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The increasing number of sequenced genomes has

prompted the development of several automated orthology

prediction methods. Tests to evaluate the accuracy of pre-

dictions and to explore biases caused by biological and

technical factors are therefore required. We used 70 man-

ually curated families to analyze the performance of five

public methods in Metazoa. We analyzed the strengths

and weaknesses of the methods and quantified the impact

of biological and technical challenges. From the latter part

of the analysis, genome annotation emerged as the largest

single influencer, affecting up to 30% of the performance.

Generally, most methods did well in assigning orthologous

group but they failed to assign the exact number of genes

for half of the groups. The publicly available benchmark set

(http://eggnog.embl.de/orthobench/) should facilitate the

improvement of current orthology assignment protocols,

which is of utmost importance for many fields of biology

and should be tackled by a broad scientific community.

Keywords:.metazoan; orthology; quality assessment

Introduction

The analysis of fully sequenced genomes offers valuable
insights into the function and evolution of biological systems
[1]. The annotation of newly sequenced genomes, comparative
and functional genomics, and phylogenomics depend on
reliable descriptions of the evolutionary relationships of
protein families. All the members within a protein family
are homologous and can be further separated into orthologs,
which are genes derived through speciation from a single
ancestral sequence, and paralogs, which are genes resulting
from duplication events before and after speciation (out- and
in-paralogy, respectively) [2, 3]. The large number of fully
sequenced genomes and the fundamental role of orthology
in modern biology have led to the development of a plethora of
methods (e.g. [4–11]) that automatically predict orthologs
among organisms. Current approaches of orthology assign-
ment can be classified into (i) graph-based methods, which
cluster orthologs based on sequence similarity of proteins, and
(ii) tree-based methods, which not only cluster, but also rec-
oncile the protein family tree with a species tree (Box 1).
Despite the fact that orthology and paralogy are ideally illus-
trated through a phylogenetic tree, where all pairwise relation-
ships are evident, tree-based methods are computationally
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Box 1 Comparison of orthology prediction methods

Orthology prediction methods can be classified based on
the methodology they use to infer orthology into (i) graph-
based and (ii) tree-based methods [12, 16, 17]. Different
graph-based methods are designed to assign orthology
for two (pairwise) or more (multiple) species. Graph-based
methods assign proteins into OGs based on their similarity
scores, while tree-based methods infer orthology through
tree reconciliation.
Pairwise species methods (e.g. BHR, InParanoid,
RoundUp):
Based on these methods, orthologs are best bi-directional
hits (BBH) between a pair of species. BRH [46] is the first
automated method and does not detect paralogs.
InParanoid [47] implements an additional step for the
detection of paralogs. RoundUp [48] uses evolutionary
distances instead of BBH. In addition to the restriction
of only two-species at a time, these methods are disad-
vantageous for long evolutionary distances.
Multi-species graph-based methods (e.g. COG,
eggNOG, OrthoDB, OrthoMCL, OMA):
Due to the fast implementation and high scalability, there are
many graph-based methods for multi-species compari-
sons. So far, all of them use either BLAST or Smith-
Waterman (e.g. PARALIGN, SIMG) as sequence-similarity
search algorithms. However, they are quite diverse regard-
ing the clustering algorithms. COG, eggNOG, and OrthoDB
share the same methodology: they identify three-way BBHs
in three different species and then merge triangles that
share a common side. OrthoMCL is a probabilistic method
that uses a Markov clustering procedure to cluster BBH

