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ABSTRACT
Motivation: We have previously developed a rule based
approach for extracting information on the regulation of gene
expression in yeast. The biomedical literature, however, con-
tains information on several other equally important regulatory
mechanisms, in particular phosphorylation, which we now
expanded our rule based system to also extract.
Results: This paper presents new results for extraction of
relational information from biomedical text. We have improved
our system, STRING-IE, to both capture new types of lingui-
stic constructs as well as new types of biological information
(i.e. (de-)phosphorylation). The precision remains stable with
a slight increase in recall. From almost one million PubMed
abstracts related to four model organisms, we manage to
extract regulatory networks and binary phosphorylations com-
prising 3319 relation chunks. The accuracy is 83–90% and
86–95% for gene expression and (de-)phosphorylation rela-
tions, respectively. To achieve this, we made use of an
organism-specific resource of gene/protein names considera-
bly larger than those used in most other biology related
information extraction approaches. These names were inclu-
ded in the lexicon when retraining the part-of-speech tagger
on the GENIA corpus. For the domain in question an accuracy
of 96.4% was attained on POS-tags. It should be noted that
the rules were developed for yeast and successfully applied to
both abstracts and full-text articles related to other organisms
with comparable accuracy.
Availability: The revised GENIA corpus, the POS-tagger,
the extraction rules, and the full sets of extracted relations
are available from http://www.bork.embl.de/Docu/

STRING-IE.
Contact: saric@eml-r.org

1 INTRODUCTION AND RELATED WORK
More and more scientific discoveries in the life sciences
depend on the ability to identify and extract large amounts
of data in scientific literature. Several groups have shown
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that it is possible to apply the engineering techniques from
natural language processing to the biomedical domain, where
the technical terminology is the major hurdle (Hobbs, 2003).
There are two general approaches for extracting information
from text: statistical and rule-based approaches. The former
have shown good results for the detection of gene names
within the BioCreAtIvE1 or the NLPBA/BioNLP 20042 con-
ferences. However, relation extraction is more problematic
due to the lack of annotated biomedical corpora. While rule-
based approaches usually are considered labour intensive and
difficult to adapt to new domains, they are more transparent
and thus semantic criteria can more easily be enforced.

In a previous study we developed a rule set for extracting a
gene expression network for the yeastSaccharomyces cerevi-
siae(Saricet al., 2004). We here present subsequent changes
made to the system in order to 1) improve the recall by captu-
ring linguistic structures previously missed, 2) extend the rule
set to extract other types of relations than regulation of gene
expression, and 3) allow the system to be applied to other
organisms. All of these improvements are illustrated by the
example “Lyn, but not Jak2, phosphorylated CrkL”. Selec-
tive negation in coordinated structures (“A but not B”) is one
of the new linguistic structures handled by our rule set; we
correctly extract that only Lyn phosphorylates the CrkL pro-
tein. Moreover, the phrase is concerned with phosphorylation
of mouse proteins, meaning that we extract a type relation not
previously detected by STRING-IE for a species the system
was not developed for. Although the rules were originally
developed forS. cervisiae, they should be applicable to other
model organisms as well, since the only organism-specific
part of our system is the list of protein/gene names. Here
we show that our rule based system indeed performs equally

1 Critical Assessment of Information Extraction systems in Biology,http:
//www.mitre.org/public/biocreative/
2 The “Joint Workshop on Natural Language Processing in Biomedicine
and its Applications” was held at the Coling 2004 conferencein Geneva.
The proceedings are available throughhttp://www.genisis.ch/\%
7Enatlang/JNLPBA04/.
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well on Escherichia coli, Bacillus subtilis, andMus muscu-
lus. Furthermore, we present preliminary results for a corpus
of full text articles, namely PubMed Central.

The goal of our work is to extract from biological abstracts
organism specific information on whichproteinsregulate the
expression (i.e. transcription or translation) of whichgenesas
well as whichproteinsmodify whichproteins.

