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New advances in sequencing technologies bring random

shotgun sequencing of ecosystems within reach of smaller

labs, but the complexity of metagenomics data can be

overwhelming. Recently, many novel computational tools have

been developed to unravel ecosystem properties starting from

fragmented sequences. In addition, the so-called ‘comparative

metagenomics’ approaches have allowed the discovery of

specific genomic and community adaptations to environmental

factors. However, many of the parameters extracted from these

data to describe the environment at hand (e.g. genomic

features, functional complement, phylogenetic composition)

are interdependent and influenced by technical aspects of

sample preparation and data treatment, leading to various

pitfalls during analysis. To avoid this and complement existing

initiatives in data standards, we propose a minimal standard

for metagenomics data analysis (‘MINIMESS’) to be able

to take full advantage of the power of comparative

metagenomics in understanding microbial life on earth.
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Introduction
Since the first publications of large-scale environmental

shotgun sequencing projects [1–3], we witness exponen-

tially increasing efforts to investigate the genetic basis of

environmental diversity using this technique [4]. The

combined ‘metagenome’ of a community complements

traditional (16S) phylotyping approaches and genome

sequencing of culturable ecosystem members [5]. Given

recent advances in sequencing technologies, this approach

promises to uncover the identity as well as functionality of

the ‘unculturable majority’ of microbial species on earth,

and might lay a firm basis for our understanding of

ecosystem functioning. Today, about four times as many

genes have been generated in five years of metagenomic
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sequencing than in over a decade of complete genome

sequencing [4], and with dramatically dropping sequen-

cing costs, metagenome projects will be initiated almost

everywhere on earth. However, because of the great com-

plexity of generated data, their analysis, an essential step in

each project, is far from easy and requires accessible and

user-friendly tools that are mostly not available yet. Con-

sequently, we witness an emerging field within compu-

tational biology that aims not only at the development of

those tools but also at an understanding of the ecosystem

imprinted in the sequence data. Recently, several compu-

tational methods have been developed and applied to

analyze the functional and phylogenetic composition of

individual samples (environments) and to derive various

properties of the inhabiting microbial communities. In

addition, the comparison of results between different

(sub)environments (‘comparative metagenomics’ [6��])
allows to draw more general conclusions about the relation-

ship between metagenome properties and the habitat they

were derived from. Here, following the workflow of a

typical metagenomics data analysis, we review the state-

of-the-art in methodologies that address each step and

describe the discoveries they have led to. In addition,

we point to possible interdependencies of different meta-

genome properties and various pitfalls in the analysis of

metagenomics data. Finally, we suggest a minimal set of

computational analyses to be performed to be able to

properly describe and compare an environment.

A typical metagenomics data analysis
workflow
Starting from raw reads, assembly is usually the first step

to increase fragment length and gain insights in popu-

lation structure. After that, gene calling is performed, as

most (but not all) functional analyses are done at the

protein level. Next, higher level metagenome descriptors

are derived: basic properties (e.g. sequence composition),

species composition, functional composition and popu-

lation properties. These descriptors provide first insights

in the communities but become even more powerful

when compared with environments using comparative

metagenomics approaches.

From reads to proteins: assembly and gene
calling
In bacterial genome sequencing projects, the protocols to

go from raw reads to complete and high-quality pro-

teomes have become well established [7]. Metagenomes,

however, are sending bioinformaticians back to the draw-

ing board. Already the assembly process can pose a great

challenge. One of the main reasons for this is the
www.sciencedirect.com
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phylogenetic complexity of samples: while it is usually

