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Abstract

Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in
humans. Here we report the first proteomic comparison of different parasite stages from the mosquito—early and late
oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological
similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their
increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins
whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated
metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene
disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that
appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light
on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may
be essential for sporozoite infectivity to humans.
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Introduction

The life cycle of human malaria parasite Plasmodium falciparum

within the mosquito vector begins when gametocytes are taken up

in an infected blood meal; after forming gametes and fertilisation,

the resulting zygote differentiates into a motile ookinete that

traverses the midgut epithelium and transforms within 36–

48 hours into an oocyst (OOC) between the midgut epithelial

cells and the basal lamina. The oocyst is an asexually replicating

form of the parasite, which produces up to 2000–4000 sporozoites

in about two weeks. Rupture of mature oocysts releases oocyst-

derived sporozoites (ODS) into the hemocoel of the mosquito. The

movement of the hemolymph brings the ODS in contact with the

salivary glands, which they then invade. The sporozoites mature

inside the salivary glands and then are stored ready for

transmission to the mammalian host upon the next blood meal.

A limited number of the salivary gland sporozoites (SGS) are

injected during a mosquito bite and only a few of these complete

the necessary migration from the skin to the liver to establish an

infection inside hepatocytes. Clearly, the sporozoite has to

complete a number of functions and metabolic readjustments

both before and after injection into a mammalian host. The

sporozoite has to be capable of actively exiting an oocyst, travelling

through the hemolymph (the mosquito circulatory system), and
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invading salivary glands. Further, following a mosquito bite

injection the sporozoites enters a very different physiological

environment of the human host, and then has to traverse through

human endothelial cells, possibly Kupffer cells and finally

hepatocytes where they establish an infection; moving all the time

using a specialized form of gliding motility. Despite all these events

the general morphology of the sporozoite is not visibly altered at

any stage (for general reviews on sporozoite biology please see the

following references and the references therein [1–7]).

Since the sporozoite plays an essential role in the first phase of a

malaria infection, an understanding of its biology is of great

importance in order to develop intervention methods against

initial infection and consequently disease. A wealth of gene

expression data from high throughput studies exists on the

intracellular erythrocytic growth and development of Plasmodium

parasites [8–17], whereas far less is known about the genes/

proteins involved in sporozoite development [10,11,16,18–22].

Indeed, only a few (less than 25) proteins have been characterized

as being essential for sporozoite development and infectivity.

These include several proteins that are currently under investiga-

tion as either potential subunit vaccines (such as circumsporozoite

protein (CS) and thrombospondin related anonymous protein

(TRAP)) or may serve in the generation of whole organism,

genetically attenuated sporozoite vaccines [23–26] when the genes

encoding these proteins are eliminated from the Plasmodium

genome, such as UIS3, UIS4 [27,28] and P36 and P36p

[29,30]. The lack of large scale in vitro culture methods for oocysts

and sporozoites has restricted high throughput protein expression

studies to only mature sporozoites, which are more readily

obtained from infected salivary glands.

In this study we have performed a detailed proteomic

comparison of sporozoites obtained from both oocysts and salivary

glands which were obtained by hand-dissection of infected

mosquito midguts and salivary glands. The proteome analysis

was performed using essentially the same high throughput mass

spectrometric analysis that we previously applied to generate the

proteomes of the blood stages of P. falciparum [15] as well as the

proteomes of male and female gametocytes of P. berghei [14]. Our

analyses resulted in a proteome of oocysts (n = 127), oocyst-derived

sporozoites (n = 450) and salivary gland sporozoites (n = 477),

which represent 728 individual Plasmodium proteins, of which 250

were exclusively detected in the oocyst/sporozoite stages when

compared to the P. falciparum blood stage proteomes generated in a

previous study [15]. The identification of proteins and their

relative distributions within the different proteomes suggest specific

metabolic adaptations and other biological functions of the

maturing sporozoite. Moreover, we analyzed the function of eight

sporozoite-specific proteins identified in our proteome analyses

that were specifically annotated as hypothetical proteins, by

targeted gene disruption of the orthologous genes of the rodent

malaria parasite, P. berghei. We were able to demonstrate an

essential and distinct role for three of these proteins in sporozoite

development.

Results

Mosquito stage proteome
Protein samples derived from infected mosquito midguts and

salivary glands were analyzed by nano–liquid chromatography

tandem mass spectrometry (nLC-MS/MS) essentially as previously

described [15]. The MS/MS spectra were searched against a

combined database of all possible predicted tryptic peptides derived

from all P. falciparum, human, and mosquito (Anopheles gambiae)

proteins. The proteomic analysis of P. falciparum oocysts, oocyst-

derived sporozoites, and salivary gland sporozoites resulted in a total

of 4611 unique peptides mapping to 728 non redundant P. falciparum

proteins; they are distributed over the three stages with 127, 450 and

477, respectively and depicted as a Venn diagram in Figure 1A.

Identified tryptic peptides and corresponding Plasmodium proteins of

the mosquito stages are provided as supplementary material (Table

S1). In our previous analysis of infected human red blood cells we

identified 741 asexual blood stage parasite proteins from a mixture of

schizonts and trophozoites and an additional 931 gametocyte and

645 gamete proteins [15]. Merging these datasets with the proteomes

of the mosquito stages resulted in the identification of 250 Plasmodium

proteins (Table S1) that are specifically detected in mosquito stages

and 809 proteins that are expressed only in the blood stages

(Figure 1B). However, it is important to note that due to the

incomplete nature of all proteome datasets, absence of proteins from

one dataset may also be due to the limits of detection and not the

actual absence of expression. Parasite samples derived from infected

mosquitoes were considerably contaminated with mosquito proteins

with total parasite protein fractions of 35% for ODS, 31% for SGS

and for OOC only 11% of the sequenced proteins were parasite in

origin. Therefore this relatively high degree of contamination

resulted in overall lower numbers of proteins compared to our

previous Plasmodium infected blood stage proteome study. In

particular, only 127 P. falciparum proteins in a pool of 987 mosquito

proteins were identified for the oocyst sample that presumably

represents the more abundantly expressed parasite proteins.

Therefore, further analysis of the identified proteins and additional

functional analyses are mainly focused on the proteins identified in

the ODS and SGS. In total, we analyzed six different stages of

Plasmodium (both from this study and our previous work) and have

identified a total of 1543 Plasmodium proteins. The proportion of

‘stage specific’ proteins in the different life cycle stages ranged from

12% (gametes) to 28% and the stage specificity of proteins in the

mosquito stages ranged between 15–24% (Figure 1C).

Comparison with existing RNA/protein mosquito stage
studies

Genome-wide proteome and transcriptome studies have

previously been reported for salivary gland sporozoites of P.

falciparum [10,16], for oocysts and sporozoites of P. berghei [11] and

Author Summary

Human malaria is caused by Plasmodium falciparum, a
unicellular protozoan parasite that is transmitted by
Anopheles mosquitoes. An infectious mosquito injects saliva
containing sporozoite forms of the parasite and these then
migrate from the skin to the liver, where they establish an
infection. Many intervention strategies are currently focused
on preventing the establishment of infection by sporozoites.
Clearly, an understanding of the biology of the sporozoite is
essential for developing new intervention strategies. Sporo-
zoites are produced within the oocyst, located on the
outside wall of the mosquito midgut, and migrate after
release from the oocysts to the salivary glands where they
are stored as mature infectious forms. Comparison of the
proteomes of sporozoites derived from either the oocyst or
from the salivary gland reveals remarkable differences in the
protein content of these stages despite their similar
morphology. The changes in protein content reflect the
very specific preparations the sporozoites make in order to
establish an infection of the liver. Analysis of the function of
several previously uncharacterized, conserved proteins
revealed proteins essential for sporozoite development at
distinct points of their maturation.

Proteomics of P. falciparum Sporozoite Maturation
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recently for oocyst-derived sporozoites and salivary gland

sporozoites of P.yoelii [22]. The Florens et al SGS proteome [10]

identified a total of 1048 proteins of which 314 proteins include at

least one peptide that is fully tryptic. It has been shown that

selection of only fully tryptic peptides greatly increases the

confidence in each protein within the proteome and was similarly

applied to our dataset [31]. Comparison of these ‘fully-tryptic

proteins’ (proteins identified by peptides conforming to proper

tryptic cleavage) with the ‘fully-tryptic proteins’ from our SGS

proteome (n = 477) shows that 166 proteins are present in both

proteomes (i.e. 53% of the Florens’ data (Table S2)). Moreover, in

order to further increase our confidence in the ‘protein-calling’ in

both datasets, a comparison was made using only those proteins

that were identified by 2 or more fully-tryptic peptides (i.e. 346

proteins from our mosquito stage proteome and 82 from the

Florens SGS proteome). In this analysis, we found that 72 proteins

were in common (i.e. 88% of the Florens enriched SGS proteome).

