
FEBS Letters 582 (2008) 1283–1290
Minireview

Large-scale prediction of drug–target relationships

Michael Kuhna,1, Mónica Campillosa,1, Paula Gonzáleza,1, Lars Juhl Jensena,b,1, Peer Borka,c,*,1
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Abstract The rapidly increasing amount of publicly available
knowledge in biology and chemistry enables scientists to revisit
many open problems by the systematic integration and analysis
of heterogeneous novel data. The integration of relevant data
does not only allow analyses at the network level, but also
provides a more global view on drug–target relations. Here we
review recent attempts to apply large-scale computational anal-
yses to predict novel interactions of drugs and targets from
molecular and cellular features. In this context, we quantify
the family-dependent probability of two proteins to bind the same
ligand as function of their sequence similarity. We finally discuss
how phenotypic data could help to expand our understanding of
the complex mechanisms of drug action.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The increasing amount of publicly available chemical data

creates opportunities for the analysis and integration of re-

sources of molecular information at the interface between biol-

ogy and chemistry. While large-scale data sets have long been

publicly available in molecular biology, this spirit of openness

began only recently to spread in chemistry. Funding bodies such

as the National Institutes of Health (NIH) are fostering the cre-

ation of public databases, for example, PubChem [1] as part of

the NIH�s Molecular Libraries Roadmap Initiative. In addition,

more research areas are being considered pre-competitive by the

pharmaceutical industry. Consequently, we are witnessing an

increasing number of public databases that store information

about compounds along with properties and context.

The combined knowledge on individual drugs and targets can

be advantageously integrated with new high-throughput data

sets and concepts for systems-wide analysis of their relations,

thus opening a new road to predict drug–target relationships

and the effects of drugs on human biology. Until exhaustive

screens have been performed that study the effect of all human
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drugs on all human proteins under various conditions [2,3], com-

putational and systems biology approaches will be invaluable in

extending our knowledge on drug–target relations systemati-

cally.

Here we (i) review publicly available resources of known

drug–target relations with the aim to define a gold standard

of �positives� for benchmarking predictive approaches, (ii) illus-

trate how a global network view provides essential context for

individual drug–drug and drug–target relations, (iii) discuss

molecular features of drugs and target proteins that can be uti-

lized for the prediction of drug–target relations, and finally,

(iv) describe how phenotypic information could help to expand

our understanding of the molecular and cellular effects of

drugs. Although we focus here on relations between drugs

and targets, many of the presented approaches and resources

are applicable to chemical–protein relations in general. Like-

wise, chemical–protein relations implicitly include those of

drugs and their targets. We deliberately do not address the im-

pact of individual genetic makeup [4,5] and environmental fac-

tors [6,7] on both mechanism of action and toxicity of drugs as

the amount of available data is still very limited.

The exploitation and integration of heterogeneous data from

existing resources will enable the prediction of many hitherto un-

known targets for existing drugs eventually resulting in new

leads for treating human diseases. The inclusion of the context

of individual drug–target relations, e.g. in the form of a network,

will also aid in anticipating indirect consequences of drug treat-

ment such as side effects and undesirable drug interactions.
2. Resources and approaches for large-scale prediction and

analysis of protein–chemical relations

2.1. Capturing the existing knowledge

To form a basis for the prediction of novel drug–target rela-

tionships it is necessary to collect as much information as pos-

sible on small molecules, proteins and their interactions.

Historically, chemists and biologists have taken very different

approaches to storing and sharing data.

Information on the sequence, structure and function of pro-

teins is collected in public databases such as UniProt [8] and

PDB [9]. By contrast, chemical databases have traditionally

been commercial and thus not freely accessible. Public dat-

abases on proteins emerged in the 1970s, fostered by the avail-

ability of digital storage and by requirements from publishers

to deposit data in public resources. The history of chemical

databases can be traced into the 19th century; for example,
blished by Elsevier B.V. All rights reserved.
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the Beilstein Handbook of Organic Chemistry has been pub-

lished since 1881. The distribution of data in the form of books

and the economic success of the chemical industry have lead to

a tradition of commercial databases on chemical structures

and their properties such as the Chemical Abstracts Registry.