possible to assemble most of the genomes from environ-

ments containing a small number of (dominant) species

(e.g. [2,8�]), samples with large species richness, such as

soil [6��], can hardly be assembled given a sequencing

depth of up to 100 Mb per (sub)sample. A recent study

based on simulated metagenomes confirmed this trend

[9�]. On top of this complexity come the added compli-

cations regarding high frequency of polymorphisms and

genome variations that have been reported even up to the

subspecies level [10–12]. Also, the presence of viruses

and/or inserted phages might hamper the assembly by

increasing the chance of chimeric contigs [13]. Novel

short-read sequencing technologies are imposing further

complications. Although strategies are being developed to

assemble these novel datatypes [14,15], so far, no specific

metagenome assembly software has been published or

can be simply downloaded. Two strategies to alleviate the

assembly problem were identified, namely (i) the use of

reference sequences [11��] and (ii) the pre-binning of

reads into phylogenetic groups based on sequence com-

position [2,8�,16��]. Although both can provide improve-

ments, for the former approach, the number of reference

genomes still is insufficient for complex metagenome

assembly, while for the latter, the binning process only

seems to be satisfyingly work in very simple communities

(see below). Another alternative are ‘greedy’ assembly

approaches in which multiple metagenomic samples are

combined into one superassembly [11��,17��], though

with the associated risk of cross-assembling different

strains and species. In any case, while currently assem-

blers such as phrap [18], Arachne [19], JAZZ, Forge and

Celera Assembler [20] are being adapted and used to

assemble metagenomes, this research area needs further

active developments to increase assembly quality for

complex metagenomes, sometimes generated using a

combination of different sequence technologies.

Owing to the generally limited assembly of these data,

also gene prediction methods have to be adapted to deal

with (i) massive amounts of fragmented genes on short

sequences, (ii) the phylogenetic diversity in samples

that hampers the usage of species-specific training

sets and (iii) lower end quality of sequences leading to

within-frame stop codons and frameshifts. Recent devel-

opments use heuristically estimated codon models based

on the GC content of the small fragments to overcome

this [21]. Alternatively, extrinsic strategies to find coding

regions based on (a) their similarity to other regions in a

reference database (e.g. known (meta)genomes and/or

the sequence set under investigation) and (b) their synon-

ymous versus non-synonymous substitution rate (indicat-

ing evolutionary constraints) can be applied [22,23]. To

avoid gene prediction problems altogether, some studies

(e.g. [24�,25]) base their whole downstream analysis on

blastx annotation of reads, limiting themselves to the

‘known fraction’ of their dataset. The development of
www.sciencedirect.com
metagenome gene prediction software is still in its

infancy, and a rigorous evaluation of new and existing

methods is needed. Recently, two ‘classical’ gene pre-

dictors (Fgenesb and Critica/Glimmer) were evaluated

for this purpose, but unfortunately not compared with the

abovementioned heuristic/extrinsic approaches [9�]. Fge-

nesb performed markedly better (especially on non-

assembled sequences), but about 20% of genes were

missed and another 10% wrongly predicted, leaving

ample room for improvement, judged by the current

performance of these methods on full genomes. The

considerable differences between these two tools are

somewhat worrying given the wide range of method-

ologies that were used to analyze the metagenomes

published so far, suggesting artificial differences in the

resulting gene sets which hamper comparative analysis

([4]; see below).

Towards community understanding:
delineation of metagenome descriptors
To go from ‘a bag of genes’ towards a proper understand-

ing of an ecosystem, its inhabitants and its functioning, a

range of techniques are being developed to derive

parameters that are helpful in this process. These can

be subdivided into the following categories: (i) basic

descriptors; (ii) phylogenetic composition; (iii) functional

composition and (iv) population properties, though they

are interdependent (see below). When combined, they

can give a first glimpse into biodiversity and ecosystem

functioning. Here, we will describe some of the first

published methods towards this goal.

While more technical descriptors such as average read

length, contig size or assembly rate (as, for example

reported by references [3,16��]) make the nature of the

dataset more transparent, intrinsic, basic metagenome
descriptors, such as sequence composition reflect already

some environmental constraints. The descriptors range

from the GC content [26] over codon usage [21] to

oligonucleotide composition [27,28]. These measure-

ments are currently being used for phylogenetic read

classification and/or gene prediction (for the latter see

reference [21]). Another basic parameter that can be

derived from metagenomic shotgun reads is the effective

genome size (EGS; a measure of average genome size that

takes associated plasmids, inserted elements and phages

into account [29]). It can be used to normalize for gen-

ome-size effects in comparative metagenomics analyses

(see below), and, when combined with assembly infor-

mation, allows estimation of species richness [3,17��]. It

further can provide guidance on coverage issues, for

example how much more sequencing is needed to capture

most of unique sequences in a sample [3] or to complete

the most dominant genome [6��].

