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tions (omitting the time stamps). We used interventional data on 
steady-state gene expression levels of known single-gene knock-
out experiments as the gold standard for determining the causal 
effects. We applied IDA, as well as Lasso and Elastic-net, to the 
observational datasets and evaluated how well the resulting top q 
predicted effects (q = 10 for the networks of size 10 and q = 25 for 
the networks of size 100) corresponded to the top m percentage 
(m = 5 or 10) of the effects as computed from the interventional 
data (Supplementary Methods). We counted the number of 
networks in which the partial area under the receiver operating 
characteristic curve (pAUC) was better than random guessing at 
significance level a = 0.01 for both values of m (Supplementary 
Methods). By this measure, IDA was at least as good as Lasso 
and Elastic-net for all four possible combinations of the type of 
observational data (multifactorial or time series) and the size of 
the networks (10 or 100 genes). The difference was largest for the 
multifactorial data on the networks of size 10, where IDA was 
substantially better than Lasso and Elastic-net for three of the 
five networks (Supplementary Fig. 1 and Supplementary Table 
2). For instance, in this setting with m = 10 and q = 10, IDA 
found 4, 4, 5, 1 and 2 true positives for the five different networks, 
whereas Lasso found 1, 1, 0, 1 and 2 true positives and Elastic-net 
found 3, 1, 0, 1 and 1 true positives.

The results presented here on S. cerevisiae and the DREAM4 
data are proof-of-concept results that IDA can predict the stron-
gest causal effects in potentially large-scale biological systems 
by using only observational data. In particular, the results on 
S. cerevisiae demonstrate that we were able to do this in a chal-
lenging real-world setting where the number of variables (5,361) 
was much larger than the sample size (63) and the variables were 
substantially disturbed by noise. As IDA is supported by math-
ematical theory, we expect the results presented here to generalize 
to other problems.

Of course, statistical predictions based on observational data 
can never replace intervention experiments. In fact, whenever 
possible, IDA predictions should be followed up by intervention 
experiments. In this way, the predictions can serve as a new tool 
for the design of experiments, as they indicate which interven-
tions are likely to show a large effect.

Software for IDA is available in the open source R-package 
pcalg (http://cran.r-project.org/web/packages/pcalg/index.
html).

Note: Supplementary information is available on the Nature Methods website.
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A method and server for predicting 
damaging missense mutations
To the Editor: Applications of rapidly advancing sequencing 
technology exacerbate the need to interpret individual sequence 
variants. Sequencing of phenotyped clinical subjects will soon 
become a method of choice in studies of the genetic causes of 
Mendelian and complex diseases. New exon-capture techniques 
will direct sequencing efforts to the most informative and easily 
interpretable protein-coding fraction of the genome. Thus, the 
demand for computational predictions of the impact of protein 
sequence variants will continue to grow.

Here we present a new method and the corresponding soft-
ware tool, PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/, 
Supplementary Software), for predicting damaging effects of 
missense mutations. PolyPhen-2 is different from the earlier 
tool PolyPhen1 in the set of predictive features, the alignment 
pipeline and the method of classification (Fig. 1a). PolyPhen-2 
uses eight sequence-based and three structure-based predictive 
features (Supplementary Table 1), which were selected automati-
cally by an iterative greedy algorithm (Supplementary Methods). 
The majority of these features involve comparison of a property 
of the wild-type (ancestral, normal) allele and the correspond-
ing property of the mutant (derived, disease-causing) allele. 
The alignment pipeline selects a set of homologous sequences 
using a clustering algorithm and then constructs and refines its 
multiple alignment (Supplementary Fig. 1). The most informa-
tive predictive features characterize how likely the two human 
alleles are to occupy the site given the pattern of amino-acid 
replacements in the multiple-sequence alignment; how distant 
the protein harboring the first deviation from the human wild-
type allele is from the human protein; and whether the mutant 
allele originated at a hypermutable site2. The functional impor-
tance of an allele replacement is predicted from its individual 
features (Supplementary Figs. 2–4) by a naive Bayes classifier 
(Supplementary Methods).

We used two pairs of datasets to train and test PolyPhen-2. We 
compiled the first pair, HumDiv, from all 3,155 damaging alleles 
annotated in the UniProt database as causing human Mendelian 
diseases and affecting protein stability or function, together 
with 6,321 differences between human proteins and their closely 
related mammalian homologs, assumed to be nondamaging 
(Supplementary Methods). The second pair, HumVar3, consists 
of all the 13,032 human disease-causing mutations from UniProt 
and 8,946 human nonsynonymous single-nucleotide polymor-
phisms (nsSNPs) without annotated involvement in disease, 
which we treated as nondamaging.

