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The genome of the model beetle and pest
Tribolium castaneum
Tribolium Genome Sequencing Consortium*

Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of
generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence
here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large
expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium
is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example,
Tribolium has retained more ancestral genes involved in cell–cell communication than Drosophila, some being expressed in
the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions
differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and
identification of targets for selective insect control.

By far the most evolutionarily successful metazoans1, beetles
(Coleoptera) can luminesce (fireflies), spit defensive liquids (bom-
bardier beetles), visually and behaviourally mimic bees and wasps, or
chemically mimic ants that detect intruders by their foreign odour.
Many beetles (for example, boll weevil, corn rootworm, Colorado
potato beetle and Asian longhorn beetle) are associated with billions
of dollars of agricultural and natural resource losses.

The red flour beetle, Tribolium castaneum, found wherever grains
or other dried foods are stored, has a highly evolved kidney-like
cryptonephridial organ to survive such extremely dry environments.
It has demonstrated resistance to all classes of insecticides used
against it. Like all beetles, Tribolium has elytra (wing covers) that
coordinate precisely with folding wings, allowing flight while provid-
ing protection.

Tribolium facilitates genetic analysis with ease of culture, a short
life cycle, high fecundity, and facility for genetic crosses (see ref. 2),
allowing efficient genetic screens by means of chemical mutagens,
radiation and binary transposon systems3. As in Caenorhabditis ele-
gans, RNA interference (RNAi) is systemic in Tribolium, facilitating
knockdown of specific gene products in any tissue, developmental
stage or offspring of double-stranded (ds)RNA-injected females4,5.

Particularly favoured for developmental studies, Tribolium is
much more representative of other insects than is Drosophila6. In
contrast to Drosophila, Tribolium larvae display eyes in a fully formed
head and three pairs of thoracic legs (Supplementary Fig. 1). In
addition, Tribolium develops via short-germ embryogenesis where
additional segments are sequentially added from a posterior growth
zone (Supplementary Fig. 1). This proliferative mechanism of seg-
mentation differs from the Drosophila model, but resembles that of
vertebrates and basal arthropods such as millipedes7.

Genome sequence and organization

Approximately 1.52 million sequence reads (7.33 coverage) were
generated from the highly inbred Georgia 2 (GA2) strain and
assembled into contigs totalling 152 megabases (Mb) and scaffolds
spanning ,160 Mb of genomic sequence (Supplementary Tables 1–4
and Supplementary Information). Almost 90% of this sequence was
mapped to the ten Tribolium linkage groups using a genetic map of

