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Transcript diversity generated by alternative splicing and associated mechanisms contributes heavily to the functional
complexity of biological systems. The numerous examples of the mechanisms and functional implications of these
events are scattered throughout the scientific literature. Thus, it is crucial to have a tool that can automatically extract
the relevant facts and collect them in a knowledge base that can aid the interpretation of data from high-throughput
methods. We have developed and applied a composite text-mining method for extracting information on transcript
diversity from the entire MEDLINE database in order to create a database of genes with alternative transcripts. It
contains information on tissue specificity, number of isoforms, causative mechanisms, functional implications, and
experimental methods used for detection. We have mined this resource to identify 959 instances of tissue-specific
splicing. Our results in combination with those from EST-based methods suggest that alternative splicing is the
preferred mechanism for generating transcript diversity in the nervous system. We provide new annotations for 1,860
genes with the potential for generating transcript diversity. We assign the MeSH term ‘‘alternative splicing’’ to 1,536
additional abstracts in the MEDLINE database and suggest new MeSH terms for other events. We have successfully
extracted information about transcript diversity and semiautomatically generated a database, LSAT, that can provide a
quantitative understanding of the mechanisms behind tissue-specific gene expression. LSAT (Literature Support for
Alternative Transcripts) is publicly available at http://www.bork.embl.de/LSAT/.
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Introduction

Although many model organisms have now been com-
pletely sequenced, we are still very far from understanding
cellular function from genome sequence. One complicating
factor is the expression of multiple alternative mRNA
transcripts from a single gene using different mechanisms.
Alternative promoters that are active in different tissues or at
different developmental stages often regulate the expression
of different mRNA isoforms, either directly through different
transcription start sites or indirectly by promoter-directed
exon inclusion in concert with alternative splicing (AS) [1].
Various AS mechanisms are known: alternative 59 or 39 sites
can result in exons of different size, exons can be included or
skipped, or an entire intron may be retained [2–5].
Alternative polyadenylation (AP), either alone or coupled
with AS of 39 terminal exons, may also generate transcript
isoforms that are tissue- or developmental-stage-specific [6].

Generation of multiple alternative transcripts is important
for the complexity and evolution of eukaryotic organisms
[5,7–9]. In addition, their spatial and temporal expression
patterns are believed to be one of the important factors
behind the functional specificity of different tissues and
organs. Moreover, defects in these processes are associated
with various diseases [2]. Thus, developing an exhaustive
catalog of alternative transcripts is a crucial task in order to
fully understand the complexity of eukaryotes [7].

At present, high-throughput experiments and computa-
tional analyses dominate the mapping of the alternative
transcript universe [10,11]. However, the quality and the
biological meaning of these assignments should be assessed
against a highly reliable benchmark set, which can be
extracted from single-gene studies published in the scientific

literature [3,12,13]. In addition, computational tools to
explore the evolutionary conservation of mechanisms that
generate transcript diversity (TD) are under development
[14], which will also require a trustworthy set for rule
learning.
Manual curation of experimentally determined biological

events (physical interactions, AS, disease phenotypes, etc.) to
generate trustworthy knowledge bases is slow compared to
the rapid increase in the body of knowledge represented in
the literature. Natural language processing tools thus play an
increasingly important role in transferring information from
free-form biomedical text to structured databases (see
reviews [15–18]). This task can be split in to two steps: (1) a
subset of documents describing events or scenarios of interest
is identified (information retrieval [IR]), and (2) facts are
extracted from these documents and deposited into struc-
tured fields (information extraction [IE]).
IR can be performed at the level of full articles, pertinent

paragraphs, or sentences. As current IE methods operate at
the sentence level, it may be appropriate to perform IR at the
same level. Support vector machines have become the
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method of choice for IR tasks because of their ability to learn
patterns and generalize well while handling large sets of input
features, a common attribute of the text data [19–21]. Most IE
systems use rules written by the domain experts to extract
facts about events or scenarios of interest. The performance
of most rule-based systems suffers because of the fact that any
event or scenario can be written in one of many syntactically
correct ways. Thus, an extraction system based only on
syntactic patterns would require an exhaustive collection of
rules in order to cover all possible patterns. The problem
posed by multiple syntactic patterns can be solved by merging
multiple syntactic patterns to a single semantic pattern by
predicate–argument structures [22–24]. Predicate–argument
structures and support vector machines (SVMs) are becoming
prevalent in natural language processing and are widely
believed to achieve good recall and precision; they were
tested here for their applicability to the biomedical literature.

