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Mitochondria carry out specialized functions; compartmentalized, yet integrated into the metabolic and signaling
processes of the cell. Although many mitochondrial proteins have been identified, understanding their functional
interrelationships has been a challenge. Here we construct a comprehensive network of the mitochondrial system. We
integrated genome-wide datasets to generate an accurate and inclusive mitochondrial parts list. Together with
benchmarked measures of protein interactions, a network of mitochondria was constructed in their cellular context,
including extra-mitochondrial proteins. This network also integrates data from different organisms to expand the
known mitochondrial biology beyond the information in the existing databases. Our network brings together
annotated and predicted functions into a single framework. This enabled, for the entire system, a survey of mutant
phenotypes, gene regulation, evolution, and disease susceptibility. Furthermore, we experimentally validated the
localization of several candidate proteins and derived novel functional contexts for hundreds of uncharacterized
proteins. Our network thus advances the understanding of the mitochondrial system in yeast and identifies properties
of genes underlying human mitochondrial disorders.
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Introduction

Mitochondria play a central role in metabolism, energy
production, ion homeostasis, and apoptosis [1,2] and are
found in most eukaryotes. Not surprisingly, a large fraction of
all characterized human Mendelian disease genes encode
proteins localized to mitochondria [3]. It is estimated that
700–800 mitochondrial proteins are present in Saccharomyces
cerevisiae with a higher number in humans [2,4]. It is widely
accepted that mitochondria originated from an endosymbio-
sis between an ancestral alpha-proteobacterium and a
eukaryotic host [5,6]. During evolution most of the genes
encoded by the mitochondrial genome (mtDNA) were trans-
ferred to the nucleus or were lost [7]; now only eight proteins
are encoded by the mtDNA of yeast and 13 in humans. Thus,
despite having their own genome, mitochondria are highly
dependent on extra-mitochondrial processes for their func-
tion and biogenesis.

Genome-scale approaches have catalyzed the identification
of mitochondrial proteins in different organisms through, for
example, analysis of deletion phenotypes [8,9], subcellular
localization [10–12], gene expression [4,13–15], and mass
spectrometry-based proteomics [4,16–21]. Each systematic
dataset surveyed different properties of mitochondrial
proteins, identifying proteins physically residing in mito-
chondria and genes functionally related to the organelle. A
comparison of two datasets in mouse [18] and 22 datasets in
yeast [4] demonstrated that indeed different sources of
experimental evidence clearly provide diverse degrees of
complementary information on mitochondrial localization,
phenotype, and regulation. In fact the integration of all data

types can overcome the limited sensitivity and specificity of
each dataset individually and can result in a more accurate
catalog of mitochondrial associated proteins [4]. Similar
integrated analyses have been applied recently to identify
human mitochondrial proteins, despite a much smaller
collection of available genome-wide datasets [22,23].
Nevertheless, characterization of the mitochondrial pro-

teome is still incomplete. To date, 533 proteins are verified as
localized to the mitochondrial organelle in yeast by single-
gene studies [22]. Yet even with a set of 533 annotated
mitochondrial proteins, about one third of the expected 800
proteins still remains to be verified. Beyond mitochondrial
protein identification, the functional role of all proposed
candidates remains to be explored in the context of known
mitochondrial proteins.
Protein networks, which describe the interrelationships

among components, provide a context to functionally
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characterize candidate proteins. Functional links between
proteins have been defined based on physical interactions
[24–29], expression regulation [30–33], mutant phenotypes
[8,34], phylogenetic profiles [35], literature mining [36], and
orthology transfer of interaction evidence across species
[37,38]. Analogous to the identification of mitochondrial
proteins, integrating heterogeneous but complementary
interaction data types improves the accuracy and the cover-
age in detecting protein associations [39] and has been
implemented globally [40–46]. However, a comprehensive
network reconstruction for mitochondria is missing and
moving from a list of proteins to their placement into a
functional context is needed.

Here, we analyze the yeast mitochondria at a systems level,
first by defining an accurate and comprehensive list of
mitochondrial components and then integrating it with
diverse data sources on protein associations to construct a
network of functional interactions. The network yields a
comprehensive map of mitochondrial modules and a func-
tional context for hundreds of uncharacterized components.
Analyses of systems properties—conditioned by, but not
easily deduced from the individual parts of the system—
reveal hypotheses about expression regulation and evolution.
Our survey has implications beyond yeast, for candidate gene
identification of human mitochondrial disorders.

Results/Discussion

Our approach to predict a mitochondrial parts list, derive a
functional network of yeast mitochondria, and identify
mitochondrial functional modules is depicted in Figure 1.

Mitochondrial Parts List
To predict a high-quality set of mitochondrial proteins, we

collected 24 genome-wide datasets that represent comple-
mentary approaches to study the mitochondrial organelle
(Table S1). Of these datasets, 22 are the same as in our
previous study where their sensitivity and specificity were
assessed [4]. Here, to integrate all datasets, we applied a

machine learning approach where a linear classifier was
trained to discriminate between 494 known mitochondrial
localized proteins (reference set) and the remaining set of
yeast proteins (see Materials and Methods). The linear
classifier computes a score for each input dataset (Table S1),
which can be used to rank the datasets according to their

Figure 1. Summary of the Integrated Approach

DOI: 10.1371/journal.pgen.0020170.g001
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Synopsis

Mitochondria are organelles which are best known as the cell’s
energy powerhouses. They have a special evolutionary origin
derived from bacteria engulfed about 2 billion years ago by
eukaryotes. Surprisingly, mitochondrial functions have been re-
tained over evolution, so that unicellular yeast and multicellular
organisms like humans share many of the same mitochondrial
components. Here the authors complemented previous efforts to
identify the ‘‘parts’’ of the mitochondrial system, but as for any
system, this is not enough to understand how it works. By
integrating information on protein localization, function, and
interaction, the authors go a step further and propose a map of
the mitochondrial organelle and its surroundings. This map suggests
the involvement of hundreds of so far uncharacterized proteins in
mitochondrial function. By taking advantage of the high conserva-
tion of the organelle to humans, the authors investigate properties
of human genes involved in mitochondrial diseases. They find that
the disease genes have ancient origin and a mild mutant phenotype
when their function is abolished in yeast. The approach applied here
can be extended to other organelles or organisms and illustrates a
growing trend in understanding biological processes in their whole
rather than in isolated parts.