To understand the contribution of the different inhabi-

tants to the community, the deduction of the species
Current Opinion in Microbiology 2007, 10:490–498
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composition from metagenome data is of crucial import-

ance, but far from trivial. Two distinct concepts with

different aims should be discerned: (i) the classification of

each read/contig to species (or at least some level of

phylogenetic grouping), to possibly link functions of

genes encoded by the reads to the community members

exerting them and (ii) the quantitative determination of

general species composition of the environment at hand.

Several approaches for these two concepts have been

recently proposed.

Assigning contigs and genes to taxonomic groups is,

for complex samples, currently mostly done by ‘best-

BLAST-hit’ mapping (e.g. [17��,24�,30�,31,32�,33])

because of the low computational efforts and the usage

of the full spectrum of known genes as reference. On the

down side, it is generally not very accurate, cannot deal

with horizontal gene transfer (HGT) and does not allow

mapping reads to internal nodes of the tree of life (leading

to misleading mappings if the best-hit is from a phylo-

genetic group that is underrepresented in sequence data-

bases) [9�,34�]. Though methods are being developed to

deal with these problems, they still only allowed the

correct assignment of 25% of reads of a missing species

in simulations [35].

Alternatively, sequence composition based ‘binning’

approaches might be less influenced by biases in sequence

databases. Various techniques based on oligonucleotide

(2–8 mer) frequency signatures are being applied and

developed ([2,9�,16��,27,28,36]; see McHardy and Rigout-

sos in this issue). In a recent analysis on simulated meta-

genomes, the phylopythia binning tool outperforms a

‘best-BLAST hit’ and a basic oligonucleotide frequency

method [9�] but was unfortunately not compared with

any of the other recently developed methodologies. In

addition, only results on larger contigs (>8 kb or>10 reads)

were presented, while the big challenge in this field lies in

assigning <1 kb-sized reads that dominate unassembled,

complex samples. Given that currently only 60% of larger

contigs can be correctly assigned using the best approach

[9�], this problem is still far from being solved.

To estimate the species composition quantitatively (‘who

is there and how many of them are present?’), approaches

based on single-copy or equal-copy marker genes, whose

counts linearly scale with the number of individuals

present (and not e.g. with genome size), are used. After

early applications of this principle (using one marker gene

at the time; e.g. [3]), a first large-scale phylogenetic

approach was developed to map marker gene containing

reads to (internal and external) nodes of a reference tree

[34�]. This approach should also be more quantitative

than classic 16S rRNA PCR based approaches, as it does

not suffer from amplification bias or from quantification

problems due to varying 16S copy numbers [34�]. How-

ever, as 16S methods have the advantage of being able to
Current Opinion in Microbiology 2007, 10:490–498
map to a much larger sampling of genera, both techniques

should be regarded as complementary [34�].

To elucidate the functional composition of environ-

ments, first the predicted ORFs need functional annota-

tion. Strategies analogous to genome sequencing projects

have generally been used so far (see reference [4] for an

overview). The most common approach is BLAST-based

annotation by comparing ORFs against higher order

databases such as NCBI Clusters of Orthologous Groups

(COGs), TIGR funccats, STRING extended COGs,

SEED, KEGG, and so on ([4] and refs therein). However,

these techniques only allowed to functionally annotate

�25–50% of proteins per published metagenome [4],

which might be due to the limited blast sensitivity for

highly fragmented genes ([9�,37]; see below). In genome

annotation, two additional methodologies are being

employed to improve on this: profile-based homology

searches [38] and gene context approaches [39]. The

former are easy to implement by searching for protein

modules using domain databases (e.g. [40–42]) while the

latter offer more potential but need adaptation to the data.