A task closely related to ours, the extraction of protein–
protein interactions from abstracts, has received some atten-
tion over the past five years but, with the notable exception of
(Blaschkeet al., 1999), has been mainly addressed by stati-
stical “bag of words” approaches (Marcotteet al., 2001). Our
work, on the other hand, is focused on extracting a specific
type of relations between biological entities, instead of just
classifying those entities as the BioCreAtIvE Project3 does,
and places emphasis on the semantic role of agent and theme.
This is done with respect to the biological point of view for
two main reasons: 1) the meaning of the extracted event is
strongly dependent on the selectional restrictions of the verb
and 2) the same meaning can be expressed using a number
of different verbs. Unlike some competing approaches that
are focused on extraction of events involving one particular
verb, e.g.bind (Thomaset al., 2000) or inhibit (Pustejov-
sky et al., 2002), and similarly to (Friedmanet al., 2001)4,
we aim at extracting events related to a specific biological
problem only, but considering all its syntactic variations.

The variety in the biological terminology used to describe
the regulation of gene expression presents a major hurdle to
an IE approach; in many cases the information is buried to
such an extent that even a human reader is unable to extract it
unless having a scientific background in biology. In this paper
we will show that by overcoming the terminological barrier,
high precision extraction of entity relations can be achieved
within the field of molecular biology. We furthermore show
that a rule based system developed for dealing with a particu-
lar organism, in our case baker’s yeast, can be easily adapted
to other organisms with no loss of accuracy. Finally, we pre-
sent preliminary results from applying our method to full text
articles.

2 CASTING THE BIOLOGICAL TASK TO AN
NLP PROBLEM

To extract relations, the named entities involved must firstbe
recognized. This is particularly difficult in molecular biology
where many forms of variation occur. Synonymy is very fre-
quent due to lack of standardization of gene names;BYP1,
CIF1, FDP1, GGS1, GLC6, TPS1, TSS1, andYBR126C

3 Critical Assessment of Information Extraction systems in Biology,http:
//www.mitre.org/public/biocreative/
4 Although implementing a full-sentence parser they are successful on
extracting the events that we are interested in, a direct comparison is not pos-
sible since only results on protein-protein interactions have been reported so
far.

are all synonyms for the same gene/protein. Additionally,
these names are subject to orthographic variation originating
from differences in capitalization and hyphenation as wellas
syntactic variation of multiword terms (e.g.riboflavin syn-
thetase beta chain= beta chain of riboflavin synthetase).
Homonymy is frequent too since a gene and its gene product
are usually named identically, causing cross-over of terms
between semantic classes. Finally, paragrammatical varia-
tions are more frequent in life science publications than in
common English due to the large number of publications by
non-native speakers (Netzelet al., 2003).

Extracting the fact that a givenprotein regulates a cer-
tain geneor protein through a particular mechanism is a
challenging problem. First, there is the problem of syntac-
tic variation, meaning that the same fact can be expressed
in a variety of ways, e.g. active vs. passive voice. Second,
the same verb can be used to expressed different types of
relations, which is usually referred to as semantic varia-
tion. As an example the verb “activate” can equally well
refer to regulation of gene expression (e.g. “A activates the
expression ofB) or to regulation of protein activity through
phosphorylation or de-phosphorylation (e.g. “A activatesB
by phosphorylation”).

In order for a relation to be extracted, we thus require that
the type of regulation can be assigned and that the identity of
both the regulatory protein (R) and the regulated target gene
or protein (X) can be determined:

1. It must be ascertained that the sentence mentions either
(de-)phosphorylation or regulation of gene expression.
“The proteinR activatesX” fails this requirement, as
there is no information on howR activatesX. Whether
the event should be extracted or not thus depends on the
semantic types of the agent and theme; without head
nouns specifying their types these remains ambiguous.
It should be noted that two thirds of the gene/protein
names mentioned in our corpus are ambiguous for this
reason.

2. The identity of the regulator (R) must be known. “Phos-
phorylation of theX protein activatesX” fails this
requirement, as it does not give the name of the protein
that causesX to phosphorylated and hence activated..
Linguistically this implies that noun chunks of certain
semantic types should be disallowed as agents.

3. The identity of the target (X) must be known. “The trans-
cription factorR activatesR dependent expression” fails
this requirement, as it is not known which gene’s expres-
sion is dependent onR. The theme should thus also be
restricted with respect to its semantic type.