Only in the past decade several public alternatives have been

created, including repositories like PubChem [1], ChEBI [10]

and ChemDB [11] that contain information on chemicals

and their physicochemical properties. Other databases such

as ZINC [12] have been designed as resources for virtual

screening applications. These emerging public databases allow

access to useful parts lists of proteins and chemicals.

For understanding higher-order processes these parts list

have to be connected by determining how the parts interact

within biological systems. For proteins, several public reposito-

ries for experimentally determined interactions have been

established (e.g. BioGRID [13], IntAct [14] and MINT [15])

using a common standard, PSI-MI [16]. Notably, publishers en-

force that new experimental evidence is openly accessible to the

research community, for example data from high-throughput

screens for physical [17,18] and genetic interactions [19,20].

This provides a foundation for the construction of tools that

integrate such interactions with other data types (e.g. the

STRING database [21] and other resources reviewed in [22]).

The corresponding databases for the relationships of

chemicals have not yet reached a comparable state. Although

large-scale screens of chemicals in cell-based assays have been

performed and are available from repositories such as Chem-

Bank [23] and PubChem BioAssay, deposition of data from

chemical screens in standardized repositories is not being en-

forced. The difficulties involved in obtaining and combining

the data has hampered the development of methods for pre-

dicting relationships between drugs; to our knowledge cur-

rently only one public tool exists that combines data from

chemical screens and other sources to infer relationships for

chemicals, namely STITCH [21] (Fig. 1).

Databases that centre on drug–target relations are also

emerging in the public sector: the Therapeutic Target Database

TTD [24], DrugBank [25], SuperTarget [26] and Matador [26]
Fig. 1. Network context of drugs and targets. Proteins are shown as spher
capsules. Connecting lines (edges) depict known or predicted associations.
STITCH resource [21] from which both examples are taken. (a) Drug–target
agonist cisapride also binds to the cardiac ion channel hERG (KNCH2), whi
the interaction of cisapride with metabolizing Cytochrome P450 enzymes
sources, as depicted by the colored lines: experiments (magenta), databases (c
serotonin receptors and serotonin transporter inhibitors. Compounds with s
connected by cyan lines and form two distinct groups. The serotonin recepto
inhibit (red line) the serotonin receptor HTR2A. By contrast, the second-gen
known to be more promiscuous and inhibit both the serotonin transporter S
all collect direct drug–target interactions. In addition, Mata-

dor [26] includes indirect drug–target interactions that capture

more distant effects of drugs on the human protein network.

Resources like the PDSP Ki database [27] and BindingDB

[28] provide in vitro binding affinities that add knowledge

about potential lead molecules; for example, Roth and collab-

orators discovered that Salvinorin A, the main active ingredi-

ent of the hallucinogenic plant Salvia divinorum, is a potent

kappa opioid agonist by screening it on a collection of recep-

tors [29]. The accumulated content of these databases (summa-

rized in Table 1) constitutes a gold standard. Such a standard

is crucial for the development of prediction methods, for exam-

ple, in the context of proper benchmarking protocols.

All the databases described above contain experimental data

related to individual proteins, chemicals or binary interactions.

To obtain a global picture of their interplay, the data therein

can be integrated with a variety of existing molecular, cellular

and organismal data such as microarray experiments (e.g.

GEO [30] or ArrayExpress [31]) and pathways (e.g. Reactome

[32], KEGG [33] or MetaCyc [34]). By bringing together these

heterogeneous data types, it is possible to construct a network

that captures many aspects of how drugs and other small-mol-

ecules function in a cellular context; for an example see Fig. 1

created using the STITCH database and its visualization capa-

bilities [21].