Interestingly, we fail to find any PfEMP-1 proteins, as had

previously been reported in the Florens et al SGS proteome, in

either dataset when we examine only the ‘‘fully-tryptic peptide

proteomes’’ [10].

The oocyst proteome of P. berghei described by Hall et al [11]

detected of a total of 220 proteins of which 175 proteins have an

orthologue in P. falciparum and 87 of these (i.e. 50%) were also

detected in our mosquito proteomes (Table S2). Again consider-

ation of only fully tryptic peptides revealed that 60 of the resulting

111 P. berghei orthologs (i.e. 54%) were found in common.

Similarly, of the 108 proteins identified in the P. berghei SGS

proteome 86 proteins have an orthologue in P. falciparum (Table

S2) of which 46 (i.e. 53% of the Hall SGS proteome) were detected

in our SGS proteome of P. falciparum. There were only 20 fully-

tryptic proteins in the Hall SGS proteome of which 75% (n = 15)

were also detected in our P. falciparum SGS proteome. Selecting the

202 genes that were commonly expressed in our SGS proteome

and in the published SGS proteome of P. falciparum [10], the

relative abundance of protein in the two datasets was examined

using a Pearson correlation. The emPAI peptide counting method

using the number of observed peptides detected per protein and

corrected to the number of expected tryptic peptides was applied

to compute relative protein levels [32,33]. A good correlation

(r = 0.73) existed between protein abundance levels (emPAI values;

see Materials and Methods section) in our SGS proteome and the

previous P. falciparum SGS proteome.

However, when we compared abundance of our SGS proteins

(i.e. by emPAI values) with the abundance of mRNA SGS

transcripts reported by Le Roch and Zhou et al [16,22] we found a

lower correlation value (i.e. 0.31 and 0.33 respectively (Table S3)).

Several (smaller scale) studies have been reported that using

either subtractive hybridization or cDNA quantification methods

(i.e. Serial Analysis of Gene Expression (SAGE)) to identify sets of

genes transcribed in sporozoites in the rodent malaria parasites, P.

berghei [20,21] and P. yoelii [18]. Comparison of the identified P.

yoelii mRNAs with our proteomes showed that for nearly all genes

transcribed in sporozoites (20 out of 23 sporozoite (S) genes),

proteins were detected in our sporozoite proteomes (Table S4).

This may suggest that for a significant proportion of genes

transcription and protein expression coincide within the sporozo-

ite. However, a weaker correlation was found between transcrip-

tion in P. berghei sporozoites and the presence of protein in our

proteomes. Specifically, we were able to detect protein for 34 of

the 98 genes identified in the P. berghei sporozoites SAGE analysis

(i.e. the Sporozoite expressed gene Identified by SAGE (SIS) genes

(Table S4)) but only 5 out of 26 transcribed genes in the

Suppression Subtractive Hybridization (SSH) analysis (i.e. the

Figure 1. Distribution of identified P. falciparum proteins over
different life-cycle stages. (A) Venn diagram depicting the
distribution of detected P. falciparum proteins over three different
mosquito life-cycle stages (oocysts, oocyst-derived sporozoites and
salivary gland sporozoites). Numbers represent the number of proteins,
that are either shared between 2 or 3 stages (overlapping areas) or that
are detected in a single stage. (B) Comparison of the expression of P.
falciparum proteins detected in the three mosquito stage proteomes to
the blood stage proteomes described previously [15]. (C) The
percentage of proteins exclusively detected in only one proteome
out of 6 different life cycle stage proteomes, i.e. ASX - asexual blood
stages; GCT – gametocytes; GAM – gametes; OOC – oocysts; ODS -
oocyst-derived sporozoites; SGS - salivary gland sporozoites.
doi:10.1371/journal.ppat.1000195.g001

Proteomics of P. falciparum Sporozoite Maturation
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Upregulated In Sporozoites (UIS) genes (Table S4)). It is however

interesting to observe that between the two SSH studies only 2 out

of 30 genes appear clearly up-regulated in both P. yoelii and P.

berghei sporozoites.

Functional annotation of mosquito stage proteins
A global functional characterization of the ‘mosquito stage’

proteome was performed by an enrichment analysis of Gene

Ontology (GO) annotations, for both the proteins that are shared

between blood stages and mosquito stages (n = 478) and for the

mosquito stage specific proteins (n = 250). The set of 478 genes

commonly expressed in both mosquito and blood stages showed

enrichment in GO annotations in all classes (i.e. Molecular

Function, Cellular Component and Biological process (Figure S1))

and this enrichment is principally associated with housekeeping

genes (Figure 2). The mosquito stage specific proteome did not

reveal significant (p,0.01) enrichment in GO annotations nor did

additional analyses for GO enrichment of the mosquito stage

specific proteins using BINGO [34] and Ontologizer [35] (data

not shown). In Figure 2B GO categories (Molecular Function) are

shown for the mosquito stage specific proteome that contain more

than 5 proteins. The lack of enrichment could be caused by the

high proportion of genes annotated as hypothetical (300 out of

728) and consequently the relatively large number of proteins in

the mosquito stage specific proteome (124 out of 250) without a

GO annotation. Since our analysis did not reveal a significant GO

enrichment for proteins known to be important in sporozoite

function (e.g. motility and motor activity (Figure 2)) we analyzed

our mosquito stage proteome for previously reported proteins, for

which a function during sporozoite development is described and

supported by strong experimental evidence (e.g. gene-knockout

and/or antibody-inhibition studies). These proteins, in total 23,

are listed in Table 1 and 15 out of 23 proteins are present in the

mosquito stage proteome reported here. Based on a total number

of 5410 genes in the genome of P. falciparum and 728 proteins in

our mosquito stage proteome, these 15 proteins represent a 4.8

fold functional enrichment relative to the annotated genome and is

highly significant (p,0.001 using Ontologizer). A good agreement

exists between the function of the sporozoite proteins as shown in

Table 1 and their expression pattern in the different mosquito

stages. For example, proteins with multiple roles during sporozoite

maturation (e.g. CS and TRAP) were identified in all stages

(OOC, ODS and SGS) whereas proteins involved in hepatocyte

traversal, such as SPECT1, SPECT2 (sporozoite microneme

protein essential for cell traversal 1 and 2) and CelTOS (cell-

traversal protein for ookinetes and sporozoites) were exclusively

identified in mature SGS.

Sporozoites, like other motile stages (except male gametes) of

Apicomplexan organisms, move on substrates by a mechanism

known as gliding motility which is driven by an actomyosin motor

complex [3,36,37]. Although there was no enrichment with high

confidence (p,0.05) of the GO Molecular Function category

‘motor activity’ for mosquito stage specific proteins (Figure 2),

several proteins known to be involved in the actomyosin motor

complex are well represented and include TRAP, myosin A,

MyoA Tail Domain Interacting Protein (MTIP), actin and F-1,6-

BP aldolase (3.6 fold enrichment with low confidence). Addition-

ally, sporozoites encode a variety of surface molecules for both

motility and invasion of host cells. For apicomplexan parasites

members of the TRAP/MIC2 family have been shown to be

important for host cell recognition and motility. The general

architecture of this family is typified by one or more thrombos-

pondin type I (TSP1) domains in their extracellular regions which

may in addition also posses von Willebrand factor A (vWA)

extracellular domains [38]. Our sporozoite proteome shows a 4.7

fold enrichment for proteins that contain one or multiple TSP1

domains (Table 2) compared to the P. falciparum proteome of 5410

proteins.