In particular, gene neighborhood analysis, a powerful

function prediction concept for prokaryotic genomes that

does not require homology for the ORFs to be annotated,

can be used for function prediction in shotgun sequence

data [4,23,43,44]. Recently, Harrington et al. published an

improved methodology yielding high sensitivity on short

contigs (including unassembled reads), allowing function

prediction (using a combination of blast-based and pro-

file-based homology and neighborhood approaches) for

�50–80% of proteins in four metagenomics samples [44].

While homology-based approaches will be useful to trace

new functionally distinct (sub)families within known

superfamilies, neighborhood-based approaches are

particularly useful to discover and annotate completely

novel proteins associated to known processes, especially

in the light of biomining for novel industrially relevant

enzymes and catalysts (see Figure 1).

Recently, the first methods have been developed to

derive population properties from metagenomics data.

For example, Johnson and Slatkin [10] estimated growth

rates and mutation rates on the basis of site-frequency

mutation spectra derived from the raw reads (while

incorporating Phred quality scores) and von Mering

et al. [34�] measured relative evolutionary rate on the

basis of phylogenetic mapping of metagenomic marker

genes. Rusch et al. [11��] and Gill et al. [45��] used an

elegant technique dubbed ‘fragment recruitment’ to

investigate the amount of genome rearrangements and

gain first insights in population structure by aligning

mated sequence reads to reference genomes.

While, in complex samples, all the descriptors discussed

above (and probably more) are needed to move towards a

better understanding of ecosystem functioning, in less
www.sciencedirect.com
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Figure 1

GC content of the metagenomic soil and sea samples. The highest GC content is observed for both the soil samples while the ocean surface water

samples have the lowest. The only exception is from a Global Ocean Sampling (GOS), sample taken in a hypersaline lagoon with an exceptionally high

GC content. GOS samples taken from coastal (GS13) or fresh water, from a mangrove (GS32), embayment (GS5) or reef (GS25) also show a higher

value—possibly because of mixing with soil. Contaminations (GS00a/Sargasso1 [55]) or a higher fraction of eukaryotes in the sample due to filter

differences (GS01a, GS01 [3]) apparently also increase the GC content. Sample abbreviations: GSX, Global Ocean Sampling [11��]; MFS, Minnesota

farm soil [6��]; Darmstadt, Darmstadt soil [33]; NPSG, North pacific subtropical gyre [24�]; WLF, Whale fall [6��].
complex ecosystems dominated by a few species, a com-

bination of sequence composition binning and assembly

seems already sufficient to (almost) completely sequence

the community members. This, in turn, allows the assign-

ment of some metabolic activities to individual ecosystem

members. This allowed the reconstruction of metage-

nomic metabolic pathways and indicates cooperation

between species/phylogenetic groups within one environ-

ment (e.g. [1,2,8�]) or assign specific roles for distinct

species/phylogenetic groups in relation with their host

(e.g. [16��]). As it has only been possible to start exploring

‘who does what’ in these simple ecosystems, a great

challenge lies in the improvement of tools to address

these issues in increasingly complex environments to

understand the interrelationships of organisms living in

soil, the ocean or in the human body.

Metagenomes in context: comparative
analysis
Although the analysis of individual metagenomes has

greatly increased our understanding about microbial com-

munities, genome sequence analysis has shown that great

additive power comes from comparative approaches [46]

as they provide context to the individual samples.
www.sciencedirect.com
Comparison of different samples from the same or similar
environments can reveal the influence of particular

environmental factors on microbial communities. For

example, in a gradual sampling of sea water from the

surface to 4000 m depth, the increasing pressure and

reduction of light was shown to influence the functional

repertoire of organisms living at various depths [24�].
Similarly, comparisons of symbiont communities living

in distinct murine intestines allowed linking disease

(obesity) to the functional repertoire of the gut inhabi-

tants (in this case the authors showed increased energy

harvesting capacities [32�]).

