEp758A0	ves none	[GenBan	22 77	C 3
27000	protein particle complex 3	k:AAB96	513	yee, none	k:DQ000	4	0,0
		936]			502]		
27249	C2orf25, chromosome 2	[GenBan	PSFEp758D1	no	-	35,86	A, 22
	open reading frame 25	k:AAD20	124			4	
		048]					
27335	elF3k, eukaryotic	[GenBan	PSFEp758D0	no		26,32	D, 8
	translation initiation factor	k:BAA/6	923			6	
27420	MAT2R mothioning	[ConBan	DSEEp250A1	Voc. popo	[ConBan	40.47	P 01
27430	adenosyltransferase II		1/	yes, none		40,47 6	D, ZI
	beta	5991	14		5751	0	
28970	PTD012, PTD012	[GenBan	PSFEp250B0	ves. none	[GenBan	38.04	E. 24
	- , -	k:CAB66	14	j = = , = = =	k:DQ000	2	,
		540]			586]		
29789	PTD004, GTP-binding	[GenBan	PSFEp250H0	yes, none	[GenBan	47,60	B, 18
	protein PTD004	k:CAB66	73		k:DQ000	9	
00010		481]			564]	00.00	
30819	NUNIP2, KV channel		PSFEp250G0	yes, none		28,96	⊑, 5
	interacting protein 2	R.UAD00 6561	04		к.DQ000 5621	4	
		000]			J02]		

NCBI Gene symbol, name Protein RZPD clone Sequence Clone	Protei	Protei
Entrez accessio ID verified, non- accessio	n size	n gel,
ID mutations	[Da]	lane
51001 CGI-12, CGI-12 [GenBan PSFEp250B0 yes, none [GenBan	40,83	C, 8
k:AAH12 92 k:DQ000	2	,
995] 545]		
51076 CUTC, cutC copper [GenBan PSFEp758E1 yes, none [GenBan	31,81	C, 5
(E coli) CGL32 1051 5051	I	
51078 THAP4, THAP domain [GenBan PSFEp250H1 no	21.55	C. 7
containing 4 k:AAD27 16	0	-)
745]		
51155 HN1, hematological and [GenBan PSFEp758G0 yes, 3 bp [GenBan	18,93	C, 6
neurological expressed 1 k:AAH01 126 deletion at 5' k:DQ000	7	
420] Elia, G457A 508]	26.60	P 1/
sorting 28 (veast) k:AAF004 323 k:DQ000	20,03	D, 14
99] 513]	-	
51335 NEUGRIN, mesenchymal [GenBan PSFEp250B0 yes, none [GenBan	27,34	B, 28
stem cell protein DSC92 k:CAD39 84 k:DQ000	2	
160] 566]	05.40	D 5
51397 COMMD10, COMM [GenBan PSFEp/58H0 yes, none [GenBan domain containing 10 k:AAD44 811	25,46 6	D, 5
4891 K.DQ000	0	
51433 ANAPC5, anaphase [GenBan PSFEp758E0 no	47,17	B, 8
promoting complex k:BAA76 214	4	
subunit 5 629]		
51451 LCMT1, leucine carboxyl [GenBan PSFEp758H0 partly, none	41,30	B, 11
metnyitransferase i K:AAHU i 126 21/1	3	
51534 C6orf55, chromosome 6 [GenBan_PSFEp758H0_partly, none	41.30	B. 13
open reading frame 55 k:AAF762 426	3	_,
10]		
51629 CGI-69, CGI-69 [GenBan PSFEp758D0 no	63,56	B, 6
K:AAD34 316 0641	4	
51678 MPP6 membrane [GenBan_PSEEp250E0_ves_none [GenBan_	64 04	F 27
protein, palmitoylated 6 k:CAB66 23 k:DQ000	4	_, _,
770] 583]		
54816 SUHW4, suppressor of [GenBan PSFEp250G0 yes, none [GenBan	27,03	E, 22
hairy wing homolog 4 k:CAB66 74 k:DQ000	2	
	26.31	
domain 41 k:CAD38 05 k:DQ000	3	
853] 563]	-	
55276 PGM2, [GenBan PSFEp250B1 partly, none	71,23	B, 26
phosphoglucomutase 2 k:CAB66 13	9	
640]	25.20	D 17
bomolog 1 (S cerevisiae) k:CAB66 15	25,29 0	D, 17
658] 570]	0	
56911 C21orf7, chromosome 21 [GenBan PSFEp250B0 yes, none [GenBan	19,03	E, 6
open reading frame 7 k:CAD28 86 k:DQ000	2	
500] 571]	00 50	F 01
induced apoptosis	36,50 6	E, 21
inhibitor 1 3111 5341	0	
		_