Two sporozoite proteomes – ODS versus SGS
Although the morphology of oocyst-derived and salivary gland

sporozoites is identical at the level of light microscopy, ODS of P.

berghei are significantly less infective to the mammalian host than

SGS [39]. This marked difference in infectivity suggests significant

developmental changes between these forms and was indicated by

the analyses of gene transcription of different sporozoite stages by

either SSH screens or SAGE analysis, which alludes to changes in

protein expression in the sporozoite during the period of egress

from the oocysts and the establishment of infection of the salivary

glands [18,20,21]. In agreement with these observations, we found

a large number of proteins expressed in SGS that were absent or

relatively low expressed in ODS (Table S1). Several proteins

involved in metabolic pathways show clear differences in

distribution between ODS and SGS (Figure S2). For example, 8

out of 9 enzymes of the glycolytic pathway for ATP production

were detected, all which were either more abundant or exclusive to

SGS (SGS 8 proteins with 140 peptides; ODS 4 proteins and 48

peptides). A similar profile is observed for proteins involved in the

production of NADPH via the pentose phosphate pathway with an

up-regulation of these proteins in SGS (5 proteins and 26 peptides)

compared to ODS (1 protein and 2 peptides). A third up-regulated

metabolic pathway is the tricarboxylic acid (TCA) cycle (7 proteins

and 85 peptides in SGS compared to 4 proteins and 26 peptides in

ODS). Interestingly, several genes (4 out of 10) of the TCA cycle

are most abundantly expressed in SGS, not only when compared

to ODS but also in comparison with the blood stages, indicating

an important role of the TCA cycle in mature sporozoites. Also the

enzyme phosphoenolpyruvate carboxykinase (PF13_0234) is

upregulated in the salivary gland sporozoites (8 peptides in ODS

and 17 in SGS), which is again in agreement with the upregulation

of enzymes involved in the TCA cycle and glycolysis [40]. It also

appears that SGS prepare for enhanced protein synthesis: 9 of the

11 detected tRNA ligases are only detected in the SGS proteome

and not in the ODS proteome (Table S1) as are ribosomal

proteins, translation elongation factors and the TCP chaperonin

complex proteins, which are either exclusively detected in SGS or

are represented in the SGS proteome by substantially more

peptides compared to the ODS proteome. As is shown in Table 1,

proteins that are known to play a role in traversal and invasion of

hepatocytes are highly enriched in SGS. On the other hand, the

expression of MAEBL that is expressed along with CS and well

before AMA-1 [41] and is known to function in attachment and

invasion of the salivary gland [42] is more abundantly expressed in

ODS. Therefore, it would appear that the proteomes of the

sporozoite characterised by this study at different stages of

development accurately reflect the functionality of either the

ODS or SGS.

Consequently, based on the expression pattern and relative

abundance of the peptides in the proteomes from OOC, ODS and

SGS (see Materials and Methods section) the mosquito stage

specific proteins can be regarded as belonging to one of 3 distinct

groups (Table S1): Group I consists of 112 ODS proteins highly

enriched for the ODS stage, putatively involved in sporozoite

maturation inside the oocyst and in salivary gland invasion;

similarly Group II which contains 74 proteins up-regulated in SGS

potentially involved in infection of the mammalian host; and

finally Group III that contains 59 proteins that are shared between

the different mosquito stage proteomes and therefore may be

Proteomics of P. falciparum Sporozoite Maturation
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involved in sporozoite functions necessary both in the mosquito

vector and the mammalian host (e.g. proteins involved in gliding

motility and invasion such as CS [43,44] and TRAP [45,46]

(Table 1)). These three groups formed the basis for selection of

genes for further functional analysis of their encoded proteins

through targeted disruption of the orthologous genes in the rodent

malaria parasite, P. berghei. The three groups were further refined

for subsequent functional analysis using the following criteria (see

also Materials and Methods section): i) high expression level as

determined by the number of uniquely detected peptides per

protein, ii) presence of gene sequences encoding putative

transmembrane regions, signal peptides and/or GPI anchors,

and iii) presence exclusively in the mosquito stage proteomes. This

resulted in selection of genes as shown in Table 3. Further, in

order to enrich for proteins that may define Plasmodium specific

functions, we preferentially selected not only genes that were

annotated as hypothetical but also had no domains predicted by

either the SMART or Pfam algorithms (i.e. with no indication of

predicted function).

Functional characterization of sporozoites-specific
proteins

In total eight genes identified in this study were selected (Table 4)

for functional analysis by targeted gene disruption of their

corresponding orthologs in P. berghei, specifically, 3 ODS specific

Figure 2. Gene Ontology term enrichment analysis of mosquito stage proteome. (A) Enrichment for GO ‘Biological Process’ terms of
proteins detected in mosquito and blood stages. The figure shows terms on the x-axis that are significantly enriched (p,0.004) by more than four
fold. GO terms of the shared set of proteins (n = 478, purple bars) is compared to terms of all predicted P. falciparum proteins (5410, green bars). The
y-axis displays the fraction relative to all GO Biological Process terms. (B) Enrichment for GO ‘Molecular Function’ main terms of proteins detected
specifically in mosquito stages (and blood stages). GO terms of the mosquito specific set of proteins (n = 250, blue bars) is compared terms of all
predicted P. falciparum proteins (5410, green bars). The y-axis displays the fraction relative to all GO Molecular Function terms. These terms do not
show a significant enrichment (p.0.5).
doi:10.1371/journal.ppat.1000195.g002

Proteomics of P. falciparum Sporozoite Maturation
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genes (Group I), 2 SGS specific genes (Group II) and 3 from

Group III (shared ODS/SGS). The sequences of the eight P.

berghei gene orthologs (as well as their corresponding up and

downstream sequences) were retrieved from the on-line Plasmo-

dium genome databases, http://www.plasmodb.org and http://

www.genedb.org/genedb/pberghei. However, for 4 of the 8

genes the P. berghei orthologs were fragmented and complete

genes were manually assembled from a number of different P.

berghei sequences by performing BLAST sequence searches of the

full length P. falciparum genes against the P. berghei genome and

closing gaps by PCR; details of the P. berghei orthologs, assemblies

and generation of knock-out constructs is available in Figure S3

and Table S5. The generation of mutant parasites was

performed in the GFP-expressing reference line of P. berghei

(i.e. line 507cl1) by standard genetic transfection of constructs for

gene-disruption by double cross-over homologous recombination

[47]. Genotype analysis of mutant parasites by Southern analysis

of genomic DNA and diagnostic PCR was performed using well

established methods [48] and details of these analyses are shown

in Figure S3.

It was not possible to select mutant parasites for two genes, one

belonging to Group I (orthologous to PF14_0607) and the other

belonging to Group III (orthologous to PFA0205w) in 3

independent transfection experiments, suggesting that both these

proteins may have an additional and essential role during blood

stage development. For the remaining 6 genes mutants were

generated in two independent transfection experiments per gene

(Table 4) and correct disruption of the target genes was shown for

all mutants (Figure S3). All 6 mutant lines showed normal asexual

growth and also gametocyte and ookinete production that was

comparable to wild type parasites (data not shown). As an initial

phenotype screen of mosquito stage development, uncloned

parental populations of the 6 mutant lines were allowed to infect

mosquitoes. Oocyst numbers and salivary gland sporozoite

numbers were determined at day 6 and 20 after infection,

respectively, and infected mosquitoes were allowed to feed at day

20–22 on naı̈ve mice. In 3 out of the 6 mutant lines (orthologous to

DPF11_0528, DPF14_0074 and DPFF1195c) parasite develop-

ment inside the mosquito (oocyst number and salivary gland

sporozoites number) was not significantly different from wild type

Table 1. Characterized proteins involved in sporozoite development and invasion of host cells.

Accession nr protein name (1) protein involved in (2)

nr unique pept/protein in life cycle stages
(3) Reference

ASX GCT GAM OOC ODS SGS

PF14_0067 CCp3 sporozoite development - 31 10 - - - Claudianos [72], Pradel [73]

PF14_0532 CCp2 sporozoite development - 39 20 - - - Pradel [73]

PFC0180c IMC1 sporozoite development (cell shape) - - - 0 9 25 Khater [74]

PFC0210c CS sporozoite development, salivary gland
and hepatocyte invasion

- - - 2 5 9 Menard [43], Wang [44]

PFB0325c cysteine protease egress from oocyst - - - - 16 23 Aly [56]

PF13_0233 myosin A sporozoite gliding motility - - - 2 39 49 Bergman [75]

PFL2225w MTIP sporozoite gliding motility 1 1 - 2 4 3 Bergman [75]

PF13_0201 SSP2/TRAP sporozoite gliding motility, salivary gland
and hepatocyte invasion

- - - 1 6 35 Rogers [45], Sultan [46]

PFI0550w CRMP1 salivary gland invasion - 1 - - - - Thompson [76]

MAL7P1.92 CRMP2 salivary gland invasion - - - - - - Thompson [76]

PF11_0486 MAEBL salivary gland invasion - - - - 33 1 Kariu [42]

MAL13P1.212 SPECT1 cell traversal hepatocytes 1 - - - - 16 Ishino [77]

PFD0430c SPECT2 cell traversal hepatocytes 1 - - - - 26 Ishino [78]

PFL0800c CelTOS cell traversal hepatocytes - - - - - 6 Kariu [79]

PFF1420w PL cell traversal hepatocytes - - - - - - Bhanot [80]

PF11_0344 AMA-1 hepatocyte invasion 1 - - - 2 19 Silvie [81]

PFB0570w SPATR hepatocyte invasion - - - - - 5 Chattopadhyay [82]

PFB0095c PfEMP3 hepatocyte invasion 3 - - - - - Grüner [83]

PF07_0006 STARP hepatocyte invasion - - - - - - Pasquetto [84]

GI:1477963 SALSA hepatocyte invasion - - - - - - Puentes [85]

PFA0200w TRSP hepatocyte invasion - - - - 1 3 Labaeid [86]

PFD0215c pf52 protein/P36p hepatocyte invasion - development - - - - - 5 Ishino [29], van Dijk [30]

PFD0210c pbs36 homologue/P36 hepatocyte invasion - development - - - - - 8 Ishino [29]

1CCP (members of the LCCL protein family), IMC (inner membrane complex), CS (circumsporozoite), MTIP (myosin A tail domain interacting protein), SSP2 (sporozoite
surface protein), TRAP (Thrombospondin related anonymous protein), CRMP (cysteine repeat modular protein), MAEBL (membrane antigen erythrocyte binding like
protein ), SPECT (sporozoite microneme protein essential for cell traversal ), CelTOS (cell-traversal protein for ookinetes and sporozoites), PL (phosphoplipase), AMA
(apical membrane antigen), SPATR (secreted protein with altered thrombospondin domain), EMP (erythrocyte membrane protein), STARP (sporozoite threonine and
asparagine-rich protein), SALSA (sporozoite and liver stage antigen); TRSP (thrombospondin related protein).