Conversely, the comparison of diverse habitats’ metagen-

omes allows the discovery of general trends that link

metagenome and community properties with phenoty-

pic features of environments. For instance, one of the

most basic properties, the GC content, was shown to

differ significantly between environments, ranging from

high values in Minnesota farm soil to very low ones in

surface sea water [26]. Although the original study was

based on limited data, this observation is confirmed by

the recent Global Ocean Survey (GOS) data [11��],
where all open sea surface water sequences show low
Current Opinion in Microbiology 2007, 10:490–498



494 Genomics
GC content, while those from samples taken close to the

land (e.g. lagoons and beaches) where water can mix with

soil, show markedly higher values (see Figure 2). Like-

wise, a correlation between microbial genome size and

environmental complexity was shown [29] along with

the differences of evolutionary rates between environ-

ments [34�]. All these outcomes derived from the same
Figure 2

Biomining metagenomics data case study: nitrilases. Natural habitats are lik

detect them, functional, PCR-based or hybridization-based screening metho

metagenomics datasets. To illustrate a typical computational screen, we ex

in the Sargasso Sea (SGS) dataset [57] on an updated environmental datas

references [3,58–61] for similar studies). The tree (drawn using iTOL [62]) co

SGS (18; one more than reference [57]), MFS (3), WLF (3), and none in Acid

species [63] were detected. The colored rings label genes described by [57

previously proposed classification into subfamilies (outer ring [57]). The resu

(at least for ocean surface water) as the nitrilases-per-screened-protein ratio

data. The many newly added nitrilases seem to challenge the proposed cla

indicating a need for systematic updates. Although most of the proposed su

some became uncertain because of low bootstrap values or even fell apart.

specificities became apparent. The eukaryotes now clearly comprise severa

only one being related to the bacterial subfamily 2), and several novel bacte

some of which are deeply branching indicating a diverse substrate spectrum

Current Opinion in Microbiology 2007, 10:490–498
environmental datasets seem somehow related: the Sar-

gasso Sea surface water samples harbor the fastest-evol-

ving, smallest genomes with the lowest GC content,

while the Minnesota farm soil genomes appear to be

the largest, have the highest GC content and evolve the

slowest. Although individual links between GC content,

genome size and replication/evolutionary rate have been
ely to harbor many novel enzymes with biotechnological potential. To

ds [56] can be complemented by computational mining of

tend here the study by Podar et al. that detected 17 new nitrilases

et collection and UniRef (see Supplementary data for details and

ntains the 27 bait sequences and hits in UniRef (341), GOS (47),

Mine Drainage (AMD). All previously described nitrilases of uncultured

] (inner ring), nitrilases found in this study (middle ring) and the

lts imply a linear scaling of the identified enzymes with dataset size

is similar in Sargasso Sea and the much larger Global Ocean Sampling

ssification of this family into six bacterial and one eukaryotic subfamily

bfamilies could be extended by new members (including from archaea!),

Furthermore, novel subfamilies with probably distinct substrate

l distinct subfamilies (e.g. at least two distinct fungal groups exist,

rial subfamilies can be assumed with confidence (black in our ring),

.
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hypothesized before [47], the precise reasons for this

observation remain unknown.

Not only is the breadth of the metagenomic functional
complement linked to environmental factors (as

measured from genome size), but also its composition.

When one considers a habitat as one big intercommuni-

cating ‘soup’ of organisms that carry their genes to main-

tain this interplay, the combined metagenome should

reveal properties of the community and the environment

as a whole. Indeed, this gene-centric approach has shown

that the more similar the inferred functional composition

of metagenomes is, the more related are the respective

environmental phenotypes [6��,11��,32�]. Beyond general

trends, comparative approaches can also pinpoint particu-

lar proteins, protein families and cellular processes that

are likely to be responsible for the specific adaptations to

particular environments, as could be shown in the first

comparative study that used normalized overrepresen-

tions and underrepresentions of such functional units

[6��].

Comparative metagenomics can be also used to learn

about differences in the phylogenetic composition of

environments. It could be shown, for instance that the

detectable taxonomic groups of microbes have distinct

habitat preferences up to the subphylum level, which are

remarkably stable in time [34�]. Likewise, a metage-

nomics study revealed a clear non-random distribution

of phages in four ocean sampling sites, with a linear

correlation between genetic and geographic distance

[17��]. Finally, an analysis of the GOS data for aerobic

anoxygenic photosynthesisers (AAnPs) showed great vari-

ation in diversity, abundance and composition of AAnP

assemblages in different oceanic regions [48].