2.2. Context and its visualization

Systems biology approaches are increasingly being applied

to investigate the relationships between proteins, utilizing the

biological context of a protein to gather more information

about its function [22]. Similarly, the context of a drug needs

also to be considered as drugs usually do not only affect the ac-

tion of isolated targets, but influence entire pathways. Thus the

introduction of systems biology concepts into drug discovery is

being foreseen [35,36]. While there are many specialized tools

to visualize the context of proteins (e.g. [37–40]), chemists

mostly have to resort to general purpose tools such as Cyto-

scape [41,42] to view networks involving chemical compounds,

although first visualization tools are emerging [21].
es (with representative PDB structures, if available) and chemicals as
Edge representation depends on query and visualization mode of the
relationships of cisapride. The serotonin receptor (HTR4 and HTR2A)
ch leads to arrhythmias as a side effect. In addition, the network shows
(CYP3A4 and CYP2D6). The interactions are derived from various
yan), text mining (yellow) and homology (lavender). (b) Antagonists of
imilar MeSH (Medical Subject Headings) pharmacological action are

r antagonists ketanserin, clozapine and risperidone bind (blue line) and
eration antidepressive agents fluoxetine, nefazodone and trazodone are
LC6A4 and the serotonin receptor HTR2A.



Table 1
Databases freely available for academic research that contain information on drug–target interactions

Database Number of chemicals Content

Ligand–target databases
DrugBank

http://redpoll.pharmacy.ualberta.ca/
drugbank/

�1000 FDA-approved drugs,
and �3000 experimental drugs

6000 drug–targets relationships; chemical, pharmacological
and pharmaceutical data

Matador
http://matador.embl.de/ �770 drugs �7000 direct and �5000 indirect drug–target relationships;

links to literature sources for interactions

SuperTarget
http://insilico.charite.de/supertarget/ �1500 drugs 7300 drug–target relations

TTD
http://bidd.nus.edu.sg/group/cjttd/TTD_ns.asp �2100 drugs drug–target relationships with 1535 targets

PDSP Ki

http://pdsp.med.unc.edu/pdsp.php �6800 chemicals �46,000 Ki values

BindingDB
http://www.bindingdb.org/ �18000 chemicals �30000 records with Ki, IC50, or thermodynamic data

Cellular assays
PubChem BioAssay

http://pubchem.ncbi.nlm.nih.gov/ �560000 chemicals �600 single compound and high-throughput
screening assays

ChemBank
http://chembank.broad.harvard.edu/ �1.2 million chemicals 2500 high-throughput biological assays from

188 screening projects

Note: Ki: inhibition constant; IC50: concentration of an inhibitor that is required for 50% inhibition of its target.
Database content was recorded on November 1, 2007.
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Networks have been used recently to analyse topological and

global properties of chemical–protein interactions such as poly-

pharmacology (a term usually used to describe multiple actions

for the same drug [43], for examples, see Fig. 1) and drug target–

disease relationships [44,45]. Paolini and co-workers [46] pro-

vided an overview of the existing polypharmacology relations

by integrating data from several proprietary and public chemi-

cal screening sources. The authors presented a protein network

in which two proteins are connected if chemicals are known to

bind both of them with similar affinity. In this network a highly

family-dependent degree of promiscuity of targets was ob-

served, both within the same family and across families.

A similar level of target promiscuity was observed by

Yıldırım and co-workers [45] in a network of known drug–

target relationships obtained from DrugBank [25]. Within a

interaction network of human proteins derived from yeast

two-hybrid screens [47,48], the authors also explored the

distribution of distances between drug targets and disease

genes described in OMIM [49]. Although some drugs were

found to target disease genes or their direct network neigh-

bours, the distance distribution otherwise matched that of

the random control. This suggests that most drugs in fact alle-

viate the symptoms (being palliative drugs) rather than target

directly the actual cause of the disease [45].

Although such networks attempt to offer a global view on

the relations of proteins and chemicals, our knowledge of

drug–target relations is far from complete and needs to be ex-

panded in order to increase our understanding of the actions of

drugs. One promising avenue in this regard is the accurate pre-

diction of drug–target relations followed by directed experi-

mental validations.
3. Concepts for large-scale drug–target predictions

3.1. Predicting relations based on molecular features of

chemicals and proteins

Exploiting similarities between chemical structures is a

common way to infer the activity of compounds. The most

prevalent approach for comparing compounds is to convert

the two-dimensional representation of each compound into a

fingerprint either by using a defined list of substructures or

by encoding (hashing) all the encountered substructures up

to a certain size. This results in fixed-length bit vectors for

which the Tanimoto (or Jacquard) similarity measure is com-

puted by dividing the size of intersection of the set bits by

the size of the union [50]. Alternatively, chemical similarity

can be determined by aligning three-dimensional models of

the compounds [51–53]. To illustrate these similarity measures,

we show two- and three-dimensional structure comparisons of

the monoamine oxidase inhibitor pargyline with five other

compounds (Fig. 2).