,500 markers generated from the GA2 strain8. Excluding hetero-
chromatic regions dense in highly repetitive sequences, the genome
is well represented and of high quality (see Supplementary Data for
details).
G1C content. Tribolium, like Apis, has a very (A1T)-rich genome
(33% and 34% G1C, respectively), but Tribolium G1C domains
lack the extremes of G1C content present in Apis mellifera (Fig. 1
and Supplementary Fig. 3). Despite global G1C similarity to Apis,
genes in Tribolium, as in Anopheles and Drosophila but not Apis, show
a bias towards occurring in (G1C)-rich regions of the genome
(Fig. 1). Whatever mechanism drives the accumulation of A1T
nucleotides in Tribolium, it does not affect genes in the manner
observed in the honeybee, where perhaps additional mechanisms
are present.
Repetitive DNA. Fully one-third of the Tribolium genome assembly
consists of repetitive DNA, which is also (A1T)-rich. Compared to
other insects, there is a paucity of microsatellites (1–6-base-pair (bp)
motifs) in Tribolium9. However, Tribolium contains a relative excess
of larger satellites, including several with repeat units longer than
100 bp (2.5% of the Tribolium genome compared with 0.7% in
Drosophila). Most (83%) of the microsatellites are found in inter-
genic regions (63%) or introns (20%), but there is strong over-
representation of non-frameshift-causing repeats (3- and 6-bp
motifs) due to a dearth of dinucleotide repeats (see Supplementary
Information). Of 981 randomly chosen microsatellites, 509 (55.2%)
are polymorphic in a sample of 11 Tribolium populations from
around the world9, providing an extensive collection of markers for
population studies. Preliminary efforts to assess global population
structure show a shallow but significant correlation between geo-
graphic and genetic distance (Supplementary Fig. 4). This suggests
that anthropogenic dispersal may maintain a modest level of gene
flow across vast distances in this human commensal.
Transposable elements. Transposable elements and other repetitive
DNA accumulate in regions along each linkage group that resemble
the pericentric blocks of heterochromatin visible in HpaII-banded
chromosomes10. These regions are probably composed largely of
highly repetitive heterochromatic sequences, and represent most of
the 44-Mb difference between the estimated genome size (0.2 pg or
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204 Mb11) and the current assembly (160 Mb). Indeed, as much as
17% of the Tribolium genome is composed of a 360-bp satellite12 that
constitutes only 0.3% of the assembled genome sequence. Several
families of DNA transposons, as well as long terminal repeat (LTR)
and non-LTR retrotransposons, constituting approximately 6% of
the genome, were identified via encoded protein sequence similarity
to previously identified elements using TEPipe or BLAST, and are
listed in Supplementary Table 5.
Telomeres. Tribolium has a telomerase and telomeres containing
TCAGG repeats13, a variant of the standard arthropod TTAGG telo-
meric repeat. Manual assembly of the proximal regions of multiple
telomeres beyond the ends of the assembled scaffolds (Supplemen-
tary Information) reveals TCAGG repeats interrupted by full-length
and 59-truncated non-LTR retrotransposons belonging to the R1
clade, best known for insertions in the rDNA locus14. Tribolium
telomeres range in length from 15 kilobases (kb) upwards and prob-
ably represent a stage intermediate to the loss of telomeres and telo-
merase in Diptera compared with the simple canonical structure of
the honeybee15 or the more regular insertion of non-LTR retrotrans-
posons into the simple repeats of the silkmoth16.

Gene content and the proteome
Comparative gene content analysis. To understand the consensus
set of 16,404 gene models in the context of other available insect and
vertebrate genomes, all genes were classified according to their degree
of similarity using systematic cross-species analysis. Five insects
(Drosophila melanogaster, Anopheles gambiae, Aedes aegypti, T. cas-
taneum, A. mellifera) and five vertebrates (Homo sapiens, Mus
musculus, Monodelphis domestica, Gallus gallus, Tetraodon nigrovir-
idis) with similar phylogenetic branching orders were chosen for
the comparison. We found the fractions of universal and insect-
specific orthologues in Tribolium similar to other insect genomes,
as expected, whereas the number of genes without similarity is

considerably higher (Fig. 2), possibly attributable to less stringent
gene prediction.

Over 47% of Tribolium genes (7,579) are ancient, with traceable
orthologous relations between insects and vertebrates including 15%
(2,403) universal single-copy orthologues. Another 1,462 Tribolium
genes (9%) constitute the core of what are currently insect-specific
orthologues. In comparison, 21% (4,937) of human genes have
vertebrate-specific orthologues.

Several hundred ancient genes seem to be under limited evolution-
ary selection and were independently lost in several species studied
(the patchy fraction, defined in Fig. 2). Each new genome uncovers
previously invisible ancestral relations among genes—for example, as
many as 126 orthologous gene groups shared between Tribolium and
humans seem to be absent from the other sequenced insect genomes
(Fig. 3 and Supplementary Table 10), 44 of which are single-copy
genes present in all vertebrates.

The evolutionary emergence of many predicted Tribolium genes is
not clear. Thousands of genes currently appear to be species-specific
as either no sequence similarity to other genes is detectable, or homo-
logy but not orthology can be determined. Reassuringly, this fraction
is similar in Tribolium and Drosophila.