We found that PolyPhen-2 performance, as presented by its 
receiver operating characteristic curves, was consistently superior 
compared to that of PolyPhen (Fig. 1b) and it also compared 
favorably with that of three other popular prediction tools4–6 
(Fig. 1c). For a false positive rate of 20%, PolyPhen-2 achieved 
true positive prediction rates of 92% and 73% on HumDiv and 
HumVar datasets, respectively (Supplementary Table 2).

One reason for the lower accuracy of predictions on HumVar is 
that nsSNPs assumed to be nondamaging in the HumVar dataset 
included a sizable fraction of mildly deleterious alleles. In con-
trast, most amino-acid replacements assumed nondamaging in 

©
 2

01
0 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.

http://cran.r-project.org/web/packages/pcalg/index.html
http://cran.r-project.org/web/packages/pcalg/index.html
http://www.nature.com/naturemethods/
mailto:maathuis@stat.math.ethz.ch
http://genetics.bwh.harvard.edu/pph2/


nature methods | VOL.7 NO.4 | APRIL 2010 | 249

correspondEnce

the HumDiv dataset must be close to selective neutrality. Because 
alleles that are mildly but unconditionally deleterious may not 
be fixed in the evolving lineage, no method based on compara-
tive sequence analysis is ideal for discriminating between drasti-
cally and mildly deleterious mutations, which were assigned to 
opposite categories in HumVar data. Another reason is that the 
HumDiv dataset uses extra criteria (Supplementary Methods) to 
avoid possible erroneous annotations of damaging mutations.

PolyPhen-2 calculates the naive Bayes posterior probability 
that a given mutation is damaging and reports estimates of false 
positive (the chance that the mutation is classified as damaging 
when it is in fact nondamaging) and true positive (the chance that 
the mutation is classified as damaging when it is indeed damag-
ing) rates. A mutation is also appraised qualitatively, as benign, 
possibly damaging or probably damaging (Supplementary 
Methods).

The user can choose between HumDiv- and HumVar-trained 
PolyPhen-2. Diagnostics of Mendelian diseases require dis-
tinguishing mutations with drastic effects from other human 
variation, including abundant mildly deleterious alleles. Thus, 
HumVar-trained PolyPhen-2 should be used for this task. In con-
trast, HumDiv-trained PolyPhen-2 should be used to evaluate 
rare alleles at loci potentially involved in complex phenotypes, 
for dense mapping of regions identified by genome-wide associa-
tion studies and for analysis of natural selection from sequence 

data, in which even mildly deleterious alleles must be treated as 
damaging.

Note: Supplementary information is available on the Nature Methods website.
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Figure 1 | PolyPhen-2 pipeline and prediction 
accuracy. (a) Overview of the algorithm. MSA, 
multiple sequence alignment. (b) Receiver 
operating characteristic (ROC) curves for 
predictions made by PolyPhen-2 using fivefold 
cross-validation on HumDiv and HumVar3 data, 
using UniRef100 and Swiss‑Prot databases for 
the homology search. Also shown are ROC curves 
for PolyPhen on HumDiv and HumVar calculated 
from the difference between position-specific 
independent counts (PSIC) scores1 of the wild-
type and the mutant amino acids. (c) ROC curves 
for PolyPhen-2 trained on HumDiv and tested 
on a subset of HumVar data nonoverlapping 
with HumDiv data. UniRef100 and Swiss‑Prot 
databases were used for the homology search. 
Also shown are ROC curves obtained using the 
programs sorting intolerant from tolerant (SIFT)4, 
screening for nonacceptable polymorphisms 
(SNAP)5 and SNPs3D6 on HumVar data. Methods 
other than PolyPhen‑2 and PolyPhen could not 
easily be applied to HumDiv data because using 
the same sequences for obtaining both multiple 
alignments and nondamaging replacements 
must be avoided. SIFT was used in conjunction 
with Swiss-Prot database, SNAP and SNPs3D 
were used with their corresponding default 
databases. We used SIFT with Swiss‑Prot database 
for homology search since Swiss‑Prot does not 
contain sequences of splice forms, sequences of 
human allelic variants and incomplete sequences, 
making it possible to guarantee that allelic 
variants used in testing datasets would not 
appear in multiple-sequence alignments.
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