Initial optimistic results [54] on the relationship between

chemical similarity and activity were put into perspective by

the analysis of more unbiased chemical libraries. For these,

there is only a 30% chance of binding the same compound at

the similarity level previously thought to warrant >80% chance

[55]. For example, only one of the compounds in Fig. 2 with

high similarity to pargyline also inhibits monoamine oxidase.

To overcome the limited predictive power of pairwise chemical

structure comparison, Keiser and co-workers developed a sta-

tistical model to detect remote, yet significant similarities be-

tween groups of drugs and used it to predict novel drug–

target relations [56]. Other groups used Bayesian classifiers

http://redpoll.pharmacy.ualberta.ca/drugbank/
http://redpoll.pharmacy.ualberta.ca/drugbank/
http://matadorembl.de/
http://insilico.charite.de/supertarget/
http://bidd.nus.edu.sg/group/cjttd/TTD_ns.asp
http://pdsp.med.unc.edu/pdsp.php
http://www.bindingdb.org/
http://pubchem.ncbi.nlm.nih.gov/
http://chembank.broad.harvard.edu/
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to correlate the presence or absence of chemical substructures

with protein binding properties and reported high success rates

for known interactions [46,57,58]. More specialized chemical

similarity methods have also been developed that take, for

example, the similarity of target proteins into account [59].

Homology relations between proteins can be exploited to

predict binding of drugs to proteins that are related to known

drug targets [2]. A study on crystal structures of alpha-helical

proteins in the PDB showed that the chemical similarity be-

tween ligands is higher for proteins with similar sequences

[60]. Here, we generalise this to all proteins for which ligand

binding constants are available from the PDSP Ki database

[27]. Using Ki = 10 lM as the threshold for what is considered

‘‘binding’’, we quantify the probability that two proteins bind

the same ligand as a function of their sequence similarity sep-

arately for four classes of target proteins (Fig. 3).

Considerable predictive power is observed for G-protein

coupled receptors (GPCRs), the largest class of proteins in
the database. The probability of binding the same ligand is

close to zero for proteins without detectable similarity, but in-

creases to over 60% at a normalized bitscore of about 0.2 (on

average corresponding to about 30% sequence identity, see

Fig. 3). From a target-prediction perspective, it is thus likely

that two drugs cross-react with their GPCR targets only if

the sequences of latter are recognizably similar to each other.

A similar, albeit less prominent trend is observed for nuclear

receptors and for non-kinase enzymes. By contrast, the proba-

bility of two protein kinases (including receptor tyrosine ki-

nases) to bind the same ligand remains almost constant

(around 10–30%) throughout the range of their respective pro-

tein similarities. While evolutionary distant GPCRs and en-

zymes (other than protein kinases) have a very low

probability of sharing the same ligand, this is not the case

for homologous kinases with low sequence similarity. These

findings agree with previous studies [61,62], which found that

kinase inhibitors show little specificity towards similar proteins
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(see Fig. 3 of Fabian et al. [62]). The experimental results by

Fabian and co-workers [62] currently comprise most of the

data on kinases in the PDSP Ki database.

While sequence similarity measures can already directly be

used to predict ligand sharing for two proteins, spatial molec-

ular features should also be considered. In the case of the ki-

nase protein family, non-polar residues surrounding the ATP

binding site and their dehydration propensity hot spots seem

to determine binding promiscuity and specificity [63]. This

illustrates the importance of taking into account the three-

dimensional structure of drugs and their targets.