Here we present the benchmark and the results of a new
extraction procedure that combines an SVM classifier with
rule-based extraction of semantic patterns. The extracted
knowledge about TD was stored in a database and sub-
sequently used to quantify the amount of TD in different
tissues. We discuss applications of our work for the assign-
ment of MeSH terms (from the National Library of
Medicine’s Medical Subject Headings thesaurus), providing
functional annotations to genes and to the transcript variants
generated by computational methods.

Results/Discussion

Overall Strategy and Generation of the Database
To extract information about TD and associated spatio-

temporal information scattered throughout MEDLINE, we
devised a two-step procedure (Figure 1). In the first step,

sentences containing TD information were identified within
the papers’ abstracts. To do so, and in order to overcome the
problem of syntactic patterns, we tan SVM classifier for the
sentence classification task by inductive machine learning
[25] on an annotated corpus [19–21]. We then processed the
entire MEDLINE database and identified sentences describ-
ing TD within those abstracts. In the second step, sentences
were parsed and the word phrases were assigned different
meaningful (semantic) categories (see Materials and Meth-
ods).
Finally, we mapped each abstract with information about

alternative transcripts (retrieved by the SVM classifier) to
entries in Swiss-Prot [26], RefSeq [27], GenBank [28], and
Ensembl [29] databases, when possible. This not only
provided the sequence information at genome, transcript,
and protein level for the genes described in abstracts but also
allowed us to access structural and functional information
about these genes stored in various sequence databases. All
this information obtained for each MEDLINE entry con-
stitutes an entry in LSAT (Figure S1).
We identified eight different semantic categories describing

biologically relevant data in the sentences describing TD,
among which are event mechanism, species, tissue specificity,
and experimental methods (Table 1; see Materials and Meth-
ods). In total we extracted 9,503 instances of event mecha-
nisms from as many abstracts (Table S1) and 5,028 instances of
tissues (Table S2) with associated gene names. Overall, the
database contains 3,063, 874, and 207 nonredundant instances
of AS, differential promoter usage (DP), and AP associated
with genes and tissues extracted by entity taggers.

Performance of the SVM Classifier for Sentence Retrieval
Our SVM classifier retrieved 31,123 putative TD-contain-

ing sentences from the MEDLINE database (12,948,515

Figure 1. Creating Specialized Databases for Events of Interest

A database of physiologically occurring AS events can be generated in
two steps. Each step may involve machine learning or rule-based
methods. The first step involves the identification of sentences from
scientific text. These sentences can be parsed in a second step to extract
frequently occurring semantic patterns.
DOI: 10.1371/journal.pcbi.0010010.g001
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Text Mining for Alternative Transcripts

Synopsis

Given the functional complexity of higher eukaryotes, the relatively
small number of genes in the human and other mammalian
genomes came as a surprise to the scientific community. Later it was
discovered that the majority of genes are subject to alternative
splicing (‘‘cutting and pasting’’) or associated mechanisms that
ultimately increase the diversity of transcripts that code for proteins.
Studies exploring transcript diversity are currently dominated by
high-throughput experiments and computational methods; how-
ever, the quality of such data should be assessed against a reliable
reference set based on single-gene studies. Unfortunately, the latter
type of information is scattered throughout the scientific literature.
The authors have thus developed a computational approach for
extracting information on alternative transcripts from MEDLINE
abstracts and used it to create a database, LSAT. LSAT (Literature
Support for Alternative Transcripts) provides information for more
than 4,000 genes from about 14,000 abstracts. This database can
provide a quantitative understanding of the mechanisms behind
tissue-specific gene expression based on single-gene studies, which
we show agrees well with EST-based studies (these studies involve
tissue-specific splicing detected by the analysis of libraries of
expressed sequence tags [ESTs]). These results indicate that
mechanisms like alternative splicing, alternative promoters, and
alternative polyadenylation work in concert to generate and
regulate transcript diversity. More generally, information extraction
of complex biological process seems feasible and can also comple-
ment large-scale data generation in other areas to assign functions
to genes.



abstracts). After false positives were removed by manual
curation, 20,549 TD-containing sentences in 13,892 abstracts
were left, corresponding to a precision of 66%. Details on the
training set and SVM training procedure are described in
Materials and Methods and Protocol S1.