power in predicting a mitochondrial localization. Sub-cellular
localization by protein-tagging [10,11], protein identification
by mass spectrometry of mitochondria [4,16], deletion
phenotype screening [8,9], expression profiling of a tran-
scription factor mutant [15], and orthology to species-specific
collections of known mitochondrial proteins (humans, Neuro-
spora crassa) were the most informative data sources, together
with orthology to Rickettsia prowazekii and the absence of
orthology to Encephalitozoon cuniculi, a eukaryotic parasite that
lacks mitochondria. In contrast, transcriptome analysis of
respiratory versus fermentative conditions [4,13], low con-
fidence protein interactions with known mitochondrial
proteins [39], and analysis of transcripts associated with
mitochondrion-bound polysomes [14] were not informative
predictors of mitochondrial localization.

The linear classifier was then used to integrate the datasets
and to compute a composite score of mitochondrial local-
ization for every gene product in the yeast genome (Table S1).
We compared the predictions from our machine learning
method to two published methods [4,22], as well as to
annotations for mitochondrial proteins in the Saccharomyces
Genome Database (SGD) (http://www.yeastgenome.org) (see
Materials and Methods and Figure S1). Our machine learning
approach performed substantially better than the original
MitoP2 predictions [4], even when the latter algorithm was
applied to our 24 datasets; it also performed better than the
SGD annotations and at least as well as the more recent
MitoP2 predictions by a support vector machine approach
[22] (see Figure S1).

By analyzing the sensitivity of the linear classifier in
recalling proteins in the reference set at multiple score
thresholds, we selected the top 800 scoring proteins (score
higher than 0.413, see Text S1). This threshold was chosen
because a decrease in prediction performance occurs after
this point (see Figure S1), it properly predicts nearly all (91%)
of the reference set proteins, and the total number is close to
the estimated size of the mitochondrial proteome [2,4].
Among the few proteins (9%) in the reference set that were
not captured are intron-derived gene products from the
mitochondrial genome and dual localized proteins like
Pop1p, Pop3p, Pop4p, Pop5p, Pop6p, Pop7p, Pop8p, and
Rpp1p of the ribonuclease mitochondrial RNA-processing
complex (RNase MRP) [47]. In addition to the known
mitochondrial proteins, the top 800 scoring proteins in-
cluded an additional 346 proteins not in the reference set
(three proteins annotated in the SGD database as hypo-
thetical and derived from dubious open reading frames were
omitted, see Table S1).

Our prediction of a mitochondrial localization for these
346 candidates is supported by several lines of evidence. First,
38 proteins have recently been annotated as mitochondrial
localized in MitoP2 [22], of which 27 (75%) are predicted as
candidates by the linear classifier. Second, our set of
mitochondrial candidates shows remarkable overlap with a
recent large-scale proteome analysis, which identified 851
yeast mitochondrial proteins using mass spectrometry [17]:
64% of our candidates (221 of 346) are also reported by this
study, which notably was published after the prediction of
our list. Third, we experimentally tested mitochondrial
localization of 16 candidates, with a wide range of scores,
by import into isolated mitochondria (Figure 2). In addition
to the two known mitochondrial proteins that served as

positive controls, 13 of the 16 candidates were imported into
mitochondria, providing evidence to the high confidence of
our prediction method.
The 346 candidates include a substantial number of

previously uncharacterized proteins. Only 28% of these
candidates (96/346) have high-confidence gene ontology
(GO) annotations. While some link to known mitochondrial
pathways, many others belong to processes that are not
traditionally associated with the organelle; for example,
proteins involved in vacuolar acidification, glycerol metabo-
lism, and nuclear DNA metabolism (see below). Remarkably,
even when considering all GO evidence types, nearly half of
our candidates (146 of 346), are entirely uncharacterized.

Mitochondrial Context
To define the extra mitochondrial context for our system,

we used the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) (http://string.embl.de/version_6_2). Pre-
viously established criteria [48] were applied to identify
reliable physical protein-protein interactions. By searching
for proteins that havemore than 30%of their high-confidence
physical interactions to proteins of the mitochondrial parts
list (see Materials and Methods) we identified 95 additional

Figure 2. Verification of Predicted Mitochondrial Candidates by

Mitochondrial Import

Samples were derived by incubating radiolabeled proteins with isolated
mitochondria in the presence or absence of a membrane potential and
of proteinase K. Cases where import was accompanied by removal of the
signal peptide are marked as ‘‘SP-processing’’ (þ). Su9(1–69)DHFR and
AAC serve as positive controls for a processed matrix protein and a non-
processed inner membrane protein, respectively. The score reflects the
likelihood of mitochondrial localization for tested candidates as
predicted by the linear classifier. MP, membrane potential; PK, proteinase
K; SP, signal peptide.
DOI: 10.1371/journal.pgen.0020170.g002
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proteins. These proteins were added to the parts list to define
our mitochondrial system, containing a total of 935 proteins.