The two last requirements are important to avoid extraction
from non-informative sentences that—despite them contai-
ning no information—occur quite frequently in abstracts.
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The ability to genetically modify an organism brings with
it an added complication to IE: biological texts often mention
what takes place when an organism is artificially modified in
a particular way. In some cases such modification can reverse
part of the meaning of the verb: from the sentence “Deletion
of R increasedX expression” one can conclude thatR repres-
ses expression ofX. In other cases the verb will lose part of
its meaning: “Mutation ofR increasedX expression” implies
thatR regulates expressionX, but we cannot infer whetherR
is an activator or a repressor. Finally, there are those relations
that should be completely avoided as they exist only because
they have been artificially introduced through genetic engi-
neering, e.g. “transcription of the five mutated promoters”. In
our extraction method we address all three cases.

We have opted for a rule based approach (implemented
as cascaded finite state automata) to extract the relations,
because it allows us and to explicitly incorporate known bio-
logical constraints and to directly ensure that the three seman-
tic requirements stated above are fulfilled for the extracted
relations. Hence we also focus in our evaluation on the
semantic correctness of our method rather than on the gram-
matical correctness. As long as a grammatical error do not
result in semantic error, we do not consider it an error. Con-
versely, even a grammatically correct extraction is considered
an error if it is semantically incorrect.

Compared to statistical methods, the rule based approach
has the advantage of being able to generalize well to other
corpora, as here shown by applying the same rule based
extraction system to different organisms and to both abstracts
and full text papers. Moreover, we show that by using
a modular architecture where several independent relation
extraction modules build on top of a common named entity
recognition module, the rule based approach can be made
highly scalable. New relation types can be added as separate
modules, typically requiring only few changes to be made
to the named entity recognition module. A modular architec-
ture makes the system much easier to maintain as the system
can be expanded without the risk of interference between
complex rule sets.

3 METHODS
Our IE system is organized in cascaded modules such that
the output of one module is the input of the next module.
The following sections describe each module in detail. With
the notable exception of identification of gene/protein names,
none of the modules required changes in order to be applied
to other organisms.

3.1 The corpora
The PubMed resource was downloaded on January 19,
2004. 58,664 abstracts related to the yeastSaccharomy-
ces cerevisiaewere extracted by looking for occurrences
of the terms “Saccharomyces cerevisiae”, “S. cerevisiae”,
“Baker’s yeast”, “Brewer’s yeast”, and “Budding yeast”

in the title/abstract or as head of a MeSH term5. These
abstracts were filtered to obtain the 15,777 that mention at
least two names and subsequently divided into a training and
an evaluation set of 9137 and 6640 abstracts respectively.

Analogously, corpora were created forEscherichia coli,
Bacillus subtilis, andMus musculus. These were extracted
by looking for both the full and abbreviated genus name (e.g.
E. coli). In the case ofM. musculuswe further checked for
occurrences of the words “mouse” and “mice”. The size of
each corpus can be found in Table 1.

In order to test our extraction rules on full-text articles
as well, we downloaded (March 16, 2004) the open-access
part of PubMed Central (see Table 1). For the preliminary
tests presented here, we did not separate between different
parts of a paper although the introduction of a paper tends to
list many established facts (in contrast to the results section)
(Shahet al., 2003).

3.2 Tokenization and tagging
We extracted abstracts for each of the species listed in Table 1
from PubMed, which we supplemented with the open-access
part of PubMed Central to also test our extraction rules on
full-text articles.

For segmentation of the input text into a sequence of tokens
and detection of sentential boundaries, we use the tokenizer
developed by Helmut Schmid, which after training on about
106 abstracts attained an overall precision of 99.5% (Saric
et al., 2004). Multiwords were acquired semi-automatically
to ensure that terms of interest are captured with high accu-
racy. Three parameter files were tested on 24,798 held-out
tokens from the GENIA corpus to optimize the POS-tagging
accuracy on PubMed abstracts. The best result was achieved
using the parameters trained on a corrected/revised GENIA
corpus, which correctly tagged 96.4% of tokens (Saricet al.,
2004). This result is comparable to the current state of art
(Hahn & Wermter, 2004).