We determined the recall of the classifier using manually
curated AS annotations from MEDLINE and Swiss-Prot for
annotations on human, mouse, rat, and Drosophila. All entries
from MEDLINE 2004 annotated with the MeSH term ‘‘alter-
native splicing’’ and describing natural transcript generation
(see Materials and Methods) were compared with our results.
For each of these four species, we also analyzed our results on
MEDLINE entries referred to in Swiss-Prot entries annotated
with the keyword ‘‘alternative splicing’’ [26]. The average
sensitivity of the classifier was 61% (Table 2; see Materials and
Methods). The SVM classifiers thus achieve good recall and
precision and can be used for extracting biological events.

Performance of the IE Step
From the sentences retrieved by the SVM classifier, we

extracted instances of eight semantic categories (see Materials
and Methods) and evaluated the precision and recall by
manually inspecting 300 randomly selected sentences for
each category (see Table 1). Both precision and recall are
highly satisfactory; however, it should be noted that accuracy
in finding tag boundaries was not considered. Also, the recall
is good for all categories, but not all eight categories are
equally represented in the sentences (see Table 1).

Proposing New Annotations in Curated Databases
Annotators at the National Library of Medicine have

manually assigned the MeSH term ‘‘alternative splicing’’ to
8,133 abstracts. During the IE step, we identified 1,536

additional abstracts that mention AS but lack the MeSH
term ‘‘alternative splicing,’’ corresponding to a 19% increase
in annotation. We also identified DP and AP in 874 and 219
abstracts, respectively, for which we propose the new MeSH
terms ‘‘alternative promoters’’ and ‘‘alternative polyadenyla-
tion’’ (Tables S3–S6).
We also quantified the number of Ensembl genes for which

we can propose new annotations for AS (see Materials and
Methods). The annotation increase observed was 20%, 52%,
and 105% for human, mouse, and rat genomes, respectively
(Figure S2). These tentative assignments can supplement the
work of curators, and the numbers are likely to reflect the cur-
rent extent of manual curation for these different genomes.
The annotation increase for the human genes was relatively
little compared to that for the rat genes because a total of 3,438
genes are already annotated in Swiss-Prot and RefSeq for AS in
human, whereas only 342 genes are annotated for AS in rat.
Even more annotations could be obtained by manually
curating extracted events that could not be automatically
mapped to a sequence database entry; we have manually
mapped 190 genes exhibiting tissue-specific splicing. The
observed increase in the annotation emphasizes the need for
automated methods to speed up the process of database
curation.

Quantification of the Different Mechanisms That Lead to TD
The majority of vertebrate multi-exon genes undergo AS

[10]. Moreover, different promoters may control the tran-
scription of different mRNA isoforms, which may result in
directed 59 exon inclusion/exclusion, and AP signals can
control the tissue specificity of alternative 39 exons. While
examples of synergy between these mechanisms are known,
the extent of it is currently being explored. We found DP co-
mentioned with AS in 14% of abstracts describing genes with
differential promoters. A total of 19% of the abstracts
providing information about alternative first exon usage also
mentioned usage of different promoters. A total of 17%
abstracts describing AP also mentioned AS.
The extent to which various mechanisms are utilized for

increasing TD may vary across different anatomical systems.
To study this, we mapped all vertebrate tissue information to
anatomical systems using the MeSH anatomy terms and
counted the number of nonredundant events extracted for
each mechanism in each system (Figure 2, top panel). AS is
utilized equally in most organs except in the nervous system,
where AS is significantly overrepresented (Figure 2, bottom
panel). Similarly, there is significant overrepresentation of DP
in the connective tissues and to a lesser extent in the digestive
system and in the genitalia.
The information about alternative promoter usage linked