into OGs. OMA removes from the initial graph BBHs
characterized by high evolutionary distance; a concept
similar to RoundUp. After that, it performs clustering based
on maximum weight cliques. Unique database character-
istics are the hierarchical groups (OGs in different taxonomic
levels) and ‘‘pure orthologs’’ (generate groups of one-to-
one orthologs without paralogs), which has been introduced
only by OMA (indicated as �� in the figure). Hierarchical
groups can substitute the view of phylogenetic trees.
Multi-species tree-based methods (e.g. TreeFam,
Ensembl Compara, PhylomeDB, LOFT):
Tree-based prediction methods can be separated into
approaches that do (like EnsemblCompara, TreeFam,
and PhylomeDB) and do not, e.g. LOFT [49], use tree-
reconciliation. Tree-based methods also initially use
homology searches; however, their criteria are more
relaxed, as the orthology is resolved through tree top-
ology. Although a reconciled phylogenetic tree is the most
appropriate illustration of orthology/paralogy assignment,
there are a few caveats to such an approach, namely their
scalability and sensitivity to data quality.
For a more detailed and extensive discussion of the differ-
ences among orthology methodology, we recommend
refs. [12, 16, 17].
Phylogenetic distribution describes the species range of
each database. Homology search shows a few technical
differences for recruiting orthologs. §: Supplies OGs
whose members share only orthologous relationships. �:
The user can compare any two genomes spanning a
phylogenetic distance from bacteria to animals.
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expensive and at times fail due to the complexity of the family
or to the substantial number of species in the comparison [12].
As a trade-off between speed and accuracy, the evolutionary
relationships among proteins in comparisons that include a
large number of species are better explored using graph-based
methods. During the first large-scale orthology assignment
project of multiple species, the concept of clusters of ortho-
logous groups (COGs) was introduced [4]. A COG consists of
proteins that have evolved from a single ancestral sequence
existing in the last common ancestor (LCA) of the species that
are being compared, through a series of speciation and dupli-
cation events [4]. The orthologous/paralogous relationships
among proteins of multiple species are better resolved through
orthologous groups (OGs) rather than pairs of orthologs. This
is particularly evident in the instances of complex protein
family histories (e.g. tubulins) or families over significant
phylogenetic distances (e.g. proteins conserved across all
domains of life) [13].

Despite the clear definition of OGs, their automated pre-
diction is challenged by a number of biological and technical
factors exemplified by the evolution of mucins (see Fig. 1), a
family with a complex evolutionary history [14]. The phylo-
genetic tree of mucins resolves the orthologous relationships
among the members of the family at every evolutionary level
(Fig. 1). Still, how they are grouped into OGs depends on the
phylogenetic range of the species compared. For instance, a
vertebrate-specific OG will include otogelin and VWF mucins,
but not the additional gel-forming mucins (MUC5, MUC2,
and MUC6). Conversely, all gel-forming mucins encompass
a large OG when considering bilaterians (an animal clade
that includes vertebrates, insects, and nematodes among
others) as the level of comparison. Analyzing the OGs at
different taxonomic levels (e.g. vertebrates vs. bilaterians)
sheds light on the evolutionary history of the family; however,
big protein families, which have expanded and contracted
many times in the history of a lineage, require an increased
resolution of orthologous-paralogous relationships within
the same taxonomic level. The inclusion of outgroup
species of a taxonomic level delineates the aforementioned
relationships. For instance, Hydra sequences revealed
the existence of two paralogous sequences in the LCA of
bilaterians (marked by an asterisk in Fig. 1); thus, according
to the OG definition, membrane-bound and gel-forming
mucins should be clustered into two different OGs. Despite
the lineage-specific duplications and losses of domains [14],
many complex domain architectures are found across
the family but not always conserved, which contributes to
erroneous assignments of orthologs. Repeated domains and
fast-evolving mucin domains also hamper the automatic
sequence alignment of the family [15]. All these factors and
more (see Fig. 1) can influence the accuracy of the many
emerging resources for orthology assignment [13, 16, 17]. To
understand the impact on individual resources, one needs to
understand the design of different orthology prediction
methods (briefly introduced in Box 1). However, an appropri-
ate comparison is extremely difficult for two major reasons,
both of which contribute to conflicting orthology assignments:
(i) each method differs in technical (e.g. species distribution,
similarity cut-offs) and conceptual (e.g. OG definition) aspects,
and (ii) the lack of a common set of species obtained from the

same release of genome repositories and tested across all
methods [16].

Benchmarking orthology prediction
methods using a phylogeny approach

Despite the acknowledged necessity of a phylogeny-based
evaluation of orthology, thus far the majority of quality assess-
ment tests are based on the functional conservation of pre-
dicted orthologs [18–21]. However, orthology is an
evolutionary term defined by the relationships among the
sequences under study, and functional equivalences are not
always inferable [13]. Moreover, the functional divergence
between orthologs and paralogs (sub-/neo-functionalization
of paralogs) or alteration of function during long evolutionary
distances [13] suggests that those tests are biased toward
single copy genes or conserved families and less suited for
large diversified families. It has been proposed that the
inclusion of synteny information limits the errors arisen
due to low sequence similarity and increases orthology
accuracy [22]. However, this requires a certain level of synteny
conservation among the compared species. It has been illus-
trated that synteny information combined with sequence sim-
ilarity identifies accurately the paralogs that have arisen
through WGD in six closely related yeast species [23].
Further refinement of this dataset using tree reconciliation
[24, 25] ends up with a phylogeny-based dataset. However, it is
still biased toward simple evolutionary scenarios, highlighting
mostly the impact of lineage-specific losses in orthology pre-
diction [26]. For a much more fine-grained analysis that also
involves complex OGs, we developed a phylogeny-based
benchmark set and applied it to a much more diverse taxo-
nomic clade, namely metazoans. The set involved the manual
curation of the phylogeny of 70 protein families that range from
single copy orthologs to OGs with 100 members (Table S1 of
Supporting Information). The phylogenetic analysis of each
protein family for 12 reference bilaterian species and 4 basal
metazoans as outgroups (Box 2) resulted in the reference orthol-
ogous groups (RefOGs), including in total 1,638 proteins.