2The role of these proteins has been determined by functional analysis in gene-knockout and/or antibody-inhibition studies.
3ASX - asexual blood stages; GCT – gametocytes; GAM – gametes; OOC – oocysts; ODS - oocyst-derived sporozoites; SGS - salivary gland sporozoites.
doi:10.1371/journal.ppat.1000195.t001
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parasites (Table 4). After infection of mice by bite of mosquitoes

infected with any of these three mutant lines, all mice developed

parasitemias between 0.1 and 0.5 at day 4 after infection,

indicating ‘wild type’ infectivity of the sporozoites of these 3

mutants. Genotype characterization by Field Inverse Gel Electro-

phoresis (FIGE) analysis and diagnostic PCR of blood stage

parasites after mosquito transmission of these 3 mutants revealed

the correct gene disruption genotype in blood stages of all 3

mutants, demonstrating normal mosquito transmission of the

mutant, rather than breakthrough of wild type parasites (Figure

S3). The lack of a clear effect of disruption of these 3 genes on

sporozoite production and infectivity to the mammalian host

suggests the existence of significant redundancy in the function of

these mosquito stage specific proteins.

The remaining 3 mutant lines (orthologous to DPF14_0435,

DPFD0425w and DMAL8P1.66) showed an aberrant develop-

ment during mosquito development. The phenotypes of cloned

lines of these mutants were therefore analyzed in more detail.

Clones of all 3 gene-disrupted lines produced wild type numbers of

oocysts ranging from 150–250 oocysts per mosquito on day7/8

post infection. The development of parasites deficient in

PB000829.02.0 (orthologue of PF14_0435; line 802cl1) was

blocked at the developing oocyst stage and no sporozoite

formation was detectable within the oocysts by either fluorescence

or phase-contrast microscopy (Figure 3). This early function in

sporozoite development of this protein is in agreement with its

presence in ODS and absence in SGS. The development of

parasites deficient in PB000251.01.0 (orthologue of PFD0425w;

line 841cl1) was normal up to the formation of mature oocysts

which contain sporozoite numbers similar to wild type oocysts

(Figure 3). However, only very few sporozoites were observed in

the hemocoel and salivary glands (ranging from 0–625 per

mosquito in different experiments (Figure 3)), suggesting that

egress of sporozoites from mature oocysts is severely affected. This

is also apparent from the accumulation of sporozoites in oocysts

from day 20 post infection, where higher levels of oocyst-

sporozoites were counted compared to wild type. Furthermore,

day 24–27 infected mosquitoes containing mature oocysts with

sporozoites were unable to infect mice in standard feeding

experiments (2 experiments; 2 mice per experiment). However,

when sporozoites were collected from oocysts by liberating them

using mechanical rupture and these were used to infect mice by

intravenous injection (1–26106 sporozoites) they were infective to

mice comparable to wild type ODS (2 experiments each with 2

mice). Additionally, if such oocyst-extracted sporozoites were used

in in vitro hepatocyte invasion assays they showed hepatocyte

traversal and invasion that was not significantly lower than

sporozoites from wild type sporozoites also mechanically extracted

from oocysts (Figure 3). The ‘wild type’ infectivity of oocyst-

liberated sporozoites to the mammalian host strongly indicates

that normal and viable sporozoites are formed within the oocysts

and that the absence of protein PB000251.01.0 prevents the

release of these sporozoites from the oocyst. Finally, the

development of parasites lacking PB402680.00.0 (orthologous to

MAL8P1.66; line 843cl1) was largely blocked at the oocyst stage.

However, low numbers of sporozoites were formed that were able

to invade the salivary gland (2750–6250 oocyst sporozoites per

mosquito and 875–6600 SGS per salivary gland). Despite the low

numbers of sporozoites that emerge from the oocyst, salivary gland

invasion appears not to be affected since ODS and SGS numbers

were comparable. In contrast to sporozoites of mutant 841cl1,

salivary gland sporozoites of 843cl1 injected either intravenously

(16104 sporozoites) or by mosquito bite were not infective for mice

(2 experiments with 2 mice). Interestingly, 843cl1 sporozoites

demonstrated the same or greater hepatocyte traversal rate than

wild type sporozoites and they were also able to traverse and

invade hepatocytes in vitro (Figure 3). This suggests that the lack of

sporozoite infectivity to mice may be due to a defect in liver stage

development after invasion of the hepatocyte.

Discussion

The proteome analyses of the three mosquito stages of

Plasmodium falciparum, oocysts, oocyst-derived sporozoites and

salivary gland sporozoites, resulted in the identification of 728

proteins of which 250 are ‘mosquito stage specific’, having not

been detected in our previous analysis of blood stage parasites

[15]. Although the total number of proteins identified in the

mosquito stages is lower compared to blood stages [15], which is in

all likelihood due to sample purity and not reduced protein

expression, we show a clear developmental progression of the

Table 2. Expression of Plasmodium proteins containing thrombospondin type 1 (TSP1) and/or von Willebrand factor A (vWA)
domains in different life cycle stage proteomes.

Accession nr Protein name domain nr unique pept/prot in life cycle stages (1) Reference

1 2 ASX GCT GAM OOC ODS SGS

PF13_0201 TRAP TSP1 VWA - - - 1 6 35 Rogers [45], Sultan [46]

PFC0210c CS TSP1 - - - 2 5 9 Menard [43], Wang [44]

PFA0200w TRSP TSP1 - - - - 1 3 Kaiser [18], Labaeid [86]

MAL8P1.45 hypothetical protein TSP1 - - - - 1 - Aravind [38]

PFB0570w SPATR TSP1 5 Chattopadhyay [82]

PFF0800w TRAP-like protein TSP1 VWA - 1 - - - 2 Moreira [87]

PFL0870w PTRAMP TSP1 - - - - - 1 Thompson [76]

PF10_0281 MTRAP TSP1 - - - - - - Baker [88]

PF08_0136b WARP TSP1 - - - - - - Yuda [89]

PFC0640w CTRP TSP1 VWA 1 2 - - - - Baker [88]

PFL0875w hypothetical protein TSP1 - - - - - - Aravind [38]

1ASX - asexual blood stages; GCT – gametocytes; GAM – gametes; OOC – oocysts; ODS - oocyst-derived sporozoites; SGS - salivary gland sporozoites.
doi:10.1371/journal.ppat.1000195.t002
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parasite through the mosquito that is reflected in changes of its

protein repertoire.

Analysis of the ‘stage specificity’ of proteins in six different life

cycle (mammalian and mosquito) stage proteomes demonstrated

that expression of proteins restricted to a single stage ranges from

12 to 28% with the highest percentage of ‘stage specificity’ in the

gametocyte and reaching 24% in ODS. The 478 proteins

common to blood and mosquito stages are significantly enriched

in house keeping proteins involved in metabolic processes. The

absence of specific enrichment of GO annotations in the 250

proteins of the mosquito stage specific proteome can most likely be

ascribed to the fact that a relatively small number of these proteins

posses a GO designation. Many of the mosquito stage specific

proteins are still annotated as hypothetical and probably have

functions that are specific for sporozoites and/or Plasmodium. This

concept is supported by the observation that 15 of the 23

Plasmodium proteins known to have a sporozoite specific function

are present in the 250 mosquito stage proteins identified in this

study, a 4–5 fold enrichment. Moreover, their stage specific

expression in our different proteomes also confirms that in general

the timing of protein expression coincides with observation of

function as inferred from gene deletion studies. For example,

proteins involved in the traversal and invasion of the hepatocyte

(e.g. SPECT1/2, CelTOS, AMA-1, STARP, TRSP, Pf36p and

P36 (Table 1)) are either exclusively or much more highly

expressed in SGS than ODS. Such changes in protein composition

and abundance demonstrate that sporozoites go through dynamic

changes and may exist as clearly defined developmental stages –

currently ODS and SGS – that express stage specific proteins.