Table 1. Extraction of Semantic Patterns

Semantic Pattern Presence (%) Recall (%) Precision (%) Total

Instances

Event mechanism 79 92 96 13,103

Gene names 71 82 88 15,905

Tissues 22 87 96 5,028

Species 21 97 99 4,093

Number of isoforms 20 77 100 2,965

Difference in structure/

function 12 63 86 1,620

Experimental methods 11 57 82 1,071

Specificity 5 100 85 1,589

DOI: 10.1371/journal.pcbi.0010010.t001

Table 2. Recall of the SVM Classifier

Species MEDLINE Entries Swiss-Prot Entries

Total Detected Percentage Total Detected Percentage

Human 4,378 2,841 64.89 2,020 1,364 67.52

Mouse 1,537 779 50.68 1,236 542 43.85

Rat 1,043 600 57.52 431 305 70.76

Drosophila 277 149 53.79 331 273 82.47

DOI: 10.1371/journal.pcbi.0010010.t002
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with specific gene names and tissues extracted in this study is
the largest such collection available, to our knowledge. We
expect that it would provide a reliable dataset for develop-
ment of computational methods for predicting tissue-specific
promoter usage.

Tissue-Specific Differences in the Extent of AS
AS has been shown to play an important role in creating

functional specialization of tissues and development stages
[30,31], but only a small number of instances of tissue-specific
splicing are listed in the current AS databases [32,33]. With a
large collection of high-quality AS events in hand, tissue-
specific differences in AS should become visible. We checked
entries in our database containing the field ‘‘specificity.’’ We
identified 959 events describing tissue specificity in AS. These
represented 675 AS events for pairs of tissues and 284 events
where only one tissue was reported. The results contained 400
nonredundant events for 183 human genes. We also mapped
a further 190 genes (not included above) from various species
to Swiss-Prot identifiers during the manual curation.

To study the extent of tissue-specific AS, we mapped tissues
and organs to respective systems as described in the previous
section and plotted the results (Figure 3, left panel). The
nervous system, genitalia, and immune, digestive, and
musculoskeletal systems showed extensive tissue specificity
in inter- and intra-systemic AS. These systems also showed
expression of unique AS transcripts, with the nervous system
showing the highest number of unique transcripts. These
tissue-specific patterns of expression extracted from the
literature strongly overlap with the 667 tissue-specific AS
events derived from analysis of the EST data [33] for 454
human genes across 46 tissues (Figure 3, right panel).

The knowledge extracted from the literature confirms EST-
based studies [31,33] and earlier experimental studies [34]
that showed AS as the preferred mechanism for generating
TD across the nervous system. EST-based studies [31] have

also suggested that genes in liver (digestive system) and testis
(genitalia) show distinct patterns of splicing with alternative
exons. Our results indicate that these transcripts may show
these different patterns of splicing in combination with
different promoter regions. This conclusion seems plausible
since AS of first exons is influenced by alternative promoter
regions in at least 19% of cases (see above; [35]), and it should
be explored further.

Assigning Function to the Transcripts Generated by
Computational Analysis
Sometimes experimental biologists speculate about the

mechanism responsible for the multiple transcripts observed
with a limited number of experiments but the corresponding
transcripts are not deposited in GenBank. For example, work
by Pisarra et al. [36] on human Dopachrome tautomerase

Figure 2. Preference for the Utilization of TD-Generating Mechanisms across Anatomical Systems

Nonredundant instances of AS, DP, and AP are plotted against anatomical systems in which expression was found. The color of each square in the top
panel signifies the ratio of the number of events detected for the system to the highest number of events within the row. Total number of
nonredundant instances for each mechanism is on the left. The bottom panel shows the negative logarithm of p-values (see Materials and Methods for
details). The anatomical systems are as follows: A, cardio vascular system; B, cells; C, connective tissues; D, digestive system; E, fetal/embryonic
structures; F, endocrine system; G, exocrine glands; H, genitalia; I, immune system; J, integumentary system; K, musculoskeletal system; L, nervous
system; M, respiratory system; N, sense regions; O, urinal system.
DOI: 10.1371/journal.pcbi.0010010.g002

Figure 3. Tissue Specificity in AS

The figure shows the body system distribution of differential/specific
splicing. The instances were obtained from literature mining (left panel)
and analysis of EST data ([33]; right panel). Each square is colored
according to the ratio between the corresponding count and the highest
count within the panel. Letter codes for anatomical systems are as in
Figure 2. P represents a unique transcript.
DOI: 10.1371/journal.pcbi.0010010.g003
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describes two transcripts in melanocytes and melanomas with
a ‘‘different carboxyl-terminus’’ generated, concluding that
‘‘dopachrome tautomerase can yield different isoforms by
alternative poly(A) site usage or by alternative splicing’’
(Figure 4).