We quantified the species phylogeny using a maximum likeli-
hood approach with the concatenated multiple alignment of 1,150
universal single-copy orthologues present in all the organisms
studied—an ideal genome-wide data set of essential genes evolving
under similar constraints (Fig. 2 and Supplementary Fig. 6). This
analysis confirmed previous analyses based on expressed sequence
tag (EST) sequences that the Hymenoptera are basal within the
Holometabola17. The shorter branch length for Tribolium implies
that the elevated rate of evolution observed in Drosophila and
Anopheles occurred more recently18.
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Figure 1 | Cumulative distribution of genic and genomic G1C-content
domains in Apis mellifera, Anopheles gambiae, Drosophila melanogaster and
Tribolium castaneum. Cumulative distributions show the fraction of genes
(thick lines) or of the entire genome (thin lines) occurring in G1C-content
domains less than a given percentage G1C (,X). The more (A1T)-rich half
of the T. castaneum genome contains only 30.8% of all T. castaneum genes
(31.4% and 33% of A. gambiae and D. melanogaster genes, respectively),
whereas the more (A1T)-rich half of the A. mellifera genome contains
77.6% of its genes. At every point on the T. castaneum, A. gambiae and
D. melanogaster curves there are fewer genes present in the fraction of
the genome less than a given percentage G1C than would be expected if the
genes were randomly distributed. In contrast, A. mellifera exhibits the
opposite distribution.
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Figure 2 | Insect gene orthology. Comparison of the gene repertoire in five
insect and five vertebrate genomes, ranging from the core of metazoan genes
(dark blue fraction on the left) to the species-unique sequences (white band
on the right). The striped boxes correspond to insect- and vertebrate-specific
orthologous genes, where the darker bands correspond to all insects or
vertebrates (allowing one loss). N:N:N indicates orthologues present in
multiple copies in all species (allowing one loss); patchy indicates ancient
orthologues (requiring at least one insect and one vertebrate gene) that have
become differentially extinct in some lineages. The species tree on the left
(shown in detail in Supplementary Fig. 6) was computed using the
maximum-likelihood approach on concatenated sequences of 1,150
universal single-copy orthologues. It shows an accelerated rate of evolution
in insects and confirms the basal position of the Hymenoptera within the
Holometabola17. Aaeg, Aedes aegypti; Agam, Anopheles gambiae; Amel, Apis
mellifera; Dmel, Drosophila melanogaster; Ggal, Gallus gallus; Hsap, Homo
sapiens; Mdom, Monodelphis domestica; Mmus, Mus musculus; Tcas,
Tribolium castaneum; Tnig, Tetraodon nigroviridis.
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Gene family expansion, frequently associated with a particular
adaptation pressure, might reveal physiologically and phenotypically
unique features of beetles (Supplementary Table 9 and protein family
discussions below). Many duplications shaped the gene content of
Tribolium, most notably among odorant-binding proteins and the
CYP450 subfamilies CYP6 and CYP9 (Supplementary Fig. 11), some
of which are involved in the development of insecticide resistance in
the Diptera19. Duplication of genes under copy-number selection in
other species is indicative of species-specific neo-functionalization20.
At least 152 genes duplicated in Tribolium have single-copy status in
all other insects studied, including sevenfold duplication of genes
orthologous to Drosophila CG1625, encoding a putative structural
constituent of cytoskeleton, and human ENSP00000269392, encod-
ing centrosomal pre-acrosome localization protein 1.

We also analysed the phylogenetic distribution of orthologous
gene group members to quantify evolutionary gene losses21.
Although least affected, dozens of single-copy orthologues seem to
be lost in each lineage. Thirty-eight such genes lost in Tribolium
include rather unique genes, encoding phosphotriesterase-related
protein and peroxisome assembly factor 1 (peroxin-2), compared
to 59 such genes lost in Drosophila. Notably, for the less restricted
fractions of orthologues (defined in Fig. 2), several hundred gene
orthologues have been lost in each species.

Analysis of specific gene sets

In addition to a global automated analysis of the predicted Tribolium
gene set, the consortium manually annotated and analysed ,2,000
genes (some additionally subjected to RNAi and expression analysis),
focusing on developmental processes and genes of importance for
agriculture and pest management.