These clear differences seem unexpected in the light of the

morphological similarity of the two stages but on the other hand

are in good agreement with the significant rise in mammalian host

infectivity observed during the maturation and migration of

sporozoites from oocysts to salivary glands [20,39]. These changes

are not only restricted to proteins directly involved in these

processes, but extend also to enzymes implicated in metabolic

housekeeping processes such as glycolysis, production of NADPH

and the TCA cycle that might be expected to coincide with

subcellular reorganisation at the level of the organelles. Mature,

salivary gland sporozoites might be considered to be in the resting

phase (G0) of the cell cycle and are able to persist and remain

infectious within the salivary glands of the mosquito for the

remainder of its life. Therefore, the abundance and storage of

these proteins may suggest that the salivary gland sporozoite

contains stockpiles of proteins which are deployed only upon

activation in the vertebrate host and growth (G1) and multiplica-

tion (S, M phases) inside the hepatocyte. Alternatively, some of

these proteins could specifically be required by the parasite in the

salivary glands of the mosquito host and therefore do not depend

on activation in the vertebrate host.

Protein and gene expression studies of SGS have previously

been performed in P. falciparum [10,16] as well as for the rodent

parasites P. berghei [11,20,21] and P. yoelii [18,19]. The relatively

low overlap between the proteins detected in the various

proteomes of sporozoites can in part be ascribed to the difficulties

in collecting material of sufficient purity and quantity. This

limitation results in the frequent sequencing of peptides derived

from mosquito proteins which reduces the total number of

identified parasite proteins. However, both the degree of overlap

between the proteomes and the degree of certainty in protein

calling can be improved if more strict selection criteria are used for

protein calling [31]. When we compared only proteins that were

identified by at least 2 or more fully-tryptic peptides in all datasets

(i.e. ours, Florens [10] P. falciparum SGS and Hall [11] P. berghei

SGS) we found a greater than 50% overlap in proteins. Moreover,

in the Hall P. berghei SGS and OOC proteomes it is observed that

more than 80% of these proteins have a direct ortholog in P.

falciparum. Further, when we again only compare ‘fully tryptic

proteomes’ we find 75% of the P. berghei SGS proteins are also

Figure 3. Phenotypic characterization of P. berghei mutants
(841cl1, 843cl1, 802cl1) with disrupted genes. (A) Numbers of
oocyst-derived sporozoites and salivary gland sporozoites per mosquito
from day 14 till day 27 post mosquito infection. Scale bars in Figure 3a
indicate 50 mm. Wild type (WT) sporozoite numbers are shown in blue
bars, 841 clone (PB000251.01.0/PFD0425w) gene disruptant sporozoite
numbers in purple, 843 clone (PB402680.00.0/MAL8P1.66) gene
disruptant sporozoite numbers in yellow, and 802 clone
(PB101363.00.0-PB000829.02.0-PB105739.00.0/PF14_0435) gene disrup-
tant sporozoite numbers are shown in pale blue. (B) Oocysts and
sporozoites of the three mutant lines. Upper panel: GFP-expressing
mature oocysts at day 10 after infection. Middle panel: Representative
images (phase contrast microscopy) of mature (day 12) oocyst.
Sporozoite formation in mutant 841 (PB000251.01.0/PFD0425w) is
same as WT whereas in lines 843 (PB402680.00.0/MAL8P1.66) and 802
(PB101363.00.0-PB000829.02.0-PB105739.00.0/PF14_0435) sporozoite
development is either affected (i.e. 843) or completely absent (i.e.
802). Lower panel: GFP-expressing sporozoites (released by mechanical
rupture of oocysts at day 18–20). Scale bars in Figure 3b indicate 12 um.
(C) Hepatocyte traversal and invasion of oocyst derived sporozoites
(841, PB000251.01.0/PFD0425w)) and salivary gland sporozoites (843,
(PB402680.00.0/MAL8P1.66)) compared to WT sporozoites similarly
mechanically liberated from oocyst. Bars represent the average
percentage of HepG2 cell traversal and invasion relative to wild type.
Scale bars in Figure 3c indicate 12 um.
doi:10.1371/journal.ppat.1000195.g003

Proteomics of P. falciparum Sporozoite Maturation

PLoS Pathogens | www.plospathogens.org 11 October 2008 | Volume 4 | Issue 10 | e1000195



expressed in the SGS of P. falciparum indicating that sporozoites of

different Plasmodium species employ similar processes of maturation

and invasion. Despite the relatively low overlap in total numbers of

proteins detected in the different proteomes, there is good

correlation of protein abundance between our SGS proteome

and the previously reported SGS proteome of P. falciparum [10]

based on peptide counting methods.

Interestingly, nearly all the expressed genes of P. yoelii

sporozoites detected by EST analyses [18] are also present in

our proteome. Similarly, in a recent microarray analysis of P. yoelii,

where 5500 expressed genes were measured in the ODS/SGS

stages we find that all of our 601 (i.e. 601 of the 728 P. falciparum

genes that have a P. yoelii ortholog) mosquito stage specific P.

falciparum proteins are also detected as mRNA [22].

We found a lower percentage of shared proteins between our

proteome and the transcripts detected in sporozoites of P. berghei

[11,20,21]. The variation in overlap between the various proteome

and transcriptome studies is certainly influenced by the varying

and often small number of identified genes/proteins and indicates

that a comprehensive expression profile of the salivary gland

sporozoite has still to be realized. Comparison of mRNA species

detected in P. falciparum SGS [22] with our proteome showed that

for a large percentage of genes, mRNA production coincides with

the presence of its protein (463 mRNA species for 477 proteins;

97%). The simultaneous presence of transcripts and protein

expression has also been observed during blood stage develop-

ment, supporting the ‘just in time’ model [9]. However, more than

2100 genes demonstrate an up-regulation of transcription in

sporozoites [22], many of which were not detected as a protein in

the various proteome studies. Moreover, a low correlation exists

between the abundance levels of our SGS proteins (i.e. by emPAI)

and the mRNA abundance of previously reported large-scale SGS

transcriptome studies (i.e. r = 0.31–0.33; [16,22]). This is in line

with the observations made by Le Roch et al (2004) where

transcript levels are not always well correlated with same stage

protein expression, suggesting a delay between mRNA and protein

accumulation [49]. It is interesting to speculate whether these

differences in expression between RNA and protein could be in

part explained by translation repression as is observed in

gametocytes that contain pools of translationally repressed

transcripts that are only translated following zygote formation

[11,50,51]. However, as discussed above, the proteome of

sporozoites may not be comprehensive enough to draw conclu-

sions about the relationship between specific mRNA and protein

expression patterns.

The sporozoite proteomes, despite not being exhaustive,

provide for the first time information on parasite protein

expression both at the mosquito midgut and salivary gland stages.

This has allowed for the identification of hitherto uncharacterized

proteins which in turn has informed the selection of genes for

targeted orthologous gene disruption studies in the rodent malaria

parasite, P. berghei. Mutant P. berghei parasites lacking mosquito

stage specific proteins have proven to be an efficient way to obtain

an understanding into the function of such proteins [52]. We were

able to generate 6 mutants for 8 hypothetical proteins that were

selected from our proteomes for further functional analysis in P.

berghei of which 3 showed distinct phenotypes, demonstrating an

important and essential role of these proteins in sporozoite

development and maturation. The knock-out parasite lines of 3

genes that do not exhibit a clear phenotypic difference from wild

type parasites indicate either a redundancy in function for the

proteins encoded by these genes or else phenotypes that are

presently too subtle for us to detect with our current methodol-

ogies. However, functional redundancy is a well-established

phenomenon for a number of Plasmodium proteins that are

expressed in the blood and sexual stages of the parasite [53–55].

The P. falciparum protein PF14_0435 is highly and exclusively

expressed in sporozoites obtained from the oocyst stage and the

phenotype of the orthologous gene knock-out mutant in P. berghei,

802cl1, is an abnormal development of the oocyst and the

complete absence of sporozoite production. This example

demonstrates not only the validity of the orthologous gene studies

in P. berghei but also the informative power of this combination of

proteome-reverse genetic approach in the characterization of

proteins at discreet stages of the parasite life-cycle. Furthermore,

the number of oocysts produced by the 802cl1 mutant is not

different from wild type levels and a defect appears to occur prior

to sporozoite development indicating that the role of PF14_0435 is

upstream of sporozoite production. The phenotype of a second P.

berghei mutant, line 841cl1, which lacks the orthologue of

PFD0425w closely resembles the egress defects observed with

the cysteine protease ECP1 (or SERA8 in P. falciparum) and CS

mutants that are mutated in their thrombospondin repeat; where

sporozoites are unable to exit from midgut oocysts [44,56].