On the other hand, various methods, including those based
on aligning EST and other sequence data to genomic regions,
are currently in use for detecting AS on a large scale. The
function of the isoforms thus generated is largely unknown
[37], and these transcripts are poorly annotated in sequence
databases.

Using the heaviest bundling algorithm [37] with genomic
sequence data from Ensembl [38], and transcript data from
UniGene [39] clusters for the gene, we were able to generate
two transcript isoforms for Dopachrome tautomerase (Figure 4,
bottom) resembling those described by Pisarra et al. [36] and
were able to detect an AS event in the 39 region. Hence, the
use of large-scale methods may provide detailed information
about underlying events, and text mining would provide
functional annotations to the transcript isoforms observed.

Conclusions
We successfully extracted information about the genes that

express multiple transcripts and associated spatiotemporal
information using state-of-the-art methods in natural lan-
guage processing and utilized it for function annotations. The
information extracted by far exceeds current manual
curation efforts and generates reliable results. Our results
indicate that mechanisms like AS, DP, and AP work in concert
for the generation and regulation of TD. They also suggest
that the nervous system preferentially relies on AS over other
mechanisms to express the largest set of tissue-specific
transcripts. In contrast, genitalia and the digestive system

more frequently make use of alternative promoter regions.
The knowledge stored in the database about synergy and
preference for TD-generating mechanisms across tissues will
be integrated to high-throughput data in the future. More
generally, IE of complex biological processes seems feasible
and can also complement large-scale data generation in other
areas to assign function.

Materials and Methods

Training corpus and SVM learning. A set of 4,240 sentences
describing physiological TD and 13,520 negative sentences were
selected as a training corpus from article titles and abstracts.
Sentences describing mutations, clinical studies involving patients,
nucleotide transversions, and splicing mechanisms were considered
negative sentences. Sentences describing natural gene expression,
gene paralogs, and aberrant transcripts showed word usage similar to
those describing TD, making the classification task more challenging.
Description of the learning corpus can be found in Protocol S1 and
Figure S3.

The text in all the abstracts was split into sentences using the Oak
system (S. Sekine, unpublished data; http://nlp.cs.nyu.edu/oak/). All the
sentences were tagged with Tree-tagger [40] to give words their part-
of-speech tags. Sentences were broken down into constituent words
and stemmed to act as features to learn from. Stop words and words
with certain part-of-speech tags were removed from the primary
features. To add domain knowledge and enrich the features to learn
from, frequently occurring word bi-grams and tri-grams were also
defined from unprocessed sentences. The feature file was large,
containing 23,742 features.

The procedure of inductive learning (see Protocol S1) was applied
for the sentence classification task, using the feature vectors
described above as input. We compared the performance of naı̈ve
Bayes, expectation maximization, maximum entropy, variants of TF-
IDF, K-nearest neighbors, and support vector machines for the task
[21,41–43]. The SVM with a radial basis function kernel (gamma¼ 1.5
and C ¼ 100) outperformed other methods and SVM classifiers with
linear and sigmoid kernel functions (P. K. Shah and P. Bork,
unpublished data).

The classifier was trained to extract only the natural TD from the

Figure 4. Assignment of Function Using Database Knowledge

This figure shows a database entry that derives very little functional annotation from sequence databases. Text extraction rules were successful in
identifying gene name, tissue, and event mechanism for the Dopachrome tautomerase gene. Multiple transcripts of the gene using SPLICE-POA [37]
were produced by utilizing alternative 39 splice sites and polyadenylation signals as speculated in the research article (bottom panel). Pink rectangles
denote the exons, black lines describe constitutive splice sites, and blue lines show alternative splice sites. Black arrows show the different proteins
generated via AS.
DOI: 10.1371/journal.pcbi.0010010.g004
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written text, as contrasted by aberrant transcripts that are caused by
genetic changes. For consistency, we removed the 2,767 of the 8,133
MEDLINE entries with the MeSH term ‘‘alternative splicing’’ that also
had the MeSH term ‘‘mutation,’’ had no abstract text, or had
erroneous assignment of the MeSH term ‘‘alternative splicing.’’