Interdependencies and pitfalls in comparative
metagenomics
Despite the great potential of comparative metagenomics

approaches, one should apply them cautiously. Various

environment-specific biological factors (see above) and

many (usually sample-specific) technical issues hamper

the direct comparison of environments, as they influence

each other and most results derived from these data.

As for the basic descriptors, differences in average gen-

ome size of samples (e.g. measurable by EGS [29]) will

implicitly lead to differences in the relative functional

composition of samples. For example, the sample with

the smallest EGS should always have a significant over-

representation of housekeeping genes as they are a con-

stant fraction while other functional categories grow with

genome size; no further biological conclusions should be

drawn for differences here without proper normalization.

Also, the observed differences in GC content [26] have an

impact on homology searches, phylogenetic analyses and
www.sciencedirect.com
binning. However, the extent of such effects still needs to

be determined.

The phylogenetic complexity of a sample strongly influ-

ences the (feasibility of) downstream analyses. For

example, the lower the species complexity, the higher

the coverage of each individual leading to better assembly

and consequently better gene prediction. Longer contigs

also improve the efficiency of neighborhood techniques

for function prediction and increase the chance of correct

phylogenetic assignment of fragments. Therefore, in

these samples, the ‘who does what’ question will be

easier to address.

Different functional constraints in environments can

result in different evolutionary rates [34�] and thus can

lead to skews in the gene and function detection rates

(e.g. faster evolving genes are more difficult to capture by

Blast and orthology assignment methods).

Limited sample coverage and phylogenetic diversity

might hamper the direct comparison of population
genetic parameters as robust estimates based on few data

points are difficult, and abundant species might hide the

real population structure in samples.

Besides the various biological factors, many technical
issues related to sampling, sequencing and annotation

influence downstream analyses. For instance, the fre-

quent usage of filters or other selection methods for

sampling directly influences the phylogenetic and func-

tional composition of the sample. For example, Johnston

et al. [49] described a surprising paucity of particular

nitrogen-fixing genes in the first Sargasso Sea dataset

[3], which was later criticized because of its failure to

take into account that the main contributors to these

genes (cyanobacteria) were probably not in the dataset

because of the filtering [50�]. Likewise, in their compari-

son of the phylogenetic composition within several meta-

genomics datasets, von Mering et al. noticed a

conspicuous lack of endospore-forming organisms, which

could be linked with their ability to withstand DNA

extraction protocols [34�].

Another effect comes from the sequencing technology

and protocols. It is first reflected in the read length that

depends on the technology (capillary (Sanger) sequen-

cing versus 454 pyrosequencing) but also on parameter

choices and other protocols (e.g. Sanger sequencing reads

from the whale fall and soil datasets average at �700 bp

after quality clipping, while the sargasso sea ones are

�850 bp [29]). Together with coverage (partly also

depending on the sequencing technology) this directly

influences the amount of assembly. The resulting differ-

ences in contig length influence the success and quality of

gene predictions, and the subsequent assignment of gene

functions. Short reads as produced by the first generation
Current Opinion in Microbiology 2007, 10:490–498
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of 454 GS20 sequencers are especially little informative as

they often are insignificant in the BLAST statistics (e.g.

in the mouse gut dataset �95% of 454 reads were unas-

signable to known genes/COGs/KEGGs, while for Sanger

reads this was �20–30% [32�]).