The manually curated benchmarking set was used for two
different analyses: (i) comparison of RefOGs to the automati-
cally predicted OGs of five publicly available databases, and
(ii) comparison of RefOGs to different customized versions of
the eggNOG database. The first comparison aimed at demon-
strating the power of this dataset to guide the improvement of
current methods. We selected five databases, namely TreeFam
[5], eggNOG [6], OrthoDB [7], OrthoMCL [8], and OMA [9], since
each is designed for multiple-species comparison, but with
unique database features (Box 1). Although the comparisons are
against the same benchmarking set, we are aware of several
other confounding variables, such as algorithmic differences,
species representation/distribution or genome annotation, that
can all affect the results. Yet, it quantifies the status of the
compared databases in an objective way. To quantify the impact
of some specific biological and technical factors, we addition-
ally generated different versions of the eggNOG database to
monitor several influencing factors one by one.

We assessed the quality of the OGs at two different levels of
resolution: (i) gene count, measuring mispredicted genes, and
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(ii) group count, reflecting errors at the level
of OG (Fig. 2). Additionally, for each of the
two resolution levels, we used three counting
schemes allowing us to distinguish database-
specific trends. At a strict requirement of all
genes being correctly assigned (gene count
level) only as little as 3–22% of the RefOGs
were recovered, while a more relaxed
requirement that curated orthologs are
not clustered in multiple OGs or with other
homologous proteins that are not part of the
RefOG (group count level) results in 10–48%
correctly predicted RefOGs. Limiting our
analysis to the 35 most challenging families
decreases this percentage even more (Fig. S1
of Supporting Information), reflecting our
initial aim to select families that hamper
accurate orthology prediction; we aimed at
a benchmark set that points out shortcom-
ings of each method and leads to its improve-
ment. All above indicated that there is room

Figure 1. Mucins: a challenging family for orthology prediction. This figure shows the
phylogenetic tree and domain architecture of aligned mucins. The identification of cnidar-
ian (an outgroup for bilaterians) mucin2/5 orthologs separates the gel-forming mucins
from other mucins, defining a bilaterian-specific OG (gray box). An alternative topology of
Hydra in respect to the LCA of bilaterian species (shown schematically in the red box)
would propose that those two different classes of mucins should be clustered together at
the bilaterian level. The bilaterian OG can be further resolved at the vertebrate level into
OG.A (blue) and OG.B (red), illustrating the hierarchical nature of OGs. This family,
besides its large size due to vertebrate-specific duplications, exemplify five additional
problems that often lead to orthology misassignment: (1) uneven evolutionary rate illus-
trated as branch lengths, lowering the sequence similarity among members of the family;
(2) quality of genome annotation: the particular zebrafish protein can be either a derived
member of the mucin family or a erroneous gene prediction; (3) repeated domains: the
domain combination VWD-C8-VWC, which is the core of the family, is repeated multiple
times within the protein; (4) complexity of domain architectures: there are multiple unique
domain combinations (e.g. the VWD domain is combined with the F5-F8 type C domain
only in the Drosophila ortholog); and (5) low complexity regions: internal repeats within the
amino acid sequences and other low complexity features impede the correct sequence
alignment of the mucins. �Possible orthologous sequence at the LCA of cnidarians
bilaterians.
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for improvement for all methods, but most importantly, we have
to understand which factors contributed to this result.

The phylogenetic range of the compared
species affects the accuracy of prediction

The phylogenetic distribution of the compared species influ-
ences the orthology/paralogy assignment, as we exemplified
with the mucin family (vertebrate- vs. bilaterian-specific

groups). The broader the phylogenetic range of the compared
species the larger the OGs, as the single ancestral sequence
from which all the orthologs and paralogs are derived is placed
deeper in the tree. This is reflected in the ranking of the five
databases that varies considerably in the six different scoring
schemes used (Fig. 2). For instance, although OrthoMCL con-
tains the highest number of erroneously assigned genes
(Fig. 2C), the number of RefOGs that are affected by errone-
ously assigned genes is higher for eggNOG than OrthoMCL
(Fig. 2D). On closer examination, OrthoMCL overpredicts many