Mitochondrial Network and Functional Modules
To construct a global model of the yeast mitochondrial

network, we combined our protein list with evidences of
physical and functional interactions from diverse data
sources reported in STRING (see Materials and Methods).
STRING also provides confidence scoring of associations
through a benchmarked integration of physical protein-
protein interactions, pathway databases, literature mining,
expression analysis, and genomic context methods, all trans-
ferred across about 200 organisms [38]. The integration
resulted in a network that has 9,780 linkages and provides a
functional context for 876 proteins, more than 90% of the
mitochondrial system (Figure 3A): 513 of the 534 with
confirmed mitochondrial localization, 268 of the 306 remain-
ing mitochondrial candidates, and all of the 95 interactor
candidates (see Table S2, Figures S3 and S4 for interaction
evidence).
To obtain a map of the biological processes captured, we

then performed hierarchical average-linkage clustering using
the STRING confidence scores of the network associations as
a similarity measure. After carefully evaluating different
cutoff values for defining modules (see Materials and
Methods), we set a similarity cutoff that yields 164 function-
ally distinct modules with two or more proteins (783 proteins)
and 93 singletons.
These modules group proteins with similar functions (see

GO terms associated with each module in Table S3); there-
fore, poorly characterized proteins within these modules may
share a related function. More than 70% of mitochondrial
candidates of unknown biological processes could be placed
into a functional context through our network; thus provid-
ing the first clues to their function. For example, the
hypothetical protein Ypl109cp likely plays a role in the
biosynthesis of ubiquinone. This protein has an ortholog in
Rickettsia prowazekii and has been shown to localize to
mitochondria by high-throughput studies [11,16,17]. In
several proteobacterial species, including alpha-proteobac-
teria, the gene is predicted with high confidence to be in an
operon together with COQ5, which is known to be involved in
ubiquinone metabolism. Moreover, Ypl109cp contains an
ABC1 domain associated with ubiquinone biosynthesis. All of
these reasons make Ypl109cp an attractive candidate to play a
role in ubiquinone metabolism.
Of the 164 functional modules, 46 contained five or more

Figure 3. Functional Network of the Mitochondrial System

(A) Full network containing 9,780 association lines connecting 876
protein nodes. Lines are shaded by the degree of STRING confidence in
the association. Nodes are colored according to the following: known
mitochondrial-localized proteins (reference set) correctly predicted by
the linear classifier, green; known mitochondrial-localized proteins not
captured by the linear classifier, light green; predicted proteins not
annotated as mitochondrial-localized (mitochondrial candidates), or-
ange; proteins predicted as additional interactors by the network
(interactor candidates), blue; mitochondrial candidates recently anno-
tated as mitochondrial-localized (MitoP2 database) or verified by
mitochondrial import assay, red.

(B) Module map of 46 modules with five or more proteins. Modules were
named and localized based on GO terms, with the following abbrevia-
tions: asm, assembly; biogen, biogenesis; cyt, cytoplasmic; dehy,
dehydrogenase; met, metabolism; mito, mitochondrial; org, organization;
proces, processing; syn, synthesis. The localization of modules in three
different compartments—nucleus, mitochondria, and cytoplasm—is
indicated by sectors of different colors. When the module contains a
mixture of proteins with different localization it is annotated as shared
between the different compartments. Module shared between mito-
chondria and nucleus or mitochondria and cytoplasm belong to green
and yellow sectors, respectively. Cytoplasm refers to all of the contents of
a cell excluding mitochondrion and nucleus but including the plasma
membrane and other sub-cellular structures. The identity of all proteins
and their functional links can be found in Figure S4 and Figure S5 for (A
and B), respectively, where the standard gene names are shown within
the nodes and are hyperlinked to STRING.
DOI: 10.1371/journal.pgen.0020170.g003
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proteins (altogether 474 proteins) and were analyzed further
(Figure 3B and Figure S5; see Text S1 for a description of
individual modules). The analysis of sub-cellular localization
revealed that, as expected, the majority of these modules are
found in mitochondria (30 of 46). Many of these modules are
known mitochondrial complexes, such as the respiratory
chain complexes; other modules include proteins involved in
metabolic pathways, such as iron-sulfur cluster assembly and
the TCA cycle. The remaining 16 modules represent
processes related to mitochondrial function and biogenesis
and are discussed below. This module map provides an
advantage over a list of genes because it enables an overview
of the entire system.

Evaluation of Functional Modules
We expected our module map, which focuses on a specific

sub-cellular system, to be more accurate than public data-
bases that provide annotation at the genome level. In order to
evaluate and estimate the level of agreement between our
reconstructed functional network and public annotations we
asked whether our modules are annotated in SGD, comparing
to protein complexes, and in KEGG (Kyoto Encyclopedia of
Genes and Genomes), comparing to metabolic pathways (see
Materials and Methods). Using the criteria that 50% of the
proteins in our modules are contained in an annotated
protein complex or pathway, we could match 23 of the 46
modules to annotated pathways in KEGG and 13 to protein
complexes in SGD. Good agreement was found for well-
known mitochondrial processes; for example, complexes that
define the oxidative phosphorylation chain, the mitochon-
drial membrane translocase machineries, and the TCA cycle.
However, 17 functional modules were not matched by either
of the two databases, including the iron-sulfur cluster
assembly module, which contains proteins known to physi-
cally interact [49] and the fission and fusion module, which
contains components known to genetically interact [50].
These unmatched modules point to limitations in both of the
current databases.

In addition, our approach predicted two novel mitochon-
drial modules, Unknown 1 and Unknown 2, in which most of
the proteins are uncharacterized. All of these proteins are
grouped together primarily due to co-expression associations
(Figure S3). While the evidence linking these proteins together
is limited, the prediction for mitochondrial localization was
strong. Therefore, we analyzed these modules by protein
import experiments. Module Unknown 1 contains five
mitochondrial candidates: Ylr281cp, Ylr283wp, Jid1p, Fyv6p,
and Ylr290cp, and a known mitochondrial protein, Cox16p,
involved in respiratory chain complex assembly. Protein
import experiments confirmed a mitochondrial localization
for three out of four tested candidates. Similarly, for module
Unknown 2, even though the interactor candidate of this
module, Ylr125wp, was not imported, we were able to confirm
import of the two mitochondrial candidates (Figure 2).