In addition to the factors described above, the selected

assembly, gene calling and annotation protocols them-

selves are yet another factor that complicates a direct

comparison of samples, for example regarding functional

composition. So far, a plethora of methodologies was used

in the different projects [4], necessitating a uniform,

standardized way of treating metagenomic data in order

to be able to compare results from different projects (see

Box 1). Only then and in conjunction with good coverage
Box 1 Suggestion for a minimal metagenome sequence analysis

standard (MINIMESS) to derive indicators for a dataset including

annotation protocol, coverage estimates and community

descriptors

The previously proposed Minimum Information about a Metage-

nomic Sequence (MIMS) standard covers detailed information

about primary information such as sampling location and

procedure, DNA isolation and sequencing and is an indispensable

tool to interpret metagenomic datasets [51�,52]. While this is

essential towards comparative metagenomics, the many

interdependencies and pitfalls (see text) call for an additional,

complimentary layer of reporting that provides a standardized

description of the metagenome and its inferred community

properties. A first prerequisite is the transparent and complete

description of data treatment (e.g. assembly, gene calling and

functional annotation protocol including the parameter settings).

In addition, we propose the reporting of a basic set of

metagenome descriptors, resulting from a standardized list of

analyses to be performed on each published dataset. This set of

descriptors provides an indispensable tool for the proper

interpretation and post-analysis of the data and the comparison of

metagenomes from independent samples.

(1) Basic sequence analysis: reporting of detailed assembly

statistics (including contig composition), gene density, average

gene length and fraction of predicted proteins with functional

assignment.

(2) Species composition: quantitative description of species

composition (marker gene approach, ideally complemented by 16S

PCR based method) and species richness estimate.

(3) Functional composition: higher level functional content

distribution (e.g. COG/KEGG/SEED, see main text).

(4) Species and gene coverage estimates.

(5) Linking of species and function: although phylomapping tools

are just emerging (see dedicated section in this review), it would be

favorable to provide a list of gene-species linkages, coming from

phylogenetic assignment of reads/contigs based on homology,

sequence composition and marker gene presence.

(6) Putative interfering biological factors: reporting of, for

example GC content and average genome size (EGS).

(7) Putative interfering technical factors: reporting of read length

and contig length distributions in relation to community complexity

(see also coverage estimates).
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estimates, presence and absence as well as overrepresen-

tion and underrepresentation of genes can be interpreted

more confidently. (Given the estimated diversity, was

coverage high enough to expect the absence of a gene

by chance?) To measure functional and/or phylogenetic

coverage, several techniques have been used, ranging

from the analysis of single-copy, non-linked genes

(mostly used when some full genomes can be almost

assembled, e.g. sludge [8�]), via theoretical calculations

based on the Lander–Waterman equation (e.g. [3,8�]) to

rarefaction approaches (e.g. [6��]).

Taken together, despite recent progress in method de-

velopment to derive individual parameters for metage-

nomics samples, considerable effort has to go into the

analysis of their interdependencies and the normalization

of data from different production lines. Standards for

some of the steps would be very helpful to make data

comparable and thus add enormous value to them for

little cost.

Minimal standards for annotation and
analysis
The more sampling conditions for metagenomics data-

sets are reported, the more detailed can be the inferences

of environmental constraints. Not only exact sample site

location and sampling methodology should be men-

tioned but also broad measurements on the (also non-

obvious) physical and chemical properties of the environ-

ment, as well as detailed descriptions of the habitat

should be made. However, often this is a considerable

effort beyond the scope of the individual project and

sometimes it is not even known what would be needed to

record. Hence, the development of a ‘Minimum Infor-

mation about a Metagenomic Sequence (MIMS)’ stan-

dard has been proposed in the community to enforce

some essential measurements when submitting data to

public databases [51�,52]. Beyond the proposed sample

information, we believe that a complementing set of

standard analyses is also necessary for proper interpret-

ation of metagenomic data (MINIMESS, see Box 1) and

should enable normalization of the heterogeneous data

for various comparative analyses (see previous para-

graph). A first step would be a transparent analysis pro-

tocol with all the parameters of the various methods

properly reported as they can have a considerable impact

on the results.

Over time, metagenomics data generation and analyses

protocols will diversify further and there is a need for an

accepted infrastructure [53,54] that can cope not only

with the heterogeneous data but also with agreements on

how to annotate and compare them. It is early days in

environmental genomics and important findings will

require robust and accurate tools and approaches—what

we have reviewed here is just the beginning of a new

exciting field emerging in computational biology.
www.sciencedirect.com
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