Although ECP1 mutant sporozoites are not infectious, it has been

suggested that ECP1 may be involved in the cleavage of CS and

thereby release of sporozoites from the oocyst [4]. Interestingly,

while oocyst-derived sporozoites that lack ECP1 or express

mutated CS are not infective to mice, the mechanically liberated

oocyst-derived sporozoites of mutants lacking PFD0425w are able

to establish an infection in mice by i.v. inoculation, and this implies

that PFD0425w - in contrast to ECP1 - has no additional function

during infection of the mammalian host. Its role appears to be

restricted and directly involved in sporozoite release from the

oocyst and has a more immediate/causative function in the release

of sporozoites from oocysts. In contrast, the protein MAL8P1.66

appears to have multiple roles during sporozoite development

within the oocyst and infectivity to the mammalian host. Mutants

lacking this protein (i.e. line 843) are affected in the production of

sporozoites within oocysts. However, the low numbers of

sporozoites formed are able to invade salivary glands and

hepatocytes in vitro but are unable to infect mice, suggesting an

additional role during further development inside the hepatocyte.

Interestingly and in line with the expectation, the expression of

MAL8P1.66 has recently been identified in liver stage of

Plasmodium [57]. The exact role during development of the liver

stages awaits further analysis.

This study sheds light not only on the development and

maturation of the malaria parasite in an Anopheles mosquito but

also identifies proteins that are uniquely synthesized as the

sporozoite becomes increasingly infectious to humans. Infection

initiated by injection of P. falciparum sporozoites into humans

represents the culmination of many precise, sequential and critical

developmental steps of the malaria parasite through the mosquito.

Moreover, transmission is a bottle neck in the life cycle of

Plasmodium and the full maturation of sporozoites is essential in the

survival of the parasite. The changes in the different sporozoite

proteomes documented here emphasise that each event from

oocyst development to egress and invasion of salivary gland and

injection is tightly regulated. Intervention studies are now being

conducted that aim to exploit the tightly regulated pathways that

the parasite has evolved to ensure transmission. This has been

recently demonstrated with the use of genetically attenuated

sporozoites that have rapidly become an important focus in the

development of new vaccines. The disruptions of individual genes

that encode sporozoite proteins sufficiently weakens the parasite

such that development in the liver is blocked, enabling the

mammalian host to generate a strong protective immunity against
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subsequent infection. Clearly, the targeted disruption of genes

encoding proteins identified in this study, which are involved in

essential mature sporozoites functions, namely hepatocyte travers-

al, invasion and intracellular survival may also accelerate the

identification of new protective attenuated parasite lines. Under-

standing the sporozoite and all its various developmental steps

during the establishment of an infection continues to represent a

promising approach in the hunt for new weapons in the fight

against malaria.

Materials and Methods

Collection of P. falciparum oocysts and sporozoites
Anopheles stephensi mosquitoes (Sind-Kasur strain, 3–5 days old)

[58] were infected with P. falciparum gametocytes (NF54) [59] by

membrane feeding. Unfed and partially fed mosquitoes were

removed and fully fed mosquitoes were kept at 2661uC at 80%

humidity. After one day, a 5% glucose solution soaked in cotton

wool was offered to the mosquitoes and mosquitoes were allowed

to take an extra (uninfected) blood meal at day 8–10 after infection

[60]. Oocysts and oocyst-derived sporozoites were collected from

midguts at 7–8 and 13–14 days after infection, respectively.

Approximately 100–200 mosquito midguts were hand-dissected

and homogenized in a home made glass tissue grinder in 200 ml of

PBS pH 7.2 at 4uC. Salivary gland sporozoites were collected from

salivary glands 18–22 days after infection. Approximately 70

salivary glands were hand-dissected and treated in a similar way as

the oocyst samples. For the parasite preparations (OOC, ODS and

SGS), four, three and two batches respectively were generated and

processed further for analysis by nLC-MS/MS.

Sample preparation for Mass Spectrometry analysis
In order to estimate the number of sporozoites in the samples

described above the total number of oocyst and salivary gland

sporozoites per mosquito was determined as follows: midguts and

salivary glands were dissected from 10 mosquitoes at day 13 and

day 22 after feeding respectively. The midguts/salivary glands

were homogenized in a home made glass grinder in 1000 ml of

PBS pH 7.2 and sporozoites were counted in a Bürker-Türk

counting chamber using phase-contrast microscopy (1–1.66105

sporozoites obtained from salivary glands of one mosquito, and

0.5–56105 sporozoites per mosquito midgut). Parasites samples

from mosquito midguts and salivary glands (approx. 1–46107

ODS and SGS sporozoites, and 1–26104 oocysts from 65–200

mosquito midguts) were divided into a soluble and insoluble

fraction by a freeze–thawing procedure similar to the parasite

sample preparation procedure of blood stages [15]. Complex

protein mixtures of both fractions derived from different batches

were extracted in SDS–polyacrylamide gel electrophoresis (PAGE)

loading buffer and subsequently separated into 10 or 22 fractions

per sample batch after electrophoresis on a 10% protein gel to

reduce protein complexity, allowing protein identification by 1D

LC-MS/MS. Because parasite samples were contaminated with

mosquito host proteins (from midguts and salivary glands), we also

analysed an increased number of gel slices (22 slices per gel)

compared to 10 slices used in our previous analysis for P. falciparum

blood stages. Gel slices were treated with dithiothreitol and

iodoacetamide and digested by trypsin as described before [15].

Nano–liquid chromatography tandem mass
spectrometry

The nLC-MS/MS procedure as described for the analysis of

blood stages [15] was used with minor adjustments. Peptide

mixtures were loaded onto 100 mm ID columns packed with 3 mm

C18 particles (Vydac) and eluted into a quadruple time-of-flight

mass spectrometer (QSTAR, Sciex-Applied Biosystems). Fragment

ion spectra were recorded using information-dependent acquisi-

tion and duty-cycle enhancement. Since the parasite samples were

contaminated with host (mosquito) proteins, we measured samples

up to four times with exclusion lists to acquire MS/MS spectra of

P. falciparum peptides. Peptides sequenced in the first run were

excluded for sequencing in subsequent runs, peptides from the 2nd

run were excluded in the 3rd run etc. This procedure results in an

enrichment of low abundant peptides in the second, third and

fourth LC-MS/MS run. In total, more than 750 LC-MS/MS runs

were acquired resulting in at least 200,000 MS/MS spectra per

parasite stage. Plasmodium proteins were identified by searching

combined protein databases of P. falciparum (http://www.

plasmodb.org), Anopheles gambiae (ftp://ftp.ensembl.org/pub/) and

human IPI (ftp://ftp.ebi.ac.uk/pub/databases/IPI/) using the

Mascot search algorithm (Matrix Science) with tryptic require-

ment and 0.2 Da mass tolerance for precursor mass and fragment

masses. First ranked peptides (Mascot peptide scores.15) were

parsed from Mascot database search html-files with MSQuant

(http://www.msquant.sourceforge.net) to generate unique first

ranked peptide lists. Plasmodium proteins identified by 1–3 three

first ranked peptides were verified by manual inspection of the

MS/MS spectra in MSQuant or in Mascot. An initial validation

filter was applied to the dataset after reversed database searches. A

minimal Mascot peptide score of 30 was determined by a reverse

database search, which revealed a false positive rate of 17% for

proteins identified by 1 peptide with a Mascot peptide score.30,

delta score.5), 5% for proteins identified by 2 peptides (average

Mascot score.30) and 0.3% for proteins identified by more than 2

peptides. Manual verification for proteins detected by less than 4

peptides substantially decreased the false positive rates and

included proteins below this filter. After internal calibration of

the peptide masses by MSQuant, an average absolute mass

accuracy of 23.5 ppm was obtained for the entire dataset of P.

falciparum peptides. To remove redundancy on the protein level

and to uniquely assign peptides to one protein, the peptides were

remapped to PlasmoDB 5.3 annotated genome using the program

Protein Coverage Summarizer (http://ncrr.pnl.gov/software/).

The collected peptide list of this study (malaria peptides identified

in the mosquito stages) is available in Table S1.