Development

We identified and analysed homologues of known insect and
vertebrate developmental genes to gain novel insights into the
molecular basis of developmental differences between Drosophila
and Tribolium. Supplementary Table 11 lists selected Tribolium
developmental genes and their Drosophila and Apis orthologues.
Oogenesis. Despite profound differences in ovarian architecture—
telotrophic versus polytrophic—we identified Tribolium orthologues

of most Drosophila genes required for stem cell maintenance, RNA
localization and axis formation. Like Apis, however, Tribolium lacks a
bag of marbles orthologue, which is essential for the differentiation of
cystoblast versus germline stem cells in Drosophila22. Interestingly,
an orthologue of the gene gld-1, which fulfils a similar function in
C. elegans22, is present in Tribolium.
Anterior–posterior patterning. Analysis of the genome sequence
confirmed the absence of a bcd orthologue in Tribolium. Instead,
anterior patterning is synergistically organized by otd and hb
(ref. 23). However, it is still unclear how the posterior gradient of
Tribolium Caudal is shaped in the absence of Bicoid. Notably,
Tribolium contains an orthologue of mex-3, a factor that translation-
ally represses the C. elegans cad homologue24. Although the Tribolium
genome contains orthologues of the Drosophila segmentation genes,
their functions are not entirely conserved25–27. Furthermore, the
genome reveals the unexpected polycistronic organization of a novel
gap gene, mille-pattes28, the transcript of which encodes several short
peptides.

In contrast to the classical protostomian model organisms
Drosophila and Caenorhabditis, Hox genes in Tribolium map to a
single cluster of ,750 kb on linkage group 2. Orthologues of all
Drosophila Hox genes and the Hox-derived genes ftz and zen are
transcribed from the same strand, and we find no evidence for inter-
spersion of other protein-coding genes. Taken together, these results
suggest that the evolutionary constraints preserving Hox cluster
integrity still function in Tribolium.
Dorso-ventral patterning. As in Drosophila, the dorso-ventral axis of
the Tribolium embryo depends on a nuclear gradient of Dl, an NF-kB
protein, which is established through ventral activation of a Tl recep-
tor29 (one of four in Tribolium). Factors required for localized Tl
activation are also present in Tribolium (potential Tl ligands: six
spz-like genes; extracellular proteases: one gd, six snk and four tan-
dem ea genes), suggesting that, as in Drosophila, an extra-embryonic
signal induces the embryonic dorso-ventral axis.

Tribolium sog inhibition of Dpp/BMP generates a patterning gra-
dient along the dorso-ventral axis30. Similar chordin/sog function in
spiders and a hemichordate suggest that this may represent the ances-
tral bilaterian condition30. Like Apis, Tribolium lacks an orthologue of
Drosophila scw, but knockdown of another ligand, Tribolium gbb1,
affected the embryonic Dpp/BMP gradient. Tribolium contains
orthologues of all five Drosophila TGF-b receptors; however, Dpp
signalling moderators that have duplicated and diverged in
Drosophila, such as Tol/tok and Cv/tsg, occur as a single copy in
Tribolium. Most strikingly, Tribolium contains homologues of
BMP10 as well as bambi, Dan and gremlin BMP inhibitors, which
are all known from vertebrates, but are not found in Drosophila.
The growth zone. We identified several members of the Fgf and Wnt
signalling pathways. The expression patterns of Tribolium Fgf8,
Wnt1, Wnt5 and WntD/8 (refs 31, 32) highlight the dynamic organ-
ization of the growth zone and underline its role in axis elongation.
Head patterning. Orthologues of 25 out of 30 key regulators of the
vertebrate anterior neural plate are specifically expressed in the
Tribolium embryonic head (Supplementary Table 12). Two ortholo-
gues are not expressed in the head neuroectoderm (barH, arx) and
three do not have Tribolium or Drosophila orthologues (vax, hesx1,
atx). Of the canonical Drosophila head gap genes, only the late head-
patterning function of otd is conserved. ems function is restricted to
parts of the antennal and ocular segments, and knockdown of btd
seems to have no phenotypic consequences. Thus, analysis of
Tribolium genes defines a set of genes that is highly conserved in
bilaterian head development, and underscores the derived mode of
Drosophila head patterning.
Leg and wing development. In contrast to Drosophila, ventral
appendages in Tribolium develop during embryogenesis from buds
that grow continuously along the proximo-distal axis33. Nonetheless,
we identified Tribolium orthologues for most of a core set of
Drosophila appendage genes (Supplementary Table 13). On the other
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Figure 3 | Orthologous genes shared between insect and human genomes.
The Venn diagram shows the number of orthologous groups of genes shared
between the insect and human genomes. In addition to the majority of
Urbilateria (last common ancestor of the Bilateria) genes shared by all the
organisms, there are hundreds of genes that have been lost in some lineages
(for example, only retained between human and Tribolium or human and
honeybee, but lost in Diptera). Diptera is represented here by Anopheles
gambiae, Aedes aegypti and Drosophila melanogaster (with numbers
considering only D. melanogaster shown in parentheses).
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hand, orthologues of genes not found in Drosophila, such as Wnt11,
gremlin, Fgf8 and an F-Box gene, are expressed in the embryonic
legs21,31. Although their exact function in Tribolium appendages is
not known, Fgf8 is essential to vertebrate limb development.