Mitochondrial Connectivity to the Cell
As mitochondria rely on cellular processes for their

biogenesis and function, it is essential to characterize the
organelle as an integrated unit in the cell rather than in
isolation. To this effect, our network reveals two classes of
mitochondria-cellular associations. First, it correctly includes
several processes that take place outside the organelle that

have an effect on mitochondrial function: it contains two
modules whose proteins primarily localize to the nucleus and
seven whose proteins primarily localize to the cytoplasm
(respectively, blue and white sector in Figure 3B). One
example is the DNA replication module, where the activity
of the ribonucleotide-diphosphate reductase complex in the
nucleus has been shown to affect mitochondrial DNA
replication and repair through alterations of deoxyribonu-
cleotide triphosphate pools [51].
Second, the network contains modules with components

that are dual localized or components of enzymatic pathways
that have branches inside and outside mitochondria. In this
category, the network contains six modules that represent
well-characterized enzymatic pathways common between the
mitochondria and the cytoplasm: tRNA aminoacylation, fatty
acid biosynthesis, lipid metabolism, alcohol and aldehyde
dehydrogenases, glutamate biosynthesis, and glycerol metab-
olism (yellow section in Figure 3B). Several new hypotheses
can be made from these modules. The glycerol metabolism
module, for example, includes known cytosolic enzymes such
as Gut1p, Gpd1p, and Gpd2p that oxidize glycerol-3-
phosphate. Their activity and regulation is also important
to create a glycerol-3-phosphate shuttle involved in redox
adjustment during respiration [52]. Interestingly, although
Gut1p and Gpd2p are known cytosolic enzymes, they are
predicted mitochondrial candidates in our network. To test
this prediction, we performed mitochondrial import experi-
ments and confirmed import of both Gut1p and Gpd2p,
implying a novel dual cytosolic and mitochondrial local-
ization (Figure 2). These results support an intricate
association of mitochondria with their cellular surroundings.

Mutant Phenotypes of Functional Modules
To survey properties of the mitochondrial system, we

further analyzed the network at the module level. We used a
genome-wide dataset on the fitness of single-gene deletion
mutants grown on non-fermentable (NF) and fermentable (F)
substrates [8] to generate a phenotype profile for each
module (Table S4). This dataset was not used to capture
network associations. Mutants with respiratory defects have
specific growth impairment on NF substrates, where mito-
chondrial respiration is required for optimal growth. From
the quantitative deletion data we compared the fitness
distributions under NF and F growth conditions for each
module (Figure 4; see Figure S6 for gene names). These
phenotype profiles provided two characteristics: the general
essentiality of module components for cell viability and their
specific involvement in respiration. A statistical test to assess
the significance of the impaired fitness under NF versus F
conditions for genes within the same module was performed.
Among modules localized within mitochondria, proteins in

the metabolic modules seem dispensable for growth in both
rich NF and F conditions. Most of the modules involved in
mtDNA transcription and translation, respiration, and
energy metabolism have significantly greater impaired fitness
in NF than F carbon sources. Notably, mitochondrial modules
associated with import and processing of proteins across the
inner and outer mitochondrial membrane, and iron-sulfur
cluster assembly are significantly impaired in both growth
conditions. These modules represent functions of mitochon-
dria essential for cell viability (Figure 4).
Not surprisingly, respiratory defects were the most
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Figure 4. Mutant Phenotype and Regulation

Cumulative frequency of the fitness scores of single gene deletion mutants on NF, green line, and F, black line, conditions are plotted for each
functional module. Genes annotated in SGD as inviable were assigned a fitness value of zero. As an example, the graph depicted in the legend shows
that close to half of the genes are essential (lower half of y-axis), the other half differ in their quantitative deletion phenotypes and range from poor
fitness (severe growth defect) to high fitness (no growth defect). On the x-axis, the offset of the curves of different color shows that the distribution of
growth defects of the non-essential genes differs between the two growth conditions, and in this case shows that more severe defects were observed
under NF than F conditions. This designates a mitochondrial specific phenotype. The one-sided paired Wilcoxon rank test was used to assess whether
the deletion mutant strains for genes of a module have a significantly impaired fitness under NF versus F conditions. Significance is indicated by star (p
, 0.05). In the modules, node color indicates the mRNA expression level difference between growth on NF (YPL, SCL, and YPE) versus F (YPD and SCD)
conditions (red gradient, higher expression; and blue gradient, reduced expression during NF growth). A stringent criterion was applied to calculate a
single expression value for the difference between NF and F growth: genes with a consistent direction of the three ratios were assigned the least-fold
difference; genes that show no differential regulation or show fold ratios opposite in direction between any two conditions were assigned a fold ratio of
zero. Gray nodes had no expression measurements. The identity of single proteins can be found in Figure S6. cf, cumulative frequency.
DOI: 10.1371/journal.pgen.0020170.g004
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frequent among the mitochondrial localized modules. There-
fore, we tested if deletion strains of components in the two
newly identified modules, Unknown 1 and Unknown 2, would
also lead to an impairment of respiratory capacity. These
components were grouped by co-expression evidence and
show similar expression profiles to mitochondrial ribosomal
proteins needed to translate mtDNA-encoded respiratory
chain subunits. The measurements of O2 consumption of the
deletion strains did not indicate any respiratory impairment.
The same conclusion was reached when analyzing the
biochemical activity of the respiratory chain complexes II
and III and complex IV (unpublished data), arguing that the
new modules might not be involved in energy metabolism or
their components have a redundant function.

Furthermore, the deletion analysis implicates some extra-
mitochondrial modules in respiration. For example, the
vacuolar acidification module, which is important for many
cellular processes including endocytosis, targeting of newly
synthesized lysosomal enzymes, and the uptake of metal ions,
has a specific deletion phenotype in NF media. Our genome-
wide data on this module are supported by single-gene
studies of yeast mutants that do not grow on NF media due to
an increased sensitivity to iron [53,54]. Therefore, the
phenotype profiles of modules reveal different degrees of
involvement for functional processes in respiration.