After POS-tagging, we recognize terms of particular inte-
rest and re-annotate them with semantic tags. This set of
semantically relevant terms mainly consists of nouns (e.g.
geneor protein), verbs (e.g.activatesor phosphorylates),
prepositions (e.g.from), and adjectives (e.g.dependent).

3.3 Recognizing gene/protein names
To be able to recognize gene/protein names as such, and to
associate them with the appropriate database identifiers, a
list of synonymous names and identifiers in selected model
organisms was compiled from several sources (http://
www.bork.embl.de/synonyms/). For each organism,
names and identifiers were obtained from SWISS-PROT
(Boeckmannet al., 2003), supplemented by names from Sac-
charomyces Genome Database (SGD) (Dwightet al., 2002)

5 Medical Subject Headings (MeSH) is a controlled vocabularyfor manu-
ally annotating PubMed articles.
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in the case ofS. cerevisiae. The name lists were expanded to
include orthographic variants of each name before matching
them against the POS-tagged corpora (Saricet al., 2004).

The orthographically expanded name lists were included
in the lexica used for multiword detection and POS-tagging.
Subsequently it was matched against the POS-tagged corpus
to retag gene/protein names as such (nnpg).

3.4 Extraction of named entities
In the preceding step we described the recognition of
gene/protein names. Although some homonyms can be
disambiguated through the POS-tags as previously described
(Saricet al., 2004), we still meet two challenges: (i) to disam-
biguate the gene/protein name when occurring as proper part
of a noun phrase, and (ii) the gene/protein names constituting
the whole noun phrase.

The first case (i) comprises roughly 50% of the occurrences
of gene/protein names in the corpus where they do not occur
solely but are modified through adjectives, other nouns or
attached prepositional phrases within the same noun phrase,
like in “the ArcB sensory kinase in Escherichia coli”. To
get hold of this problem we built a named entity recognition
system to recognize and categorize noun phrases containing
gene/protein names on the basis of syntactic information
(i.e. generalizing over POS-tag information) augmented with
semantic information stemming from a manually curated
lexicon.

This approach, which we call syntacto-semantic chunking,
recognizes named entities through the use of cascaded finite
state automata, which we implemented as a CASS gram-
mar (Abney, 1996). The following simplified example shows
how we recognize and semantically categorize the gene noun
phrase from the above mentioned example:

[nx kinase

[dt the] [nnpg ArcB] [jj sensory] [kinase kinase] [in in]
[org Escherichia coli]]

The labelnx kinaseindicates that this is a noun chunk (nx)
semantically denoting akinase. Analogously, we detect at
this early level noun chunks denoting other biological enti-
ties like phosphatases, transcription factors, other proteins,
and genes. In subsequent cascades, we recognize more com-
plex (i.e. nested) noun chunks on the basis of the simpler
ones, such as gene products, promoters, upstream acti-
vating/repressing sequences (UAS/URS), binding sites, etc.:

[nx expr

[expr expression] [of of]
[nx geneprod

[nx gene

[dt the] [nnpg argF] [gene gene]]
[prod product]]]

We have implemented rules to distinguish between agent
and theme forms of noun chunks as well as a schemes for
detecting artificial experimental contexts (Saricet al., 2004)
such as gene deletion:

[nx del

[vvn targeted] [disr disruption] [of of]
[nx gene

[dt the] [nnpg IFN-gamma] [gene gene]]]

The second challenge (ii) where gene/protein names consti-
tute the whole noun phrase the disambiguation between these
two categories is less straightforward. Generally there exists
the possibility, which depends on contextual information (e.g.
selectional restrictions imposed by the verb). This is imple-
mented within the following step,the extraction of relations
between entities, explained in section 3.5. In case there’s
no rule applicable to disambiguate this gene/protein name
it has to be left ambiguous and thus the sentence remains
unanalyzed.

3.5 Extraction of relations between entities
This step of processing concerns the recognition of relati-
ons between genes and proteins, namely regulation of gene
expression and (de-)phosphorylation. To extract these two
types of relations we use separate grammar modules, which
work on top of the same already introduced named entity
recognition module. The gene expression module was based
on our original system and extended with additional lingui-
stic structures, whereas the (de-)phosphorylation modulewas
developed from scratch.