A major innovation driving the radiation of beetles was the evolu-
tion of a highly modified protective forewing. Expression analysis
and RNAi experiments revealed a high degree of conservation
between Tribolium and Drosophila wing gene networks (Supplemen-
tary Table 13), supporting the hypothesis that sclerotized elytra
evolved from ancestral membranous wings mainly through new
interactions between conserved patterning modules and as yet
unknown downstream effector genes.
Eye development. Tribolium has orthologues of nearly all genes
currently known to regulate specification and differentiation in the
Drosophila retina (Supplementary Table 14). Exceptions are the
linker protein Phyllopod and the lens crystallin protein
Drosocrystallin, which are restricted to Diptera. Eight of fifty-seven
investigated eye developmental genes are duplicated in the
Drosophila genome but not Tribolium, and in four cases the
Drosophila paralogues have similar function. This suggests a more
dynamic evolution of Drosophila retina genes and higher genetic
complexity, highlighting the value of Tribolium as a more ancestral
and simply organized model of insect eye development.

Genes relevant to pest and Tribolium biology

Tribolium castaneum is a notorious invader of stored grains and grain
products. Resultantly, much effort and expense is directed to find
better ways to control this and other grain pests. Here we describe
established and possible future pesticide targets, as well as genes
underlying vision and taste. Finally, we describe genes forming the
basis of systemic RNAi in Tribolium.

Established insecticide targets
Cys-loop ligand-gated ion channels. Members of this superfamily
mediate chemical synaptic transmission in insects and are targets of
successful pest control chemicals with animal health and crop pro-
tection applications34. The Tribolium Cys-loop ligand-gated ion
channel (Cys-loop LGIC) superfamily contains 24 genes, the largest
known so far for insects (Drosophila and Apis superfamilies comprise
23 and 21 genes, respectively), due in part to the additional nicotinic
acetylcholine receptor (nAChR) subunits in Tribolium. We also
found genes for ion channels gated by c-aminobutyric acid (c-ami-
nobutyric acid receptors (GABARs)), glutamate (GluCls) and his-
tamine, as well as orthologues of the Drosophila pH-sensitive chloride
channel35. The molecular diversity of the Tribolium Cys-loop LGIC
superfamily is broadened by alternative splicing and RNA A-to-I
editing, which in some cases generates species-specific receptor iso-
forms35. The Tribolium Cys-loop LGIC superfamily is the first com-
plete set of genes encoding molecular targets of several insecticides—
imidacloprid and other neonicotinoids (nAChRs), fipronil
(GABARs) and avermectins (GluCls)—described for an agricultural
pest species.
Cytochrome P450 proteins. Most insect cytochrome P450 proteins
(CYPs) are thought to be involved in metabolic detoxification of host
plant allelochemicals and toxicants, and several are insecticide resis-
tance genes36. Other CYPs act in the synthesis and degradation of
lipid signalling molecules, such as ecdysteroids37. Similarly to mos-
quitoes, especially Aedes, Tribolium has an independently expanded
CYP gene family, particularly those involved in environmental res-
ponse (Supplementary Table 16).