Identified peptide count analysis to determine protein
abundance index values

To determine the protein abundance in our samples, mass

spectrometric data was analyzed using an identified peptide per

protein count analysis to compute the exponentially modified

Protein Abundance Index (emPAI) values [16,22]. EmPAI values

for all proteins in Table S1 were calculated as 10PAI–1

(PAI = nobserved peptides/nobservable peptides). The number of ‘observ-

able’ peptides per protein was calculated from the output of the

program Protein Digestion Simulator (http://ncrr.pnl.gov/

software/), which computes peptide masses and hydrophobicities

of simulated digests of protein databases. Two approaches were

chosen to merge data from proteins identified in several slices, runs

and batches. The first approach calculates emPAI values per slice

for collapsed data of different runs. Per sample batch, emPAI

values were subsequently summed over all slices. In cases for 22 gel

slices per lane, data of two slices were merged to create a similar

number of emPAI fractions for all samples. The second approach

calculates emPAI values for merged data of all slices of all runs per

sample batch. Both approaches resulted in protein emPAI values

in 4 OOC batches (1–26104 oocysts), 3 ODS batches (1.4–
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3.86107 sporozoites) and 2 SGS batches (1.3–2.56107 sporozo-

ites).

Normalization between different batches was performed

according to the median and 20 percent trimmed mean method

[61]. Normalization methods and approaches for merging emPAI

data were evaluated on performance in correlation studies with

mRNA data of P.falciparum salivary gland sporozoites [16,22]

(Table S3). Mean protein emPAI values of merged and median

normalized data were calculated per stage and have been included

in Table S1. This approach was also applied to our proteomic data

set of blood stages [15] to calculate normalized emPAI values.

Correlation between protein expression data from
different studies

Values for the level (abundance) of protein expression from

different datasets were obtained for all individual proteins by

calculated emPAI values. EmPAI values and mRNA levels of

microarray analyses were log2 transformed before regression

analysis to obtain normal distributions. Pearson correlation

between datasets was performed using R (http://www.r-project.

org/).

Gene ontology annotation
Gene Ontology SLIM terms were assigned using ‘‘Generic GO

(http://go.princeton.edu/cgi-bin/GOTermMapper). A GO en-

richment analysis for ‘Biological Process’, ‘Cellular Component’

and ‘Molecular Function’ using default GO association files was

performed with ‘‘GO Term Finder’’ (http://go.princeton.edu/cgi-

bin/GOTermFinder) where statistical significance (p-value) is

calculated based on hypergeometric distribution with Bonferroni

multiple testing correction and false discovery rate calculation as

described [62]. To perform a GO enrichment analysis with

adjusted GO association files, Ontologizer (http://www.charite.

de/ch/medgen/ontologizer/) was used where statistical signifi-

cance (p-value) is calculated as in ‘GO Term Finder’(see above

and [63]).

Selection criteria for ODS, SGS and ODS/SGS proteins
Proteins with more than 90 percent of the peptides detected in

the mosquito stages (mosquito fraction.0.9) were divided into

three groups (OOC, ODS and ODS/SGS) based on their

expression patterns. The mosquito fraction equals nmosq/(nmosq+
nblood) where n is the number of unique peptides per protein at the

mosquito and blood stages, respectively. The mosquito enriched

proteins were further subdivided into 112 ODS-specific proteins

expressed in the ODS stage and not SGS (Group I); 74 SGS-

specific proteins not expressed in ODS (Group II); and finally 59

Group III proteins that are shared between several mosquito life

cycle stages. A further refinement of these groups was based on the

following criteria. Only proteins with more than two peptides

detected in the mosquito stages (nmosq$3) were considered. In

addition, only proteins were selected that contained Signal peptide

(SP), Transmembrane (TM) or Glycosylphosphatidylinositol (GPI)

domains and combinations of these motifs. Sequence–based

prediction data for these domains was retrieved from PlasmoDB

(http://www.plasmodb.org) for SP and TM domain predictions

based on TMHMM, TMAP, TMHMM2 and TOPRED2

algorithms; from http://gpi.unibe.ch/ for GPI predictions by a

Kohonen Self Organizing Map; and from http://smart.embl-

heidelberg.de/ for SMART protein domain searches. The

number of TM domains is the average of four values obtained

from the different TM prediction algorithms. Different criterions

were set for combinations of predicted motifs. For less abundant

proteins without predicted signal peptide (SP = 0, and

3#nmosq#15), only proteins with at least 4 predicted TM regions

were included (average TM.4). For abundant proteins without

signal peptide (SP = 0, nmosq.15) proteins with at least 0.5

predicted TM regions (average TM$0.5) were included. For

proteins with predicted signal peptide (SP = 1), all proteins with at

least 0.5 predicted TM regions (average TM$0.5) were included.

Finally, all proteins with a predicted GPI anchor (GPI = 1) were

selected independent of the presence of predicted signal peptide or

TM regions.

Generation and characterization of gene knockout P.
berghei parasite mutants

Eight P. falciparum proteins were selected for functional analysis

by targeted gene disruption of their corresponding orthologs in P.

berghei. The sequences of the eight P. berghei gene orthologs (as well

their corresponding up and downstream sequences) were retrieved

from the on-line Plasmodium genome databases, http://www.

plasmodb.org and http://www.genedb.genedb/genedb/pberghei .

For P. berghei genes with incomplete sequence information in the

database (4 out of 8), the complete genes were manually assembled

from a number of different P. berghei sequences by performing

BLAST sequence searches of the full length P. falciparum genes

against the P. berghei genome and closing gaps by PCR and DNA

sequencing (see for details Figure S3 and Table S5). Standard

plasmid vectors were designed for targeted gene disruption by

double cross-over homologous recombination [48]. To replace the

protein coding sequences of the target genes with the dhfr/ts

pyrimethamine resistance marker from Toxoplasma gondii, we cloned

the 59 and 39 flanking regions of the gene of interest up- and

downstream of the selection cassette of pl0001; also in MR4 (http://

www.mr4.org/). Briefly described for one candidate gene, to

generate a PB000829.02.0/PF14_0435 disruption vector, an

upstream region (position 74–436 on singleton berg-2274h02.p1k)

and a downstream region (position 516–1016 on contig PB_RP2658)

- the latter containing the P. berghei orthologous gene

PB000829.02.0 - were amplified from P. berghei genomic DNA using

primer-pairs 2666–2653 and 2654–2655, respectively. The PCR

products were digested with Asp718 and HindIII, or EcoRI and NotI,

respectively, and ligated into plasmid pl0001 yielding targeting

plasmid pL1175 (see for further details of all plasmids and the

sequence of the primers, Figure S3 and Table S5). All plasmids

generated were sequence analysed. Transfection of GFP-expressing

‘wild type’ parasites from the P. berghei reference line 507cl1 [64] with

linearised targeting constructs, selection and cloning of the mutant

parasites were performed according to procedures previously

described [48]. Genotypic analysis of transfected parasites was

performed by Southern analysis of FIGE separated chromosomes

and diagnostic PCR on genomic DNA (details of the primers used

for PCR are shown in Table S5).

Phenotype analysis of mutant parasites during blood stage

development, quantification of gametocyte production and

ookinete development in vitro was performed using standard

methods as previously described [14,65]. Mosquito stage devel-

opment was analysed in A. stephensi mosquitoes using standard

methods of infection of mosquitoes and analysis of oocyst and

sporozoite production and analysis of sporozoite infectivity to

C57Bl6 mice [66]. The number of sporozoites in oocysts of

mosquito midguts and in salivary glands derived from 10

mosquitoes was determined in quadruplicate as described above

for counting P. falciparum sporozoites and represented as mean

number with standard deviation per stage per mosquito. The

capacity of the mutant parasites to infect mice by mosquito

interrupted feeding was determined by exposure of female C57Bl6
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mice (n = 2–4) to 40–50 mosquitoes, at day 20 after the infectious

blood meal. Infection was monitored by analysis of blood stage

infection in Giemsa stained films of tail blood at day 4 till day 8

after infection. Infectivity was recorded as ‘wild type’ if mice

developed a parasitemia of 0.1–0.5% at day 4 after infection.

Infectivity of sporozoites to mice of 2 mutant lines was also

determined by intravenous injection of sporozoites that were

mechanically liberated by a glass grinder from either midgut

oocysts (1–26106 oocyst sporozoites collected at day 20 from

mutant line 841 and wild type line 507cl1) or collected from

salivary glands (104 salivary gland sporozoites at day 27 for mutant

line 843 and wild type line 507cl1). For obtaining oocysts and

salivary gland sporozoites, mosquito midguts or salivary glands

were dissected in a drop of RPMI culture medium and the

transferred by a custom made needle into a glass grinder after

which sporozoites were released by gently grinding. Blood stage

infection in mice injected with sporozoites in 200 ml RPMI buffer

was monitored as described for infection of mice via mosquito

interrupted feeding.

In vitro hepatocyte traversal and invasion experiments were

performed as described elsewhere [67,68] by adding purified

sporozoites (56104) to confluent monolayers of HepG2 cells in

DMEM medium (note: medium had 10% FCS and 1% PenStrep).