Box 2

Phylogenetic analysis of the 70 protein families

Selecting families for exploring caveats of orthology
prediction: we focused on five major affecting factors of
orthology prediction, mostly related with metazoan
(eukaryotic) biology: rate of evolution (fast- vs. slow-
evolving families), domain architecture (single domain
vs. multiple repeated domains), low complexity/repeats,
lineage-specific loss/duplication (single copy families vs.
multiple duplication events), and alignment quality (high-
vs. low-quality alignment). We used the eggNOG database
to select 70 families (Supporting Information) that we refer
to as ‘‘homology seeds.’’ Of the selected families, 35
exemplify known biological and technical challenges.
Five additional slow-evolving, well-aligned families were
chosen as counterbalance, while the remaining 30 families
were chosen randomly to avoid prior biases (Table S1 of
Supporting Information).

Defining of reference species: for an applicable com-
parison of the five databases studied, we had to confine
the analysis to 12 reference species that are shared by all
resources: Caenorhabditis elegans, Drosophila mela-
nogaster, Ciona intestinalis, Danio rerio, Tetraodon nigrovir-
idis, Gallus gallus, Monodelphis domestica, Mus musculus,
Rattus norvegicus, Canis familiaris, Pan troglodytes, Homo
sapiens. All 12 species belong to the bilaterians, a metazoan
subgroup simplifies the objective of this study since (i) the
phylogeny of bilaterians is reasonably defined, and (ii) a few
fully sequenced basal metazoan genomes (like cnidarians)
can be used as outgroups of bilaterians [29, 50–52].

The phylogenetic analysis: briefly, we selected 70
aforementioned COG/KOGs, as they exist in eggNOG

v2 [6], which we refer to as ‘‘homology seeds.’’ To exclude
errors due to old genome annotation (eggNOG v2 is
based on Ensembl v46), we mapped the ‘‘homology seed’’
identifiers to Ensembl v60. The following steps were
performed uniformly to all families certifying that RefOGs
are not biased toward their initial ‘‘homology seeds.’’ BLAST
[53] searches were performed in the 16 animals using query
sequences from well-annotated genomes (e.g. human,
zebrafish, and fly). The homologous sequences were
aligned with MUSCLE [54] and the alignments were
used to build initial NJ trees with Clustal X [55] (indicated
as Round 1 in the illustration below). Large groups were
thereafter divided based on the positions of orthologs in the
outgroups, as exemplified by the family of mucins (Fig. 1).
In several cases where no clear outgroup was found,
RefOGs were defined based on (i) the domain content,
(ii) manual inspection of the alignments, and (iii) previous
published descriptions of the families. After the initial
curation of the families, all sequences determined to be
members of the bilaterian RefOGs were aligned using
MUSCLE [54]. Alignments were refined [56] and hidden
Markov models (HMM) were built using the HMMER3 pack-
age [57]. In a second refinement step (indicated as Round 2),
the HMM models were used to identify related sequences
that were left out from the 16 aforementioned genomes. As a
last step, all qualified members of each RefOG were real-
igned, using the same procedure as before, final HMM
models were generated and phylogenetic trees were calcu-
lated using PhyML version 3.0 [58]. The detailed analysis is
described in the supplementary file. Black arrows indicate
the flow of the analysis. � Steps that are repeated after
HMM profile searches resulting in RefOGs after Round 2
(red arrow).
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orthologs in only a few families, while eggNOG overpredicts a
few proteins in many families (Table S2 of Supporting
Information), partially due to mispredicted genes (later
characterized as pseudogenes or wrong gene models) inher-
ited from an old genome annotation (see below). We assume
this observation is partly due to the diverse species ranges of
the studied repositories (Box 1). EggNOG, although it provides
a broad species coverage (630 prokaryotes and 55 eukaryotes),
supplies OGs for several taxonomic levels, such as metazoans
(meNOGs) that are used in this study and are build from 34
bilaterians in the eggNOG version studied here. On the other
hand, OrthoMCL builds its OGs from all 138 eukaryotic and
prokaryotic species in the database. In other words, ancient

families, e.g. ABC transporters, which
expanded before the bilaterian radiation,
form huge OGs in OrthoMCL, but not in
the meNOG subset of eggNOG. As different
scientific questions require a different
species range, hierarchical groups as pro-
vided by eggNOG [27], OrthoDB [28], and
OMA [9] appear to be a balanced solution
to serve many different questions, com-
pared to databases that are only dedicated
to a particular phylogenetic range [be they
narrow (TreeFam) or broad (OrthMCL)].