Within the Tribolium P450s, the CYP2 and mitochondrial clans
have undergone relatively little gene expansion, lack pseudogenes,
and are probably reserved for essential endogenous functions in
ecdysteroid metabolism and development. In contrast, expansions
via tandem duplication produced 85% of Tribolium P450s clustered
in groups of 2–16 genes, with large expansions of CYP3 and CYP4
clans involved in environmental response. In comparison, Apis has

only four CYP4 genes, whereas Aedes has relatively similarly sized
expansions of CYP3 and CYP4 clans (Supplementary Table 16). We
speculate that both mosquito larvae (which are omnivorous scaven-
gers) and Tribolium have adapted to diverse chemical environments
in part by expansion of CYP gene families involved in detoxification.

Possible future insect control targets
C1 cysteine peptidase genes. Tribolium castaneum has successfully
exploited cereal grains in spite of the arsenal of defensive allelochem-
icals, including inhibitors of serine peptidase digestive enzymes. In
tenebrionid beetles, cathepsins B, L and serine peptidases such as
trypsins and chymotrypsins are part of the digestive peptidase com-
plex in the larval gut38.

Comparing potential digestive peptidase genes in Tribolium with
those in other sequenced insects (Supplementary Fig. 12) we found
more C1 cysteine peptidase genes in T. castaneum. The proliferation
of Tribolium C1 cysteine peptidase genes reflects expansions into five
gene families, corresponding to four major clusters. This expansion is
consistent with a trend seen in some beetles relative to other insects: a
shift to a more acidic gut, conducive to cysteine peptidase activity.

Tribolium castaneum C1 cysteine peptidase genes encode B and L
cathepsins, and include the first-known insect genes similar to O
and K cathepsins (Supplementary Table 17). Most of the cathe-
psin-B-like peptidases lack conserved residues in functional regions
and thus may lack peptidase activity, whereas all but two Tribolium
cathepsin L peptidase genes encode potentially functional enzymes.
In vertebrates, O and K cathepsins are lysosomal cysteine peptidases,
involved in bone remodelling and resorption. Analysis of Tribolium
cathepsins may provide insight into this family of proteins whose
elevated expression is associated with a significant fraction of human
breast cancers and tumour invasiveness.
Neurohormones and G-protein-coupled receptors. Insect neuro-
hormones (neuropeptides, protein hormones and biogenic amines)
control development, reproduction, behaviour, feeding and many
other physiological processes, often by signalling through
G-protein-coupled receptors (GPCRs). We found 20 genes encoding
biogenic amine GPCRs in Tribolium (compared to 21 in Drosophila
and 19 in Apis) and 52 genes encoding neuropeptide or protein
hormone GPCRs (49 in Drosophila, 37 in Apis39). Moreover, we
identified the likely ligands for 45 of these 72 Tribolium GPCRs.
Furthermore, we annotated 39 neuropeptide and protein hormone
genes. We found excellent agreement (95%) between the proposed
ligands for the Tribolium neurohormone GPCRs and the inde-
pendently annotated neuropeptide and protein hormone genes.
Interestingly, the Tribolium genome contains a vasopressin-like
neuropeptide (TC06626) and a vasopressin-like GPCR gene
(TC16363; Supplementary Fig. 14), neither of which has been
detected in any other sequenced insect39. Vasopressin in mammals
is the major neurohormone stimulating water reabsorption in the
kidneys40. Its presence in Tribolium may help the beetle to survive in
very dry habitats.