To extract both (de-)phosphorylation and gene expression
relations we combine syntactic properties (subcategorization
restrictions) and semantic properties (selectional restrictions)
of the relevant verbs. In order to not write a separate set of
rules for each verb we generalize over classes of verbs and
relational nouns.

Here we present a series of examples to illustrate how
the rules operate and identify the desired information. The
combined set of relations extracted from these examples are
shown in Figure 1. All examples show a simplified bracke-
ted structure illustrating the major principles of our rules; the
internal structure is highly complex and derives from a pass
through a number of cascading finite state transducers.

Within the following examples the first line always indi-
cates the type of relation that we extract, which is either
phosphorylation, dephosphorylation, or expression regula-
tion. In the latter case, the subtype of expression regulation
is detected, i.e. activation, repression, orfc (underspecified)
regulation and specified, too. Finally we show whether the
relation is verbal—and thus phrased in active or passive
voice—or as a nominal relational construct.
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rylates

Fig. 1. An example network extracted from the mouse corpus.
The network exemplifies the multiple types of relations extracted by
our rule based approach; the text from which these relationswere
extracted are shown in section 3.5.

The first example shows a phosphorylation relation in
active voice. The participating proteins are shown in bold-
faced letters. The relational word is underlined. The selective
negation is also marked by thenegation-bracket. We extract
thatLyn phosphorylatesCrkL from the following example:

[phosphorylation active

Lyn, [negation but notJak2 ]
phosphorylated
CrkL ]

This active voice phosphorylation construct is detected
through the relational nounphosphorylationas argument of
participates. It should be noted that thephosphorylation
bracket is triggered through the key wordphosphorylation.
We extract thatLyn phosphorylatessyk from:

[phosphorylation active

Lyn
also participatesin
[phosphorylation the tyrosinephosphorylation

andactivationof syk ]]

The following two examples illustrate nominalisation for
phosphorylation. The arguments are attached through theof
andby prepositional phrases, where the latter identifies the
agent role:

[phosphorylation nominal

the phosphorylationof
the adapterproteinSHC
by the Src-relatedkinaseLyn ]

[phosphorylation nominal

phosphorylationof Shc by
the hematopoietic cell-specific
tyrosinekinaseSyk ]

The system is also able to identify dephosphorylation
relations, as exemplified by the following nominalisation
example, from which we extract that bothSyk andBtk are
dephosphorylated bySHP-1:

[dephosphorylation nominal

Dephosphorylationof
Syk andBtk
mediatedby
SHP-1 ]

The following examples shows gene expression relations.
The first of these illustrates the ability of our system to deal
with passive voice. Based on the verb (“induce”) and the rela-
tional noun (“expression”) we conclude thatIL-2 andIL-18
activate expression ofIL-13:

[expression activation passive

[expression IL-13 expression]
inducedby
IL-2 + IL-18 ]

Repression of gene expression relation be the next exam-
ple, where one protein (IL-10) represses the expression of
two other genes (IL-2 andIL-6):

[expression repression active

IL-10
also decreased
[expression mRNA expressionof

IL-2 andIL-6 cytokinereceptors]]
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Table 1. Corpus statistics and evaluation of extraction results.

Corpus Papers Tokens Gene/protein Expression Phosphorylation
matches Relations Accuracy Relations Accuracy

E. coli 195,492 28,568,983 380,362 395 85% 19 89%
B. subtilis 16,270 2,022,852 67,758 118 90% 22 91%
S. cerevisiae 58,664 9,447,237 580,654 475 83% 106 95%
M. musculus 688,937 106,027,447 3,599,912 1862 84% 322 86%

PubMed Central 5,075 19,199,318 558,941 158 84%

In the final example, the expression regulation is under-
specified, that is we can only extract thatBtk regulates the
expression of theIL-2 gene, not whether it activates or
represses it:

[expression regulation active

Btk
regulates
[expression thetranscriptionof

theIL-2 gene]]

4 RESULTS
Using our relation extraction rules, we were able to extract
3319 relation chunks for four organisms from PubMed
abstracts (Table 1). A network of relations extracted from a
small subset of the the mouse corpus, namely the examples
shown in section 3.5, is shown in Figure 1.