Expression Regulation
Our previous study [4] generated mRNA expression profiles

under NF and F conditions that were here mapped onto the
network to analyze the extent to which the mitochondrial
system is regulated (Table S4). This dataset did not contribute
to the parts list prediction as it was uninformative for that
purpose (Table S1; see Text S1). Genome wide, 287 genes
showed an expression change above 2-fold: 221 being elevated
and 66 reduced in expression under NF conditions. Of these,
63 elevated and six reduced genes were present among the
mitochondrial system (Figure 4).

Globally, poor correlation had been reported between gene
expression and deletion phenotype [55,56]. However, when
restricting the comparison to the set of proteins in the
mitochondrial system, we observed a significant correlation
between both approaches profiled under the same, NF and F,
conditions (Spearman-rank test, p , 0.001; notably, this
comparison does not suffer from circular reasoning because
the expression dataset was uninformative in defining the
parts list, see Materials and Methods). That is, genes that
increased expression also showed a fitness defect upon gene
deletion, more often than expected by chance.

Genes within modules often had different degrees of
expression regulation. For example, the respiratory chain
complex IV has two interchangeable subunits, COX5a and
COX5b, which are oppositely regulated. The COX5a gene is
expressed under aerobic conditions and COX5b, which
supports a higher turnover rate, is up-regulated when cells
experience hypoxia [57]. Similarly, the catalytic subunits of
the respiratory chain complexes show higher regulation than
subunits involved in their assembly or stability. This suggests
that actually only a few subunits may be transcriptionally
regulated in order to control the action of entire complexes,
similar to what was proposed for complexes involved in the
yeast cell cycle [48]. If such regulation occurs, it can be
predicted that a substantial difference in deletion phenotype

between NF and F conditions would occur for the regulated
key components, which indeed was observed (same as above).

Evolution, Conservation, and Disease Susceptibility
Evolutionary conservation of mitochondria to proteobac-

teria was analyzed by using a set of orthologs inferred from a
phylogenetic comparison of alpha-proteobacterial and eu-
karyotic genomes [58]. Proteobacterial ancestry was detected
for 13% (119/935) of the proteins in the mitochondrial
system. 23 modules contained at least one proteobacterial
ortholog, of which 17 are localized to mitochondria and are
related to respiratory metabolism (respiratory chain com-
plexes, mitochondrial ribosome, RNA splicing, pyruvate
metabolism, TCA cycle) as well as metabolism of amino acids
and cofactors (Figure 5).
Analysis of conservation to humans yielded orthologs for

60% (565/935) of the proteins in the yeast mitochondrial
system (Table S5), which is significantly higher than the
conservation found for the entire yeast proteome (46%), even
when corrected by the contribution of human orthology in
the linear classifier (corrected p-value, hypergeometric test, p
, 10�15, see Text S1). Overall, conserved proteins were
distributed over most modules (Figure 5). Still, we detected
lack of conservation for specific modules, which reflects
functional differences between yeast and human mitochon-
dria in the inheritance of the mitochondrial genome [59] and
in the amino acids synthesized.
Human mitochondria have been predicted to house up to

2,000 different proteins [2], of which about half are annotated
as mitochondrial reference set in the MitoP2 database, and
about 150 have been implicated in human Mendelian
disorders [22]. To investigate disease susceptibility, we
identified network proteins that are orthologs to human
disease genes (Swiss-Prot database) (Table S5). Of the 99
identified yeast proteins, 73 associate with an annotated
Mendelian mitochondrial disorder (Table S4). The remaining
26 proteins associate with diseases for which a link to
mitochondrial pathophysiology is plausible but not proved.
These remaining proteins belong to modules involved in
DNA replication and repair and biosynthesis of ubiquinone,
folate, lipids, and amino acids.
Six modules had three or more distinct human disease

orthologs, covering alone 29% of the disease gene set (28 of
98). Five of these modules localize to mitochondria and are
involved in the respiratory pathway (NAD metabolism/TCA
cycle, pyruvate/a-ketoglutarate dehydrogenase and RCC-II),
heme biosynthesis, and folate and glycine metabolism (Figure
6A). The diseases associated with components of the same
module often displayed similar clinical manifestations ac-
cording to the Online Mendelian Inheritance in Man (OMIM)
database (Table S6). For example, porphyria is the common
disorder for disease genes of the heme biosynthesis module,
while glycine encephalopathy is common to diseases of the
folate and glycine metabolism module. This property, of the
similarity of clinical symptoms, suggests that additional
proteins in these modules might be considered as candidates
for diseases with related symptoms.
To discover additional features of disease susceptible genes

within the mitochondrial system, we analyzed the correlation
of disease orthologs with datasets on yeast deletion pheno-
type and orthology to proteobacteria. Among the disease
orthologs, a significant enrichment of proteobacterial orthol-
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ogy was detected (see Figure 6B, hypergeometric test, p ,

10�4). A significant correlation between NF fitness and disease
gene orthology was also found: the fitness of yeast orthologs
of disease genes was higher than the fitness of the remaining
human orthologs (Figure 6C, t-test, p , 0.01). One explan-
ation for the latter is that deleterious mutations in human
genes among patients are possibly under-represented, be-
cause impairment of an essential gene would be lethal in
humans and therefore not detected. For example, proteins of
the inner membrane translocase (Tim23/Tim22 module) are
essential in yeast, besides a few proteins including Tim8p, and
so far, the only protein associated with a disease is the Tim8p
human ortholog, DDP1, in which mutations cause the Mohr-
Tranebjaerg syndrome [60].

Disease genes in our mitochondrial system are thus
characterized by a tendency to have proteobacterial ancestry
and a non-severe deletion phenotype in yeast. Among the top
38 proteobacterial orthologs with the least severe deletion
phenotypes (fitness scores . 0.9), 26 have human orthologs
and nine are known human disease genes (Table S4).
Therefore, these criteria provide a resource that can be used
to suggest candidate disease genes.