Genes relevant to Tribolium biology
Vision. Most of the 21 investigated genes that participate in the
Drosophila photo-transduction network are conserved in Tribolium
(Supplementary Table 14). Most notable is the lack of ninaG and
inaC, which may be functionally replaced by closely related para-
logues in Tribolium.

Tribolium contains only two opsin genes, representing members of
the long-wavelength and ultraviolet-sensitivity-facilitating opsin
subgroups. In contrast, Drosophila contains seven, and there is evid-
ence for minimally three in most other insects. The lack of a blue-
light-sensitive opsin gene in Tribolium is consistent with the unusual
expression of long-wavelength opsin in all photoreceptor cells in
this species41. The implied reduction in colour discrimination in
Tribolium is probably a consequence of the widespread cryptic life-
style of this species group.
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Odorant and gustatory receptors. Odorant and gustatory receptors
form the insect chemoreceptor superfamily. Tribolium has a major
expansion of both odorant and gustatory receptors relative to
Drosophila, Anopheles and Aedes mosquitoes, silkmoth and honeybee
(Supplementary Table 19). We identified and annotated 265 appar-
ently functional odorant receptors, 42 full-length pseudogenes and
34 pseudogene fragments. Most of these T. castaneum odorant recep-
tors are in seven species-specific subfamilies, including one contain-
ing 150 genes, and most are in tandem gene arrays, created by gene
duplication within the Tribolium lineage in the last 300 million
years42.

We annotated 220 apparently functional gustatory receptors and
25 pseudogenes (gustatory receptor gene fragments were not
assessed). The gustatory receptor families in fruitflies and mosqui-
toes, but not honeybee, contain several genes that are alternatively
spliced, with multiple alternative long first exons encoding at least the
amino-terminal 50% of the gustatory receptor spliced into a set of
short shared exons encoding the carboxy terminus43–45. Most
Tribolium gustatory receptors are encoded by single genes; however,
T. castaneum Gr214 is a massive alternatively spliced locus with 30
alternative long 59 exons (six of which are pseudogenic) spliced into
three shared 39 exons encoding the C terminus. Three T. castaneum
gustatory receptors are orthologues of highly conserved gustatory
receptors in other insects43–45, two of which form a heterodimeric
carbon dioxide receptor46. The remainder form many species-specific
subfamilies, one of which is expanded to 88 genes (Supplementary
Information and Supplementary Fig. 16).
Systemic RNAi. In Tribolium, as in C. elegans but not Drosophila, the
RNAi effect spreads systemically from the site of injection to other
tissues5 and from injected females to their offspring4. Surprisingly,
our survey of genes involved in systemic RNA did not reveal much
conservation between Tribolium and C. elegans.

The SID-1 multi-transmembrane protein, essential for double-
stranded RNA (dsRNA) uptake in C. elegans, is not found in
Drosophila, suggesting that the presence or absence of a sid-1 gene
is the primary determinant of whether or not systemic RNAi occurs
in an organism. We found three genes in Tribolium that encode
proteins similar to SID-1. However, their sequences are more similar
to another C. elegans protein, TAG-130 (also known as ZK721.1),
which is not required for systemic RNAi in C. elegans47. Additionally,
the secondary argonaute proteins and RNA-dependent RNA poly-
merase (RdRP)48,49, essential for the amplification of the initial
dsRNA trigger in C. elegans, are absent in Tribolium. Therefore, the
molecular basis for systemic RNAi in Tribolium and other insects
might differ from that in C. elegans and remains to be elucidated.

Concluding remarks

We observe three trends when comparing Tribolium and other insect
genomes. First, phylogenetic trees show shorter branch lengths for
Tribolium (and Apis) than Drosophila. The accelerated evolution of
the Drosophila lineage in some cases rendered Drosophila atypical for
the Insecta. Second, Tribolium retains a different set of ancestral
genes that have evolved at a moderate rate (for example, gremlin
and cathepsins), and these may provide insights into the function
of their vertebrate orthologues. Third, its own evolutionary path
has led to beetle- and perhaps Tribolium-specific gene changes (for
example, a large increase in odorant receptors).

