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The increased availability of large-scale open-access

resources on bioactivities of small molecules has a significant

impact on pharmacology facilitated mainly by computational

approaches that digest the vast amounts of data. We discuss

here how computational data integration enables systemic

views on a drug’s action and allows to tackle complex

problems such as the large-scale prediction of drug targets,

drug repurposing, the molecular mechanisms, cellular

responses or side effects. We particularly focus on

computational methods that leverage various cell-based

transcriptional, proteomic and phenotypic profiles of drug

response in order to gain a systemic view of drug action at the

molecular, cellular and whole-organism scale.
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Introduction
Relatively recent efforts led to the creation of large open-

access databases of chemicals and associated bioactivity

data. Fueled by a change of attitude in the pharmaceutical

industry to embrace the academic sector, these databases

keep growing and diversifying at a dramatic speed. This

trend might revolutionize research in pharmacology, che-

mogenomics and chemoinformatics, much like the impact

DNA sequence archives had on molecular and systems

biology. Leveraging these rich and heterogeneous

resources requires data integration, mostly through com-

putational approaches. Although challenging, mining the

various datasets provides great opportunities for compu-

tational research to contribute to a systemic understanding

of drug-perturbed molecular and physiological processes,

leading to more rational drug discovery.
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The need for advanced computational methods in drug

discovery is further increased by a paradigm shift away

from purely drug target-centric approaches [1]. These

largely ignore a target’s cellular and physiological context,

making it difficult to address efficacy and safety problems

in early stages of the drug discovery process. Modern

concepts try to consider a drug’s mechanism of action in a

broader sense. These ‘systems pharmacology’ strategies

are enabled by high-throughput screens which profile

transcript expression, metabolic states or cellular pheno-

types resulting from a wide range of chemical pertur-

bations [2] (see Figure 1). The richness of the resulting

multi-parametric readouts provides a strong basis for data-

driven computational approaches addressing many

important aspects of the drug discovery process, such

as a drug’s (off-)targets, mechanism of action, metaboliza-

tion and toxicity. Bioinformatics methods that mine and

integrate data from these heterogeneous screens hold

great promise for gaining a global understanding of drug

action at the molecular, cellular and whole-organism

scale. Moreover, such integrative approaches may not

only provide systemic insights into mechanisms of drugs

and diseases, but also reveal new biological aspects of the

‘system’ human.

Data integration utilizing publicly available
resources
The availability of data on the bioactivity of chemical

compounds in publicly accessible databases is currently

increasing dramatically (see Box 1) [3]. For instance, in

PubChem, bioassay data have grown from just about 800

to more than 500,000 records in three years [4�]. Cur-

rently, data from in vitro target binding assays and

chemical perturbation experiments with associated gene

expression profiles are routinely deposited in public

databases. We expect that in the near future this trend

will extend to complex multi-parametric readouts in-

cluding cell-wide gene expression of large-scale chemi-

cal perturbation and other associated proteomics,

metabolomics or high-throughput microscopy data

deduced from multiple screens [2]. Finally there are

data describing drug response of a whole tissue or

organism in form of clinical, hematological and histo-

pathological parameters, package labels, including side-

effect information, and electronic patient records,

although not all are freely accessible (yet). Taken

together, these bioactivity data describe drug action

at biological scales ranging from molecules via cells to

entire organisms.
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The different scales at which information on bioactivity of chemicals can be profiled. From in vitro binding assays to cellular profiling and whole-

organism readouts, complexity of the data typically increases. Similarly, assay cost generally increases, whereas experimental throughput and hence

availability of the data (coverage of chemical space) decreases along the same axis.
In this context, data integration ideally leads to models

that account for several aspects of drug perturbations at

multiple scales and may thus provide a systemic view on

the biological response processes and networks (see

Figure 2). However, these approaches face many chal-

lenges. For instance, the lack of controlled and stan-

dardized vocabulary describing chemicals, bioactivity

assays or pharmacological outcomes of drug treatments

poses a major hurdle for data integration from diverse

sources which has been recognized by the community

[5,6]. Another concern arises from the sheer size of

chemical space: Even large-scale screens only achieve

partial coverage, so integrative approaches are often

hampered by too few chemicals that are shared by

different assays (see Figure 2). In this respect, standard-

ization efforts towards establishing priorities for chemi-

cal libraries may be a step in the right direction [7].