Definitions of precision and recall. Precision and recall are used in
IR to measure the performance of methods and they are defined as
below.

Recall¼ TP/(TPþ FN); Precision¼ TP/(TPþ FP) (1)

Where, TP, TN, FP, and FN denote true-positive, true-negative, false-
positive, and false-negative elements according to a classification
criterion.

Parsing of the sentences using semantic patterns. An event or a
scenario is described in a sentence via the combination of a predicate
(normally a verb) and its arguments [22–24,44]. While the same
biological relation can be described in many syntactically different
ways, only a limited number of semantic categories (e.g., gene name
or tissue name) may accompany the predicates (see Protocol S1 for
further discussion). Therefore, at this step we can apply rule-based
methods without much loss of sensitivity.

We constructed semantic patterns similar to those described in the
PASBio database of predicate–argument structure [22]. These
patterns match informative parts of sentences, e.g., ‘‘gene lacks exon
n in tissue.’’ The Stanford lexical parser was used for parsing the
sentences [45,46]. Sentence trees were viewed using the TigerSearch
tool for generating extraction rules for taking the semantic patterns
from sentences [47]. (See Protocol S1 for examples of rules.)

The success in assigning gene, species, and event mechanisms to
abstracts is as follows (Figure S3). A total of 46% of all abstracts were
directly mapped to literature entries in sequence databases such as
Swiss-Prot, RefSeq, and GenBank. A further 15% of all abstracts were
assigned gene names using a gene tagger [48], with the species name
extracted from the sentences and/or from the MeSH terms mapped
with the synonym list. However, only 54% of all abstracts could be
unambiguously assigned to a unique species (see Figure 2, category A
in lower right histogram). The rest of the abstracts may have had gene
and species information but they could not be assigned to a sequence
database. Tissues were tagged using a dictionary made of tissue lists
from the Swiss-Prot and RefSeq databases. They were assigned to the
relevant anatomical system (top level MeSH anatomy terms) using the
MeSH browser. We have submitted these entries for manual curation
to EMBL-EBI’s Alternative Exon Database [32].

Quantifying the gain in gene annotation. To quantify the gain in
gene annotation, first we mapped sequence information to the
MEDLINE identifiers from the SVM classification using literature
entries in Swiss-Prot, RefSeq, and GenBank. Second, we mapped
sequence-containing entries for human, mouse, and rat genes present
in our results and in those databases to Ensembl gene identifiers
using the EnsMart system. Then we compared our annotations to
those of Swiss-Prot and RefSeq to identify genes that were missed
during the manual curation of AS. Special care was taken to avoid
annotations that may have arisen because of a single literature entry
mapping to multiple database entries. Hence, these annotations were
highly significant.

Associating TD-generating mechanisms with organ systems. The
significance of the association of each TD-generating mechanism
with each organ system was evaluated using the hypergeometric
distribution. We corrected these p-values for multiple testing by
calculating the false discovery rate using the Benjamini-Hochberg
formula [49]. We found 14 significant associations (out of 45) at a 5%
false discovery rate, three of which were also significant at a 1% false
discovery rate.
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Found at DOI: 10.1371/journal.pcbi.0010010.sg001 (1.7 MB TIF).

Figure S2. Distribution of the Results of the IE Step

Found at DOI: 10.1371/journal.pcbi.0010010.sg002 (4.6 MB TIF).
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Found at DOI: 10.1371/journal.pcbi.0010010.sg003 (60 KB PDF).
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Table S2. Genes and Tissues

Found at DOI: 10.1371/journal.pcbi.0010010.st002 (120 KB TXT).

Table S3. Abstracts Describing AS

Found at DOI: 10.1371/journal.pcbi.0010010.st003 (445 KB XLS).

Table S4. Abstracts Describing Alternative Promoters

Found at DOI: 10.1371/journal.pcbi.0010010.st004 (76 KB XLS).

Table S5. Abstracts Describing Alternative Initiation
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