Despite being specifically designed for
metazoans, TreeFam has the second largest
number of erroneously assigned genes after
OrthoMCL (Fig. 2C), which is accompanied
by the largest number of fusion events
(Fig. 2G). This can be attributed to the
choice of outgroups used by Treefam.

TreeFam families are phylogenetically separated by a non-
animal outgroup (yeast or plant), while, for example,
Monosiga brevicollis [29] or other proposed species [30] would
be much better suited. The choice of a phylogenetically closer
species would presumably split artificially large families.
Furthermore, delineating orthology through tree reconcilia-
tion benefits TreeFam in the category of missing genes
(Fig. 2C), since the lack of a closer outgroup prevents the
bilaterian OGs from splitting, as illustrated in Fig. 1. In con-
trast, the database with the largest number of missing genes
and fission events is OMA (Figs. 2C and G) due to an alternative
operational definition of an OG [31]; only proteins with one-to-
one orthologous relationships are included in an OG, so that

Figure 2. The 70 manually curated RefOGs as a quality assessment tool. Five databases
were used to illustrate the validating power of the benchmark set. The performance of
each database was evaluated at two levels: gene (focus on mispredicted genes; upper
panel) and Group (focus on fusions/fissions; lower panel) level. A: Gene count – for each
database we identified the OG with the largest overlap with each RefOG and calculated
how many genes were not predicted in the OG (missing genes) and how many genes
were over-predicted in the OG (erroneously assigned genes) and E: group count – for
each method we counted the number of OGs that members of the same RefOG have
been separated (RefOG fission) and how many of those OGs include more than three
erroneously assigned genes (RefOG fusion). To increase the resolution of our comparison,
three different measurements for each level were provided, resulting in six different scor-
ing schemes. B: Percentage of accurately predicted RefOGs in gene level (RefOGs with
no mispredicted genes); C: number of erroneously assigned and missing genes; D: per-
centage of affected RefOGs by erroneously assigned and missing genes; F: percentage
of accurately predicted RefOGs in grouplevel (all RefOG members belong to one OG and
are not fused with any proteins); G: number of fusions and fissions; and J: percentage of
affected RefOGs by fusion and fission events. Databases are aligned from the more to
the less accurate, taking into account the total number of errors (length of the bar in
total). Black bars indicate identical scores.
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large families with multiple paralogs are split artificially into
multiple smaller OGs. The latest release of the OMA database,
publicly available after the completion of our analysis, has
been redesigned and now provides OGs based on both OMA
and COG formulations [9].

In summary, the initial design of an orthology resource,
e.g. phylogenetic range of species, ‘‘hierarchical groups’’, or
formulation of OG, is crucial for its performance. In any case,
all methods only predict a fraction of RefOGs accurately and
mispredict a large number of genes (Fig. 2). It is noteworthy
that there are RefOGs that none of the methods infer
accurately, indicating that there are biological and technical
factors that affect the performance of orthology assignment
more generally. We have thus tried to relate a few of them with
the outcome of this comparison.

The impact of family complexity on
orthology prediction

Due to the central role of orthology in comparative and func-
tional genomics, there is an extensive literature on accuracy-
restricting factors of its assignment [13, 16, 17]. We have
already mentioned several caveats of orthology prediction
using the mucin family, the majority of which are exemplified
by the 70 RefOGs. The families were selected under certain
criteria (Box 2), mostly with a view to understanding the
impact of a few biological and technical factors, namely
duplications (paralogy)/losses, rate of evolution, domain
architecture, and alignment quality. All these factors have
been reported to affect the quality of orthology prediction [17].
Paralogy as manifested in multi-gene families hamper the
accurate orthology prediction [4, 13]. Multiple lineage-specific
gene losses and duplications result in complex evolutionary
scenarios, which are hard to interpret. Classifying the RefOGs
based on their size, we observed that the larger the RefOG, the
more mispredictions are introduced by the methods (Fig. 3A).
For all methods, the numbers of missing genes (Fig. 3A) and
OG fissions (Fig. S2 in Supporting Information) increases
significantly with the RefOG size (Table S5 of Supporting
Information). Additionally, families with more than 40 mem-
bers accumulate both fusion and fission events. For instance,
GH18-chitinases, a RefOG that consists of 45 members, is
characterized by multiple vertebrate-specific duplication
events. All graph-based methods split the vertebrate subfa-
milies of the GH18-chitinases into distinct groups (Table S2 of
Supporting Information), and TreeFam lumps the RefOG
with insect-specific homologs due to the presence of the
glyco-hydro-18 domain, although phylogenetic analysis of
the family indicates a general lack of orthology among those
groups [32].