Implications
We have combined established computational methods to

integrate 24 large-scale datasets relevant to mitochondria to
expand their parts list, and together with benchmarked
measures of protein interactions place the majority of the
mitochondrial proteome into a functional context. This
interaction map, validated in the context of existing
annotations and publicly available genome-wide datasets,
covers the known mitochondrial biology more comprehen-
sively than existing databases and recent protein complex
screens [28,29]. In addition, it brings together annotated and
uncharacterized proteins into a single picture which enables
a survey of the entire system.
Our network yields properties of yeast orthologs to disease

genes that can help in prioritizing candidate genes for human
putative mitochondrial disorders. Recent studies have shown
how an integrated approach to define the mitochondrial
proteome in humans can identify disease genes from genomic
intervals containing dozens of genes [23,61–63]. Notably, in
all of these cases the disease gene was orthologous to a
previously known yeast mitochondrial protein. By taking
advantage of high conservation between yeast and human

Figure 5. Origin and Conservation of the Mitochondrial System

Orthology was used to identify functional processes in yeast that originate from bacteria and are conserved to humans. Modules of five or more
proteins are shown as single nodes at the circumference of the circle and the degree of evidence connecting modules is shown by lines in different gray
tone. The connection between modules is calculated as the average of the STRING interaction scores for all protein-pairs. Modules are distributed
according to their localization. Color in the inner rings reflects for each module the percentage of proteins that have proteobacterial orthology (red) or
human orthology (blue). The number of proteobacterial orthologs is also indicated.
DOI: 10.1371/journal.pgen.0020170.g005
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mitochondria, mitochondrial disease genes can be enriched
by screening the orthologous yeast deletion mutants for
growth patterns on respiratory and fermentative conditions
(NF and F) [8]. Among the genes with human orthologs, we
furthermore found that disease orthologs are more often of
proteobacterial origin than would be expected by chance,
which is consistent with results of an independent study [64].
Conserved proteins are often the ones at the core of the
metabolic reactions of mitochondria [65], and mutations in
these proteins could be critical for disease development. The
fact that both properties are often observed together suggests
that the subset of proteins that are conserved and have lower
growth defect may be particularly susceptible to disease. It is
possible that for conserved proteins that are non-essential,
more variation can be present and thus a higher chance for a
viable mutation phenotype may exist.

Thus, an enriched list of candidate mitochondrial disease
genes can be constituted by ranking human orthologs
according to whether they have a proteobacterial ortholog
and a non-severe deletion phenotype in yeast. In addition,
proteins in the network, and specifically proteins connected
to disease genes with related clinical symptoms, may also
constitute disease candidate genes.

A further implication of our network lies in extracting

from global datasets the information relevant to mitochon-
dria. Among the datasets analyzed, it had been puzzling that
for most sampled conditions so far, a large set of genes were
identified as differentially expressed, but when these genes
were deleted—and therefore their expression forced to
zero—this had no effect on fitness [55,56]. One concern was
that expression change was not identifying functionally
relevant genes. In contrast to genome-wide comparisons,
when restricting the comparison of gene expression and
deletion phenotype under NF and F conditions to only the
proteins within the mitochondrial system, we find a signifi-
cant positive correlation (Spearman-rank test, p , 0.001).
This observation indicates that expression change within the
mitochondrial system is likely relevant for the regulation of
respiration, and suggests that systems approaches like ours
may help to filter functionally relevant subsets of genes from
global datasets.
Finally, our findings underscore the importance of includ-

ing the extra-mitochondrial proteins related to biogenesis
and function as part of the mitochondrial system. In an
advancement to previous work on the mitochondrial pro-
teome [4,10,11,16–18,20,21], we defined a mitochondrial
network within its cellular context by integrating diverse
datasets. Additionally, in comparison to protein networks

Figure 6. Properties of Yeast Orthologs to Human Disease Genes within the Mitochondrial System

(A) Five modules enriched in human disease gene orthologs. Node color identifies human orthologs to yeast genes with and without associated
Mendelian diseases (OMIM database). Proteins that belong to physical complexes are shown by overlapping nodes or in some cases are connected by
solid lines; functional associations are shown by dotted lines. Disease genes within the same functional module had a tendency to have similar clinical
phenotypes: glutaricaciduria II (NAD metabolism/tricarboxylic acid cycle), glycine encephalopathy (folate and glycine metabolism), mainly susceptibility
to hereditary pheochromocytoma and paraganglioma (RCC-II), and variants of inherited disease of porphyrin metabolism (heme biosynthesis). Table S6
contains descriptions for each disease gene.
(B) Conservation of disease genes to proteobacteria. Venn diagram of the overlap of yeast genes having human orthologs, proteobacterial orthologs,
and human disease gene orthologs. Of the proteins with a disease ortholog, 31% (31/99) have a proteobacterial ortholog—whereas only 18% (100/565)
of all human orthologs have a proteobacterial ortholog (hypergeometric test, p , 10�4).
(C) Fitness distribution of yeast orthologs of disease genes. Empirical cumulative distributions of NF fitness scores are shown for all human disease gene
orthologs compared to the remaining human orthologs. NF fitness represents the growth and survival of single gene deletion mutants under
respiratory conditions (NF carbon source): higher fitness represents a milder growth defect. As a group, disease orthologs have higher fitness (i.e.,
milder mutant phenotypes) (t-test, p , 0.01).
DOI: 10.1371/journal.pgen.0020170.g006
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based on interaction evidence from a single species [40,41],
our network integrates data from different organisms, which
is particularly useful for studying mitochondria because of
their high conservation. By applying similar approaches to
other cellular structures or organisms, the most advantage
can be gained from integrating complementary, heteroge-
neous datasets. To further define the interaction map of
mitochondria, new datasets that look at protein complex
composition, protein localization, or regulation under differ-
ent physiological conditions may prove useful. In addition,
similar network strategies applied to human mitochondria
have promise to accelerate the identification of genes
underlying Mendelian and complex mitochondrial disorders.