Expansions of CYP proteins, proteinases, diuretic hormones, a
vasopressin hormone and receptor, and chemoreceptors all indicate
adaptation to a dry, chemically diverse and toxin-rich microenviron-
ment. Whereas the flour beetle’s drought tolerance probably explains
the presence of vasopressin, it is more difficult to rationalize a need
for such an unprecedented diversity of chemoreceptors. Functions
stemming from the diversity of angiosperm-derived chemicals such
as distant detection of food sources and avoidance of toxic host plant
defence chemicals suggest that this expansion may be common to the
Coleoptera. The expansion of odorant receptors is more intriguing

when considered in combination with the reduction of opsin genes.
Both trends may reflect the long-term consequences of adaptation to
low light biota by Tribolium, enforcing selection for increased dis-
crimination of odour reception but not colour perception41.

Given the chemo-sensing and detoxifying genes described above, it
is perhaps no surprise that Tribolium has demonstrated resistance to
all insecticides used for its control. Given the association of Tribolium
with human food, knowledge of all possible insecticide targets will aid
greater selectivity in pesticide design, thereby mitigating possible side
effects. Finally, the true value of this sequence may be the entry it
provides into the many and richly diverse facets of beetle biology,
physiology and behaviour.

METHODS SUMMARY
Detailed Methods are described in the Supplementary Information. Resources

generated by this project can be found at the following locations: genome

assemblies, sequences, and automated and manually curated gene model

sequences are available from the BCM-HGSC website and ftp site (http://

www.hgsc.bcm.tmc.edu/projects/tribolium/). Browser display of the genome

sequence, all gene predictions and available tiling array data are available via

http://www.genboree.org and Beetle Base (http://www.bioinformatics.ksu.edu/

BeetleBase/), a long-term repository for Tribolium data.
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21. Wyder, S., Kriventseva, E. V., Schröder, R., Kadowaki, T. & Zdobnov, E. M.
Quantification of ortholog losses in insects and vertebrates. Genome Biol. 8, R242
(2007).

22. Wong, M. D., Jin, Z. & Xie, T. Molecular mechanisms of germline stem cell
regulation. Annu. Rev. Genet. 39, 173–195 (2005).

NATURE ARTICLES

5
Nature   Publishing Group©2008

http://www.hgsc.bcm.tmc.edu/projects/tribolium
http://www.hgsc.bcm.tmc.edu/projects/tribolium
http://www.genboree.org
http://www.bioinformatics.ksu.edu/BeetleBase
http://www.bioinformatics.ksu.edu/BeetleBase
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M. Zdobnov12,13,14

DNA sequence and global analysis: DNA sequencing Donna Muzny (leader)1,2,
Richard A. Gibbs1,2, George M. Weinstock1,2, Tony Attaway1,2, Stephanie Bell1,2,
Christian J. Buhay1,2, Mimi N. Chandrabose1,2, Dean Chavez1,2, Kerstin P.
Clerk-Blankenburg1,2, Andrew Cree1,2, Marvin Dao1,2, Clay Davis1,2, Joseph Chacko1,2,
Huyen Dinh1,2, Shannon Dugan-Rocha1,2, Gerald Fowler1,2, Toni T. Garner1,2, Jeffrey
Garnes16, Andreas Gnirke17, Alica Hawes1,2, Judith Hernandez1,2, Sandra Hines1,2,
Michael Holder1,2, Jennifer Hume1,2, Shalini N. Jhangiani1,2, Vandita Joshi1,2, Ziad
Mohid Khan1,2, LaRonda Jackson1,2, Christie Kovar1,2, Andrea Kowis1,2, Sandra Lee1,2,
Lora R. Lewis1,2, Jon Margolis17, Margaret Morgan1,2, Lynne V. Nazareth (leader)1,2,
Ngoc Nguyen1,2, Geoffrey Okwuonu1,2, David Parker1,2, Stephen Richards1,2, San-Juana
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