4.1 Evaluation of relation extraction
To evaluate the accuracy of the extracted relations for yeast,
we manually inspected all relations extracted from the eva-
luation corpus using the TIGERSearch visualization tool
(Lezius, 2002). Since the rules written for the yeast training
corpus were applied unchanged to other corpora, these were
entirely used for evaluation.

The accuracy of the relations was evaluated at the semantic
level rather than at the grammatical level. We thus carried
out the evaluation in such a way that relations were counted
as correct if they extracted the correct biological conclusion,
even if the analysis of the sentence was not as to be desired
from a linguistic point of view. Conversely, a relation was
counted as an error if the biological conclusion was wrong. In
contrast to what is normally done in IE, this type of evaluation
can only be carried out by a biologist.

For yeast, 83% extracted from the evaluation corpus were
entirely correct, meaning that the relation corresponded to
expression regulation, the regulator (R) and the regulatee
(X) were correctly identified, and the direction of regulation
(up or down) was correct if extracted. A further 6 relation
chunks extracted the wrong direction of regulation but were
otherwise correct; our accuracy increases to 90% if allo-
wing for this minor type of error. The accuracies obtained

for other organisms/corpora are comparable, see Table 1.
For (de-)phosphorylation relations, the accuracy appearsto
be marginally better although this is difficult to say for sure
given the smaller number of extracted relations.

To estimate the coverage of our method, we looked
through 250 of the 44,354 sentences that contain at least two
gene/protein names. These contained only 8 relation chunks
of the desired type, corresponding to an estimate of 1419 in
total. Since 422 of these were successfully extracted by our
method, we estimate the coverage of our method to be around
30%. This corresponds to an F-score in the order of 44%,
which is respectable by IE standards.

Approximately half of the errors made by our method stem
from genetic modifications that are overlooked due to long
distance (anaphoric) relationships for example. This pro-
blem is particularly frequent forE. coli, the favored bacterial
species for experiments, because the most commonly used
reporter gene,lacZ, is itself anE. coli gene. BecauseE. coli
is often used as an expression system (host) for foreign genes,
E. coli is often mentioned in abstracts concerned with the
expression of genes from other organisms. Our method thus
in some cases correctly extracts a relation between two gene
names, but erroneously attributes this relation to theE. coli
genes with the same names.

4.2 Entity recognition
For consistency, we have also evaluated our ability to cor-
rectly identify named entities at the level of semantic rather
than grammatical correctness. Manual inspection of 500
named entities from the yeast evaluation corpus revealed 14
errors, which corresponds to an estimated accuracy of just
over 97%. Surprisingly, many of these errors were commit-
ted when recognizingproteins, for which our accuracy was
only 95%. Phrases such as “telomerase associated protein”
(which got confused with “telomerase protein” itself) were
responsible for about half of these errors.

Among the 153 entities involved in relations no errors were
detected, which is fewer than should be expected from our
estimated accuracy on entity recognition (99% confidence
according to hypergeometric test). This suggests that the tem-
plates used for relation extraction are unlikely to match those
sentence constructs on which the entity recognition goes
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wrong. False identification of named entities is thus unlikely
to have an impact on the accuracy of relation extraction.

5 CONCLUSIONS
We have developed a method that allows us to extract infor-
mation on gene regulation as well as (de-)phosphorylation
from biomedical text. This is a highly relevant problem, since
much is known about it although this knowledge has yet to be
systematically collected in a database. Also, knowledge on
gene expression and phosphorylation is crucial for understan-
ding many important biological processes, e.g. the mitotic
cell cycle and signaling cascades.

Although we developed our method on abstracts related to
baker’s yeast only, we have applied our method to several
other model organisms with equal accuracy. The main adap-
tation required for this was to replace the list of synonymous
gene/protein names to reflect the change of organism. Fur-
thermore, application of the method to full text journals gave
promising preliminary results. Additionally, we expandedthe
rules to also extract (de-)phosphorylation relations, reusing
the many rules responsible for the recognition of named enti-
ties. The relations extracted for 180 organisms will soon be
available through the STRING database (von Meringet al.,
2005,http://string.embl.de).
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