Materials and Methods

Integration to define a mitochondrial parts list. Two different
machine learning methods were tested to predict proteins with a
mitochondrial localization, namely a linear classifier (implemented by
a single-layer neural network) and feed-forward Artificial Neural
Networks (ANNs). All the datasets in the MitoP2 database as of
January, 2005—collectively represented as a binary vector (Table
S1)—were used as input for machine learning methods. These
methods were trained to discriminate between 494 known mitochon-
drial localized proteins (reference set) and all other yeast proteins. In
the case of ANNs, a single hidden layer was used, and the numbers of
hidden neurons tested were: 1, 3, 5, 10, 15, 20, 25, 30, 40, 50, 60, 80,
100, 125, 150, 200, and 250. To make sure that the methods were not
over-fitting, the ANNs and the linear classifier were trained in 5-fold
cross validation, i.e., five copies of the predictor were trained, each
using four of the five subsets for training and the remaining subset
for testing. All five test set predictions were then pooled to obtain a
complete set of predictions for each type of predictor, in which the
score of every protein had been assigned by a predictor not trained
on the protein in question. The two methods, the linear classifier
(implemented single-layer neural network) and the feed-forward
ANNs were benchmarked against the reference set. As shown in
Figure S1, the performance of the neural networks (ANNs) is
independent of the number of hidden neurons in the network and
a neural network with only 1 hidden neuron (a linear model)
performs as well as a network with 250 hidden neurons. Thus, there is
hardly any information to be captured from correlations between the
inputs, and we chose to use a linear discriminator for its simplicity
and interpretability. Indeed, the linear classifier yields information
on the importance of each dataset for predicting mitochondrial
localization. Rather than using an ensemble of five linear discrim-
inators (as obtained from the cross validation), we opted to train a
single linear discriminator using all proteins for training. A final
score for the prediction of mitochondrial proteins by the linear
classifier was mapped to the [0, 1] interval with a sigmoid curve (the
final scores of all proteins are available in Table S1).

The top 800 proteins with highest score were selected. This choice
was based on three main reasons: first, the performance curve
changes slope at 800 proteins—meaning that there is a decrease in
predictive power when one goes from the top 800 to a larger number
(see Figure S1A); second, the aim of the parts list prediction was to
achieve high sensitivity and to capture most of the mitochondrial
proteome, knowing that the network interaction analysis will later
filter out proteins (indeed, the top 800 achieves 91% sensitivity and
captures 451 of 494 known mitochondrial proteins); third, 800 is close
to the estimated size of the mitochondrial proteome [2,4]. These
reasons make the top 800 proteins a better choice for our purpose
than the alternative of top 600, where an earlier break in the curve
occurs. See Text S1 for further details on the choice of threshold.

Criteria to define mitochondrial interactor candidates. We defined
mitochondrial interactor candidates as proteins having high-con-
fidence physical interactions to the mitochondrial parts list. We
selected physical protein-protein interactions from the experimental
data channel (see below) and the MIPS complexes reported in
STRING, having a confidence score greater than 0.85. Additionally,
these proteins were filtered as having 30% of their physical
interaction partners within the mitochondrial parts list. These
criteria were successfully applied in a previous publication [48].
Our analysis showed that relaxing these criteria adds a large number

of much more indirect physical interactors: for example, dozens of
cytoplasmic ribosomal proteins (unpublished data).

Network reconstruction. We used the STRING database, release
6.2, to extract a functional protein network for the mitochondrial
system. The choice of release 6.2 (http://string.embl.de/version_6_2)
over release 6.3 is discussed in Text S1, one advantage is shown in
Figure S2. In STRING each protein-protein association derives from
the integration of numerous resources. The compendium of STRING
evidence types for protein-protein associations includes the following
channels: (1) genomic context methods (neighborhood, gene fusion,
and co-occurrence); (2) co-expression of genes under a variety of
experimental conditions; (3) experimental data imported from the
interaction databases including BIND, DIP, GRID, HPRD, MINT; (4)
curated knowledge databases such as KEGG, REACTOME, MIPS
(catalog of yeast complexes), BIOCARTA (catalog of human path-
ways), and STKE (catalog of human signal transduction pathways);
and (5) co-mentioning of genes in Medline abstracts, SGD summary
paragraphs, and OMIM monographs. For all channels above,
information is transferred between model-organisms where possible,
using an automated setup. Essentially, interaction information is
transferred between organisms when all-against-all homology
searches indicated that both proteins of an interaction have likely
orthologs in the other organism. If the orthology is somewhat
uncertain, the evidence is transferred only partially (low scores) [38].
In our network the association is defined as ‘‘direct’’ if its evidence
exists or is predicted in yeast or ’’transferred’’ if it is inferred through
orthology (see Table S2). A predictive confidence score is given for
each association (low confidence: scores ,0.4; medium: 0.4 to 0.7;
high: .0.7). Our final network includes all associations from low
confidence to high confidence as reported in Table S2 and Figure S4.
The confidence associated with each interaction can be traced back
through the hyperlinks to STRING database in Figure S4 and is also
visualized in gray scale for the connecting line (dark gray ¼ high
confidence; light gray ¼ low confidence). Protein interaction data
from STRING for our network were visualized by the Medusa
application [66].

Clustering analysis. Four hierarchical clustering algorithms were
tested using the STRING confidence scores on all network associa-
tions as a similarity measure, namely single linkage, complete linkage,
average linkage clustering, and a combination of single and average
linkage clustering using the oc software (http://www.compbio.dundee.
ac.uk/Software/OC/oc.html). Average linkage clustering with a sim-
ilarity cutoff of 0.2 was chosen after systematically analyzing the size
distribution of modules, the amount of known mitochondrial
proteins captured in modules and manually comparing the modules
to known complexes of mitochondria at multiple thresholds
(described in Text S1).