Mutant sporozoites were obtained as described above from either

oocysts (day 20) or from salivary glands (day 27). Quantification of

cell traversal and invasion was accomplished by using a cell-

impermeable fluorescent marker molecule, rhodamine-dextran at

1 mg/ml that will visualize parasitized wounded cells specifically

but not uninfected HepG2 cells. Sporozoites were incubated with

HepG2 cells in the presence of fluorescent dextran for 2 hr,

followed by washing the cells to remove the marker and incubation

for an additional 24 hours to determine the development of

exoerythrocytic forms (EEFs) of the parasite. Hepatocyte invasion

was determined by counting the percentage of sporozoites inside

dextran-negative cells because parasites do not develop success-

fully in wounded dextran-positive cells [68]. After fixation of the

HepG2 cells, infection was quantified by staining EEFs with

monoclonal antibody 2E6 against HSP70 [69] and compared to

infection of wild type sporozoites. Hepatocyte cell traversal was

determined by counting the percentage of dextran-positive cells

2 hours after adding sporozoites to HepG2 cells, and compared to

wild type sporozoite cell traversal. In this procedure, monoclonal

antibody 3D11 against CS was used.

Accession Numbers
All datasets will become available through the official Web site

of the Plasmodium genome project, PlasmoDB (http://www.

plasmodb.org [70,71]). In the text and tables most genes and gene

products are accompanied with their PlasmoDB Accession

Number.

The PlasmoDB accession numbers for other genes and gene

products discussed in this paper are for P. falciparum: CS

(PFC0210c), TRAP (PF13_0201), UIS3 (PF13_0012), P36

(PFD0210c), P36p (PFD0215c), myosin A (PF13_0233), MTIP

(PFL2225w), actin (PFL2215w) and F-1,6-BP aldolase

(PF14_0425), AMA-1 (PF11_0344), TRSP (PFA0200w), RESA8

(PFB0325c), SPECT1 (MAL13P1.212), SPECT2 (PFD0430c),

CelTOS (PFL0800c), STARP (PF07_0006); and for P. berghei:

UIS4 (PB100551.00.0), ECP1 (PB000649.01.0).

The sequences of the eight P. berghei gene orthologs (as well their

corresponding up and downstream sequences) that have

been analysed in gene-disruption studies were retrieved from

the PlasmoDB database (http://www.plasmodb.org) and from

the GeneDB database (http://www.genedb.genedb/genedb/

pberghei). For 4 out of 8 P. berghei genes with incomplete sequence

information in the database, the complete genes were manually

assembled from a number of different P. berghei sequences by

performing BLAST sequence searches, PCR and DNA sequenc-

ing (see for details Figure S3 and Table S5). Primer sequences used

in contig gap closure and location of primers relating to contigs

and reads of the revised P. berghei gene models have been submitted

to GenBank and are provided in Figure S3 and Table S5.

Supporting Information

Figure S1 Gene Ontology (GO) annotation for proteins from

proteomes from two mosquito stages of P. falciparum, oocyst-

derived sporozoites and salivary gland sporozoites.

Found at: doi:10.1371/journal.ppat.1000195.s001 (0.05 MB

DOC)

Figure S2 Pathway profiling with the number of unique

peptides/protein detected in 5 different life-cycle stages (data

obtained from this study and from Lasonder et al. ([15]).

Found at: doi:10.1371/journal.ppat.1000195.s002 (0.09 MB

DOC)

Figure S3 Generation and genotype analysis of P. berghei

mutants with disrupted genes that encode orthologs of mosquito

stage proteins of P. falciparum.

Found at: doi:10.1371/journal.ppat.1000195.s003 (5.77 MB PPT)

Table S1 Peptides and proteins of P. falciparum identified in

proteomes of oocysts, oocyst-derived sporozoites and salivary

gland sporozoites. Page ‘Peptides’: peptides identified by nLC-

MS/MS. Information provided in the table: 1) life cycle stage, 2)

peptide sequence, 3) MCR (mass of charge of parent ion), 4)

charge of parent ion, 5) measured mass of peptide, 6) calibrated

mass of peptide after internal mass calibration, 7) peptide rank in

Mascot searches, 8) peptide score in Mascot searches, 9) Mascot

peptide delta score (which equals the Mascot score difference

between a rank1 and a rank2 peptide), 10) accession number of

protein identification from PlasmoDB version 5.3, 11) protein

name, 12 reannotation PlasmoDB 2008)07)15 (genes with the most

recently modified annotation by PlasmoDB), 13) protein mass

(molecular weight), 14) protein pI (iso-electric point), 15) nr

pept)prot)sample (the number of unique peptides per protein), 16)

Residue Start (residue nr in the protein sequence of the N-terminal

amino acid), 17) Residue End (residue nr in the protein sequence

of the C-terminal amino acid), 18) sequence coverage (percentage

of the protein covered by the identified peptides), and 19) protein

emPAI value. Page ‘Proteins’: The corresponding proteins

identified by the sequenced peptides, listing: 1) accession number

(PlasmoDB version 5.3), 2) protein name, 3 reannotation

PlasmoDB 2008)07)15 (genes with the most recently modified

annotation by PlasmoDB) 4) protein mass (molecular weight), 5)

protein pI (iso-electric point), 6) number of unique identified

peptides, 7) protein emPAI value, and 8) mosquito fraction (which

is calculated by the number of detected peptides in mosquito stages

divided by the sum of the number of peptides in mosquito and

blood stages). Page ‘OOC’: proteins detected in OOC; column

headings the same as for Page ‘Proteins’. Page ‘ODS’: proteins

detected in ODS; column headings the same as for Page ‘Proteins’.

Page ‘SGS’: proteins detected in SGS; column headings the same

as for Page ‘Proteins’. Page ‘Mosquito stage specific’: proteins

exclusively detected in mosquito stages (mosquito fraction = 1);

column headings the same as for Page ‘Proteins’. Page ‘Shared

with RBC stages’: proteins detected in mosquito stages and blood

stages (0,mosquito fraction,1); column headings the same as for

Page ‘Proteins’. Page ‘OOC-enriched’: proteins that are ‘highly
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enriched’ in OOC (mosquito fraction.0.9); column headings the

same as for Page ‘Proteins’. Page ‘ODS-enriched’: proteins that

are ‘highly enriched’ in ODS (mosquito fraction.0.9); column

headings the same as for Page ‘Proteins’. Page ‘SGS-enriched’:

proteins that are ‘highly enriched’ in SGS (mosquito frac-

tion.0.9); column headings the same as for Page ‘Proteins’. Page

‘tRNA ligase’: overview of all tRNA proteins detected in mosquito

stages, column headings the same as for Page ‘Proteins’.

Found at: doi:10.1371/journal.ppat.1000195.s004 (3.44 MB ZIP)

Table S2 Comparison of proteins identified in the mosquito

stage proteomes of this study with the proteomes of salivary gland

sporozoites (SGS) of P. falciparum as reported by Florens and

colleagues [10] and the proteomes of oocysts (OOC) and SGS of

P. berghei as reported by Hall and coworkers [11]. The tables

contain information about proteins shared by our analysis and

others, where our expression data is presented by the number of

unique tryptic peptides per protein. The other data sets are

presented in a similar way, but a distinction is made in expression

data for detection either by all peptides (tryptic, half (non) tryptic),

or by tryptic peptides.

Found at: doi:10.1371/journal.ppat.1000195.s005 (1.58 MB ZIP)

Table S3 Correlation of protein abundance (emPAI approach)

identified in the SGS stage proteome of this study with mRNA

levels of the SGS transcriptomes of P. falciparum as reported by Le

Roch and coworkers [16] and Zhou and coworkers [22]. Tables

show Pearson correlation coefficients (r), probabilities (p) and

number of shared genes/proteins (n).

Found at: doi:10.1371/journal.ppat.1000195.s006 (0.02 MB XLS)

Table S4 Comparison of proteins identified in the mosquito

stage proteomes with genes transcribed in sporozoites in P. berghei

and P. yoelii as identified by either subtractive hybridization (SSH)

or cDNA quantification methods (SAGE). S-genes: 25 sporozoite (S)

genes identified in a P.yoelii SSH screen [18]. UIS-genes: 30 UIS

genes (Upregulated In Sporozoites) identified in a P. berghei SSH

screen [20]. SIS genes: 123 SIS genes (Sporozoite expressed gene

Identified by SAGE (SIS) genes) identified in a P. berghei SAGE

analysis [21].

Found at: doi:10.1371/journal.ppat.1000195.s007 (0.06 MB XLS)

Table S5 Primer sequences used in this study. Primers used in

KO targeting plasmid construction. Primers used to check for

plasmid integration in mutant (KO) parasites. Primers used in

contig gap closure and wild type (WT) PCR analysis.

Found at: doi:10.1371/journal.ppat.1000195.s008 (0.03 MB XLS)
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