Some large-size RefOGs, like ribosomal proteins or SAM-
synthetases are, however, predicted accurately by several
methods. Since these two well-predicted large families are well
conserved, we decided to investigate the impact of the rate of
evolution on orthology prediction. We categorized our bench-
marking families into fast-, medium-, and slow-evolving based
on their MeanID score (described as the ‘‘FamID’’ in [33]), which
indicates the rate of evolution (Supporting Information). Fast-
evolving families tend to accumulate a larger number of errors

(Fig. 3B). All graph-based methods miss a larger number of
genes and introduce more fission events (Fig. S2 in Supporting
Information) in fast-evolving RefOGs compared to the more
slowly evolving groups. Since the MeanID score is calculated
based on the multiple sequence alignment (MSA), we inves-
tigated the impact of MSA quality by calculating the norMD
score [34], an alignment score that depends on the number and
the length of aligned sequences as well as their estimated
similarity (Supporting Information). We expected TreeFam to
be more sensitive to low-quality MSAs compared to graph-
based methods, since it uses MSA for tree-building and recon-
ciliation steps to infer orthology. Indeed, it presents the highest
deviation for all sources of errors (Table S5 of Supporting
Information). We also found that the number of missing genes
is also affected by the alignment quality in graph-based
methods (Fig. 3C). Because MeanID and norMD scores are
correlated, many of the fast-evolving families are also poorly
aligned. Still, we can see that TreeFam is significantly more
affected by MSA quality rather than rate of evolution.

The vast majority of proteins contain only one domain, and
the most common multi-domain proteins tend to have few (two
or three) domains [35, 36]. Due to a variety of genetic processes
(duplication, inversion, recombination, retrotransposition, etc.)
proteins consisting of multiple domains with independent evol-
utionary origin can arise [37–40]. This leads to conceptual but
also practical challenges (e.g. alignment) in orthology predic-
tion, as the domains have followed distinct evolutionary tra-
jectories [16]. We identified the domains of each protein in each
RefOG through the SMART database [41]. Out of the 70 RefOGs,
75% contain multi-domain (more than two domains) proteins,
compared to 62% in the random subset and a report of 40%
multi-domain occurrence in metazoans [36], which illustrates
the tendency of the benchmark set toward more challenging
families. As expected, the proportion of accurately predicted
RefOGs decreases as the number of average domains per family
increases (Fig. 3D). Interestingly, the rate of erroneously
assigned genes presents the most significant correlation with
domain complexity, suggesting that protein families with
multiple protein domains ‘‘attract’’ non-orthologous proteins
due to domain sharing. Repeated domains within proteins, as
the Von Willebrand factor (VW) D-C8-VWC repeat in mucins
(Fig. 1) or the epidermal growth factor (EGF) domains in colla-
gen, also lead to lower quality of OGs. All of the 27 RefOGs
containing repeated domains are more error prone than RefOGs
without repeated domains (Fig. S3 of Supporting Information).

Taken together, classification of the families from slow-
evolving single copy to fast-evolving large families revealed
method-specific limitations, but also that all pipelines fail to
predict complex families accurately. The rates of missing
genes and fissions significantly correlate with the family size
and rate of evolution, as expected, whereas the domain com-
plexity seems to affect the recruitment of non-orthologous
genes (Fig. 3, Figs. S2 and S4 of Supporting Information).

Species coverage affects orthology
prediction

Biological complexity is unlikely to be the primary source of
errors in automated predicted OGs, as there are single-copy,
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Figure 3. The impact of biological complexity in orthology assignment. To evaluate the impact of important caveats in orthology prediction,
the RefOGs were classified based on their family size, rate of evolution, alignment quality and domain complexity. A: Family size (reveals the
impact of paralogy): the RefOGs were separated into (i) small (less than 14 members), (ii) medium (more than 14 members, but less than 40),
and (iii) large (more than 40 genes). B: Rate of evolution: the RefOGs were classified based on the MeanID score (described as the ‘‘FamID’’
in [33]), an evolutionary rate score derived from the MSA of each family. There are: (i) slow-evolving (MeanID >0.7), (ii) medium-evolving
(MeanID <0.7, but >0.5), and (iii) fast-evolving (MeanID <0.5) RefOGs. C: Quality of alignment: we classified the families based on their
norMD score [34] into: (i) high-quality alignment (norMD >0.6), and (ii) low-quality alignment [44, 45]. We can observe that high amino acid
divergence correlates with an increasing number of mispredicted genes. D: Domain architecture complexity; each RefOG is associated with
the average number of domains, which is equal to the sum of predicted domains of the members of one RefOG divided by the family size.
There are three levels of complexity, starting from (i) none or one domain on average, to (ii) two to four, to (iii) more than four. We observe that
the performance of the five databases correlates with the biological complexity of RefOGs; as families increasing their complexity (more
members, fast-evolving or multiple domains), the accuracy of predictions drops. (þ) and (�) symbolize erroneously assigned and missing
genes, respectively. Significant correlations (Table S5 of Supporting Information) between the distribution of missing/erroneously assigned
genes and the tested factor are indicated in bold [(þþ), (S)]. Figures S2 and S4 of Supporting Information show similar observations at the
group level (fusions/fissions of RefOGs).
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slow-evolving, or single-domain protein families, which are
not assigned correctly by several prediction methods.
By investigating these families, we identified two additional
technical factors that influence orthology assignment:

genome annotation and species coverage.
To quantify the impact of these, we used
the method in our own hands, eggNOG, as
we could apply it to different species sets
(Fig. 4, Table S3 of Supporting Information)
and genome annotation versions (Fig. 4,
Table S4 of Supporting Information).

To measure the impact of species
coverage, we prepared new OGs from only
the 12 reference species, but kept the same
genome annotation version (Ensembl v46)
that the public eggNOG v2 uses. The 12-
species-Ensembl46 OGs were compared
to the RefOGs as well as the 34-species-
Ensembl46 OGs (referred to as eggNOG in
Fig. 2). In the 12-species-Ensembl46 OGs, a
larger number of genes are missing com-
pared to the 34-species OGs (eggNOG_v2)
(Fig. 4B), implying that 30% of the missing
genes in this dataset are due to the change
in species coverage. It seems that sequences
of the 34 species facilitate correct clustering,

presumably, by breaking long branches so that faster evolving
genes can be connected (Fig. 4A). For mammals, fish and
insects, which contain more representatives in 34-species
OGs, we identified fewer missing genes in the 34-species

Figure 4. The impact of species coverage and genome annotation. A: Comparison of
the performance of 34-species and 12-species OGs using RefOGs. We measure the
percentage of orthologs recovered (coverage), missing genes and erroneously assigned
genes for each reference species for those datasets [yellow bar: publicly available OGs in
eggNOG (same measurements as Fig. 2) and green bar: customized OGs of the 12
selected species using same genome annotations as the public eggNOG]. The reference
species are highlighted by black letters, while the unconsidered species that complete
the set of 34 eggNOG species are written in gray letters. Numbers in parentheses show
the total number of orthologs per species in the benchmarking set. The gray boxes
enclosing the colored bars correspond to 100% coverage. Notice that the coverage is
always higher for the 34-species OGs compared to the 12-species OGs except in the
cases of C. elegans and Ciona (marked by asterisk), which are separated by long
branches in both datasets. B: Comparison of the public eggNOG (yellow bar),
12-species-old-annotation OGs (green bar) and 12-species-new-annotation OGs (purple
bar) at the gene level. Hatched boxes label the fraction of mispredicted genes of
34-species- and 12-species-old-annotation datasets that do not exist in Ensembl v60
genome annotations, indicating the high number of errors due to old genome annotations.
C: Comparison of public eggNOG (yellow bar), 12-species-old-annotation OGs (green
bar) and 12-species-new-annotation OGs (purple bar) at the group level. Notice that the
12-species datasets (either with old or new annotation) always introduce a larger number
of fission events than the 34-species OGs, highlighting again the importance of species
coverage.
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OGs than the 12-species OGs. On the other hand, C. elegans and
C. intestinalis, which are separated by long branches from
their nearest phylogenetic neighbors in both datasets, are
not influenced as the sequence similarity for ortholog detec-
tion remains limited (Fig. 4A). While 34-species perform better
than 12-species in terms of missing genes, they contain more
erroneously assigned genes. A large fraction of erroneously
assigned genes is due to inclusion of low-quality genomes, i.e.
Tetraodon in Ensembl v60 contains almost 5,000 gene pre-
dictions less than the same genome in Ensembl v46. In sum-
mary, the total number of mispredicted genes is higher for the
12-species OG (Figs. 4A and C), indicating that the more
genomes and in particular those at the right evolutionary
distance, increase the quality of the OGs.