Module annotation. To assign the functional modules, a cellular
localization as well as labeling the modules, we applied the version 2.0
of the Ontologizer software (Ontologizer http://www.charite.de/ch/
medgen/ontologizer). It gathers the GO annotations from all proteins
and reports for each module the proportion of proteins for each GO
term as well as the statistical significance of its overrepresentation.
Labels and placement of modules into nucleus, mitochondria, or
cytoplasm derive from combining a majority rule and a measure of
the overrepresentation of a GO term for ‘‘Cellular Component’’ if
available or of a GO term for ‘‘Biological Process’’ otherwise. All
results are reported in Table S3.

Comparison to annotated clusters. We compared our modules to
physical complexes as annotated in SGD (as of April 22, 2006) with
GO confidence code (TAS, IDA, IPI, NAS, IC) and to biochemical
pathways as stored in KEGG release 38.0. For each module we asked
how many proteins were in common with the clusters taken from
SGD and from KEGG: we defined as best match in SGD (respectively,
in KEGG) the complex (respectively, pathway) that covers most of the
module proteins and in case of ties, the smallest one. A module was
considered recalled if its best match contains more than 50% of its
components.

Validation of candidates by in vitro synthesis of proteins and
import into mitochondria. For T7 polymerase–driven synthesis of
preproteins in vitro, the open reading frames were amplified from
ATG to STOP-codon by PCR, including the T7 RNA polymerase
promoter and transcription initiation site within the 59 primer. Using
reticulocyte lysate (Promega, Madison, Wisconsin, United States), the
resulting PCR products were utilized for coupled in vitro tran-
scription/translation reactions to synthesize preproteins in the
presence of 35S-radiolabeled methionine. Mitochondria were iso-
lated by differential centrifugation from yeast strain W334, and
mitochondrial import of synthesized preproteins was assayed as
described by Ryan et al. [67].
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Analysis of deletion phenotype and gene expression under NF and
F conditions. Datasets on deletion phenotype and gene expression
were obtained from the YDPM database (http://www-deletion.
stanford.edu/YDPM/YDPM_index.html). For the deletion data, NF
fitness was determined as the median of three non-fermentable
conditions (YPL, YPG, and YPE); F fitness was measured in YPD.
Cumulative distribution functions of the fitness measurements were
derived for each module of five or more proteins. Inviable genes
(SGD) were deemed inviable in both F and NF conditions. Genes
without measurements were excluded in this analysis. The mRNA
expression data were generated from log phase cultures grown under
fermentable (YPD, SCD) and non-fermentable (YPL, SCL, YPE) media
conditions, which in addition to yeast extract, peptone (YP) medium
profiled synthetic complete (SC) medium. For every gene, we
considered the following fold ratios: YPE/YPD, YPL/YPD, SCL/SCD.
A stringent criterion was applied to calculate a single expression
value for the difference between non-fermentable and fermentable
growth: genes where the fold ratios were opposite in direction
between any two conditions were set a fold ratio of 1; genes with a
consistent direction of the three ratios were assigned the least-fold
difference.

To assess the correlation between genes having a deletion
phenotype and genes being differentially regulated we compared
NF/F expression to NF-F fitness for genes in the mitochondrial
system. Because the expression dataset used in this analysis received a
weight close to 0 (0.003) from the linear classifier, it was not used for
prediction of the mitochondrial parts list. Therefore, there is no a
priori bias of the method to select genes that have both an expression
change and a deletion phenotype, and this comparison is thus not
subject to circular reasoning. The statistical significance of the
correlation coefficient was evaluated by comparison with the
distribution of correlation coefficients for shuffled ranks (Spearman
rank test). See Text S1 for further discussion.

Measurement of enzymatic activity and high-resolution respirom-
etry. The measurement of the specific activity of the individual
respiratory chain complex IV and the synergic activity of complex II
and III was performed spectrophotometrically on isolated mito-
chondria as described [68]. Respiration of freshly isolated mito-
chondria (within 1 h stored on ice) was measured at 37 8C in
injection respirometers (Oroboros, Oxygraph, Innsbruck, Austria) as
described [69].

Yeast orthologs to human genes. To assign orthology between yeast
and human genes, we systematically conducted all-against-all homol-
ogy searches at the level of the translated proteins, using the Smith-
Waterman algorithm (substitution matrix BLOSUM62, gap open cost
�11, gap extension cost �1). In order to increase sensitivity, we
included in the search three additional fungal genomes, bringing the
total to five genomes (human—Ensembl as of June, 2004, limited to
longest transcript per locus; yeast—SPproteomes as of June, 2004; as
well as Kluyveromyces lactis, Debaryomyces hansenii, and Schizosaccharomyces
pombe). The homology search results were analyzed using an algorithm
similar to the COGs procedure [70,71]. Briefly, the search results were
first scanned for sets of proteins that are more similar within an
organism than to any protein in any other organism—these were
assumed to have arisen through duplication after speciation and were
collected into ‘‘inparalogous groups.’’ Next, these groups (as well as
any remaining singletons) were searched for reciprocal best matches
across at least three organisms—forming a ‘‘triangle’’ of reciprocality.
Such triangles were then allowed to seed orthologous groups. Groups
were subsequently grown by including other triangles overlapping
the group with at least one edge. Generally, triangles with high
similarity scores were considered first, and score requirements were
gradually lowered to include further triangles. As a last step, any
remaining genes were included into an orthologous group if they had
simple binary reciprocal matches exceeding 80 bits score (and
excluding the extra fungi if necessary). The algorithm enforces all
proteins in an orthologous group to have similarity to each other,
thereby avoiding ‘‘domain-walking’’ or incompatible fragmented
(pseudo)genes. All yeast and human proteins found in the same
orthologous group are considered orthologs.
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