Protein and chemical structure matches are yet another cat-

egory of molecular features that can be utilized for drug–target

predictions. These three-dimensional fits are usually exploited

for lead discovery and optimization by using a variety of dock-

ing strategies for computational virtual screening. In addition

to the structure of the biomolecular target, all docking algo-

rithms require two components: a scoring function and a

search method to find its optimum [64]. Docking of known

or constructed compounds has been used to discover novel li-

gands for well over 30 targets (see [65] for examples) and it has

also revealed novel activities of marketed drugs. For example,

a recent screen revealed that phenothiazine antipsychotics are

weak antagonists of the human androgen receptor. Further

optimization of this new lead improved their antagonist effect

on the androgen receptor and reduced the effects of their pri-

mary target [66].
3.2. Exploitation of phenotypic effects of drug treatment for the

prediction of drug–target relations

Phenotypic information from diseases has been valuable to

predict novel associations between genes and diseases (e.g.

[44,67]). In the context of small molecules, information from

phenotypic assays has been used extensively to find lead ther-

apeutic compounds [68–70] and more recently has been

exploited computationally by phenotypic profiling methods

to predict novel chemical–chemical and chemical–gene associ-

ations [71,72].

In phenotypic profiling methods, each compound is screened

against a battery of phenotypic assays. The resulting activity

profile can subsequently be compared with those of other com-

pounds to infer novel chemical–chemical relationships. Three

types of profiles are commonly used: gene-expression, cytotox-

icity and chemical–genetic profiles. Gene-expression profiling

methods compare the changes in gene expression upon treat-

ment with chemicals to predict which chemicals may have a

common mechanism of action [73,71]. Using such an ap-

proach, novel relationships between genes, chemicals, path-

ways and diseases can also be found, for example by

comparing gene-expression profiles for chemicals with those

for gene mutations [71] or disease states [74].

Cytotoxicity-profiling methods record the growth inhibition

of cell lines caused by treatment with compounds. Cytotoxicity

profiles across 60 human tumour cell lines (NCI60) have been

analyzed extensively by the US National Cancer Institute
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(NCI), for example, finding correlations between known mech-

anism of action and activity profiles [72] or gene expression

[75]. Chemical–genetic profiling methods exploit the enhanced

drug sensitivity of diploid yeast cells in which the copy number

of a target gene is reduced. From the growth inhibition caused

by each compound in a collection of yeast haploid deletion

mutants [76], a profile is derived. Chemicals with similar pro-

files have been shown to have similar target activity [77,78].

Correlating similar biological activities between different

compounds makes it possible to discover relations between

chemicals with the same mechanism of action and thus to

make inferences about the targeted proteins or pathways.

For instance, the similarity of chemical–genetic profiles of ami-

odarone (an antianginal and antiarrhythmic) and tamoxifen (a

breast cancer therapeutic) observed in a yeast haploid deletion

screening suggests that tamoxifen disrupts calcium homeosta-

sis as amiodarone does [79].

This logic can be extended to other phenotypic measures.

For example, drugs with similar biological activity show simi-

lar side effects [80]. Therefore, by comparing side effects pro-

files of drugs, it is likely that novel associations between

drugs and protein targets can be found. In addition to drug

side effects, other types of phenotypic data like drug interac-

tions, when combined with phenotypic information from

knockout animal models, could possibly be exploited in a

large-scale manner to find novel associations between drugs,

their targets and possibly the disease pathway in which the

drugs are involved [81].
4. Conclusions

The complex molecular, cellular and organismal effects that

drugs cause in humans have been attributed to a number of fac-

tors such as the interaction with additional target proteins, path-

way context, drug–drug interactions, different dosage levels, drug

metabolization and aggregation or irreversible target binding of

the drug [82–86]. Despite these multiple influencing factors, it is

becoming evident that prediction methods based on combining

phenotypic information with known molecular activities should

be able to generate many novel drug–target relationships.

Furthermore, it seems feasible to exploit the growing

amount of data we have reviewed here to considerably enhance

our understanding of the various molecular mechanisms

underlying the complex effects of existing drugs. This untan-

gling of the various factors influencing drug effects will proba-

bly even enable us one day to predict cellular and phenotypic

effect of novel drugs.
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