NCBI Entrez gene	Gene symbol, name	Protein accessio n	RZPD clone ID	Sequence verified, non- silent mutations	Clone accessio n	Protei n size [Da]	Protei n gel, lane
	protein particle complex 1	k:AAD44 697]	71	mutations	k:DQ000 537]	4	
64284	RAB17, RAB17, member RAS oncogene family	[GenBan k:CAB66 580]	PSFEp250E0 95	yes, none	[GenBan k:DQ000 572]	26,39 8	A, 6
79632	C6orf60, chromosome 6 open reading frame 60	[GenBan k:CAB66 701]	PSFEp250B0 44	yes, none	[GenBan k:DQ000 568]	34,21 7	B, 20
79666	PLEKHF2, pleckstrin homology domain containing, family F member 2	[GenBan k:CAD39 132]	PSFEp250D0 54	yes, A271G	[GenBan k:DQ000 581]	30,72 1	A, 9
79791	FBXO31, F-box protein 31	[GenBan k:CAB66 696]	PSFEp250F0 85	yes, none	[GenBan k:DQ000 585]	18,58 8	E, 12
80347	COASY, Coenzyme A synthase	[GenBan k:AAF879 55]	PSFEp250A0 53	yes, none	[GenBan k:DQ000 551]	33,14 7	C, 29
80895	ILKAP, integrin-linked kinase-associated serine/threonine phosphatase 2C	[GenBan k:CAB66 784]	PSFEp250D0 83	yes, none	[GenBan k:DQ000 569]	45,83 2	B, 19
81876	RAB1B, RAB1B, member RAS oncogene family	[GenBan k:CAB66 570]	PSFEp250C1 28	no		25,09 4	A, 12
81889	DKFZP566J2046, fumarylacetoacetate hydrolase domain containing 1	[GenBan k:CAB66 654]	PSFEp250B0 74	yes, none	[GenBan k:DQ000 567]	27,76 6	B, 24
83538	DKFZP434H0115, hypothetical protein DKFZp434H0115	[GenBan k:CAB66 694]	PSFEp250G0 93	partly, none		79,58 4	E, 11
83543	C9orf58, chromosome 9 open reading frame 58	[GenBan k:CAB66 501]	PSFEp250B0 85	yes, none	[GenBan k:DQ000 573]	19,99 0	B, 25
83667	SESN2, sestrin 2	[GenBan k:CAB66 486]	PSFEp250F0 43	yes, none	[GenBan k:DQ000 576]	57,42 0	E, 7
84072	NOHMA, HORMA domain containing protein	[GenBan k:CAB66 689]	PSFEp250F0 83	yes, none	[GenBan k:DQ000 561]	47,34 3	E, 4
84324	CIP29, cytokine induced protein 29 kDa	[GenBan k:CAC37 950]	PSFEp758H1 026	yes, none	[GenBan k:DQ000 512]	26,59 4	A, 2
84457	PHYHIPL, phytanoyl-CoA hydroxylase interacting protein-like	[GenBan k:CAD39 006]	PSFEp250A0 84	yes, none	[GenBan k:DQ000 579]	45,42 5	E, 10
84557	MAP1LC3A, microtubule- associated protein 1 light chain 3 alpha	[GenBan k:CAD38 714]	PSFEp250E1 06	yes, none	[GenBan k:DQ000 584]	17,19 4	E, 26
91603	MGC20398, hypothetical protein MGC20398	[GenBan k:BAB70 992]	PSFEp758H0 526	yes, none	[GenBan k:DQ000 511]	44,91 5	B, 10
94240	EPSTI1, epithelial stromal interaction 1	[GenBan k:CAD38	PSFEp250C0 15	yes, none	[GenBan k:DQ000	25,52 7	A, 11