Number of errors inflates because of
inaccuracies in genome annotation

The quality of the genome annotation of a species included in
a genomic or phylogenetic study has been reported to affect
the results of the study [42]. All resources in this study rely on
Ensembl [43] genome annotations for all 12 species, but the
annotation status is considerably different from version to
version. While eggNOG uses Ensembl v46 (the oldest among
the compared resources) OrthoDB uses Ensembl v59, thus it is
the most updated and closest to the RefOG annotation, for
which Ensembl v60 was used. By tracing the identifiers of the
mispredicted genes through Ensembl history, we discovered
that 7% of the missing genes of eggNOG only exist in the latest
versions of Ensembl (v54 to v60) (Fig. 4B). Genomes like
human, zebrafish and puffer fish, which were updated after
Ensembl v46, contribute significantly to the pool of missing
genes. Likewise, only 58% of the erroneously assigned genes
of eggNOG map to Ensembl v60, while 40% of them have been
retracted and 2% have been characterized as pseudogenes.
Taken together, almost half of all errors result from genome
annotation artifacts, which is thus a major factor to consider.
To directly test the effect of the genome annotation and sep-
arate the impact of species coverage from this analysis, we
clustered the proteins of the 12 reference species based on the
Ensembl v60 gene annotations. The impact of genome anno-
tation is elucidated by comparing the number of errors
between the 12-species-Ensembl60 OGs with the 12-species-
Ensembl46 OGs. Comparing the overall number of mispre-
dicted genes, at the gene level, the 12-species-Ensembl60
OGs perform better than the 12-species-Ensembl46 OGs
(Fig. 4B). We found 45% fewer erroneously assigned genes
(149 vs. 271) in the 12-species-new-annotation OGs compared
to the 12-species-old-annotation OGs. Again, a large fraction
or erroneously assigned genes of the latter dataset (33%)
do not exist in Ensembl v60 (Table S4 of Supporting
Information). However, the number of missing genes is
similar between the two datasets and higher compared to
the 34-species OGs, indicating, once again, the impact of
species coverage. The fact that �40% of the mispredicted
genes in eggNOG OGs would have been avoided by using
an updated version of genome annotations, highlights the
importance of frequent updates and points to the sensitivity
of genome annotations.

A transparent benchmark set made
publicly available

To facilitate the access to the curated benchmark families,
we have created a web interface through which details on
the 70 RefOGs can be retrieved. In addition, alignments,
protein sequences, phylogenetic trees and HMM of each
RefOG can be downloaded and used for future analyses of
the 70 bilaterian OGs. The data are available under the
Creative Commons Attribution 3.0 License at: http://eggnog.
embl.de/orthobench.

Conclusions

The quality assessment introduced here is independent of
functional associations and, instead, directly approaches
the phylogenetic foundations of OGs. The benchmark set
was applied to five commonly used databases and revealed
the impact of several biological and technical factors that
challenge orthology prediction. All studied repositories
predict only a fraction of RefOGs accurately and thus
indicate that there is considerable room for improvement
for all orthology assignment methods. Although it is
impossible to completely quantify the individual factors
that contribute to the errors of each method due to the
diversity of the methodologies, hidden correlations, and
confounding variables, the 70 RefOGs reveal biological
and technical limitations that affect each method signifi-
cantly. For example, domain complexity is significantly
correlated with an increased accumulation of erroneously
assigned genes in all databases. Our results also illustrate
that all the tested algorithms need to be improved to be able
to handle the ‘‘complex’’ families (duplication/losses,
complex domain architectures). Of the RefOGs, 36% are
not accurately predicted by any tested databases, revealing
‘‘global’’ limitations of orthology predictions that are associ-
ated with the factors we outlined here. There are also RefOGs
that only some of the databases mispredict, and, thus, hint at
database-specific improvements, i.e. several operational
differences, such as the delineation of hierarchical groups,
and the usage of (as close as possible) outgroups affect the
accuracy of predicted OGs.

However, the most striking outcome of this study is that
technical factors, such as genome quality followed by the
phylogenetic coverage of the compared species seem to be
the most limiting factors, causing up to 40% of the errors
observed. The last observation suggests that frequent
updates of the databases are necessary. Although we only
tested bilaterian OGs in this study, we realize the importance
of the expansion to other taxonomic groups, and have
therefore provided sequences, alignments, HMM profiles,
and trees of the RefOGs publicly at http://eggnog.embl.de/
orthobench for further curation in other species. As this
benchmark set proved valuable for assessing the quality of
predicted OGs in metazoans, we believe that an analogous
dataset covering the entire tree of life and capturing
additional challenges more prominent in prokaryotes, such
as horizontal gene transfer, should be the next step in guid-
ing orthology prediction.
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