NCBI Entrez gene ID	Gene symbol, name	Protein accessio n	RZPD clone ID	Sequence verified, non- silent mutations	Clone accessio n	Protei n size [Da]	Protei n gel, lane
	(breast)	599]			580]		
11261 1	RWDD2, RWD domain containing 2	[GenBan k:CAB52 345]	PSFEp758A1 024	partly, T709C		35,15 9	B, 5
11881 2	C10orf83, chromosome 10 open reading frame 83	[GenBan k:CAD38 849]	PSFEp250H0 85	yes, none	[GenBan k:DQ000 574]	19,15 8	B, 23
12206 0	FLJ30046, hypothetical protein FLJ30046	[GenBan k:CAD38 891]	PSFEp250E0 15	yes, none	[GenBan k:DQ000 577]	23,46 8	E, 8
13631 9	MTPN, myotrophin	[GenBan k:CAD38 909]	PSFEp250D0 16	yes, none	[GenBan k:DQ000 582]	15,81 7	A, 7
14085 6	C20orf79, chromosome 20 open reading frame 79	[GenBan k:CAB56 175]	PSFEp758G0 224	yes, G258T	[GenBan k:DQ000 527]	20,58 5	A, 19

Table 3, Novel human protein structures

NCBI	Name	GenBank	PDB ID	Reference
Entrez		protein		
gene ID		accession		
5716	Gankyrin	[GenBank:AAH1 1960]	[PDB:1QYM]	[55]
10290	APEG1, aortic preferentially expressed protein 1	[GenBank:AAH0 6346]	[PDB:1U2H]	
81889	Fumarylacetoacetate hydrolase family member FLJ36880	[GenBank:CAB6 6654]	[PDB:1SAW]	[56]
28970	PTD012	[GenBank:CAB6 6540]	[PDB:1XCR]	
10247	14.5 kDa translational inhibitor protein, p14.5	[GenBank:CAA6 4670]	[PDB:10NI]	[57]
27095	BET3, trafficking protein particle subunit	[GenBank:AAB9 6936]	[PDB:1SZ7]	[58]
5184	Peptidase D	[GenBank:AAH2 8295]		
51076	CutC copper transporter homolog, CGI-32	[GenBank:AAH2 1105]		
122553	TPC6	[GenBank:CAI4 6185]	[PDB:2BJN]	[59]
6449	Nicotinamide mononucleotide adenylyltransferase	[GenBank:NP_0 03012]	[PDB:1GZU]	[60]

The structures of full length proteins solved by the Protein Structure Factory.

Figure 2

FOOL FOOL FOOD

PTD012

PTD012 protein

<u>NCBI Entrez Gene ID</u>: <u>28970</u>

Expression construct 1 of 1

Construct

- Template: <u>CAB66540</u>, amino acids: 2 315
- Vector: pQTEV. Restriction sites used for cloning: BamHI, NotI
- PCR template clone, RZPD ID: DKFZp564H1122
- Left PCR Primer: Pr1529, BamHI restriction site, 5'-CAGGATCCGCTTGTGCTGAGTTTTCTTTCATG-3'
- Right PCR Primer: Pr1530, NotI restriction site, 5'-GACTGCGGCCGCTCAATCTCGCCCCAATTGAATGCG-3'

-()- °: d'

Predicted sequence

1020 nucleotides

ATGAAACATCACCATCACCATCACCATAGCGATTACGACATCCCCACTACTGAGAATCTTTA

Clone 552.610.2

- PSF clone ID: 110535
- E. coli strain: SCS1 with helper plasmid pRARE
- RZPD clone ID: PSFEp250B014
- cDNA insert control PCR: Contains insert of correct size (1200 bp)
- Protein expression
 - Observed protein size: 38 kDa
 - Soluble protein <u>expression strength</u>: 2
 - Whole protein <u>expression strength</u>: 2
 - Optimal induction temperature:37 °C
- Sequencing
 - Status: Clone was completely sequenced.
 - Result: Clone sequence(s) are as expected.

Experimental clone ORF sequence.

1020 nucleotides.

ATGAAACATCACCATCACCATCACCATAGCGATTACGACATCCCCACTACTGAGAATCTTTA

💥 🛄 🏑 🔝 💼 🛛 Done

Additional files provided with this submission:

Additional file 2 : psfToHtml.xsl : 5Kb http://www.microbialcellfactories.com/imedia/1341799466904486/sup2.XSL Additional file 1 : psfClones.xml : 2237Kb http://www.microbialcellfactories.com/imedia/1400371927737960/sup1.XML