Despite such obstacles, substantial progress in integra-

tive methodologies has been made during the past

years. In the following, we focus on recent compu-

tational approaches that address fundamental chal-

lenges in drug development and cover different

levels of complexity increasing from drug-target pre-

diction over mechanism-of-action inference to drug-

safety assessment.
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Integrative approaches to drug-target
prediction
Bioactive chemicals exert their function through binding

to one or more protein targets. Therefore, identifying a

compound’s main target(s) is a pivotal step in drug dis-

covery. However, for a thorough systemic understanding

of the consequences of drug intake, many other ‘readouts’

are helpful. For example, identifying binding propensity

for off-targets, metabolizing enzymes (such as cyto-

chrome P450s) and transporters (for absorption or

excretion) allows safety assessments early in the drug

discovery pipeline [19]. Knowledge of the entire profile of

drug targets is crucial for assessing both efficacy and

safety aspects of drug candidates.

For most pharmacologically relevant protein targets,

experimental binding data are incomplete, even though

high-throughput screens are more and more employed.

This makes computational drug-target prediction attrac-

tive for exploring the interaction space between potential

targets and bioactive chemicals [20]. Here we will focus

on computational approaches that can make inferences

for the majority of drug-target interactions. In this

respect, many protein structure-based methods are lim-

ited by scarce 3D structure data for important target
www.sciencedirect.com
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Box 1 A selection of publicly available resources on bioactivity

of small molecules

Pubchem

http://pubchem.ncbi.nlm.nih.gov/ [4�]

A comprehensive repository for small molecules and their biological

activities. It includes more than 500,000 bioassay results, 130 million

experimental bioassay results, 85 million substances representing

30 million chemically unique compounds.

chEMBLdb

https://www.ebi.ac.uk/chembldb/ [8]

A database that contains chemical properties (e.g. log P, Molecular

Weight, Lipinski Parameters) and biological activities (e.g. binding

constants, pharmacology and ADMET data) for over 700,000 distinct

drug-like small molecules including more than 3 million bioactivity

results from the scientific literature.

DrugBank

http://drugbank.ca/ [9]

Displays manually annotated fact sheets of drugs (with chemical,

pharmacological and pharmaceutical information) and their tar-

gets (with sequence, structure, and pathway) of 6796 drug-like

chemicals including 1571 FDA-approved small molecule and

biotech (protein/peptide) drugs. Additionally, 4285 non-redundant

proteins (i.e. drug targets/enzymes/transporters) are associated

with drug entries including 230 richly illustrated drug-action

pathways.

STITCH: Chemical–Protein Interactions

http://stitch.embl.de/ [10]

A meta-repository to explore known and predicted interactions

between more than 300,000 chemicals and their protein targets

within the context of protein-protein association networks (2.6 million

proteins in 1133 organisms) [11].

GEO: Gene expression omnibus

http://www.ncbi.nlm.nih.gov/geo/ [12]

A public repository that archives and freely distributes 20,000

microarray-based and sequence-based functional genomics studies

including disease-associated experiments.

Connectivity Map

http://www.broadinstitute.org/cmap/ [13�]

A large collection of genome-wide expression profiles generated

with microarrays. It contains expression response of four cancer cell

lines to over 1300 bioactive, drug-like molecules. With a simple

pattern-matching algorithm available on the web server, drugs can

be linked to each other or to diseases and genetic perturbations

through signature (dis-)similarity search.

ACToR

http://actor.epa.gov/ [14]

An online warehouse that integrates over 500 publicly available

chemical toxicity resources including ToxRefDB [15], in vivo animal

toxicity studies and ToxCastDB, 500 high-throughput assays of a

thousand chemicals [16]. It contains data on more than 500,000

chemicals and their potential health and environmental risks.

SIDER: Side Effects Resource

http://sideeffects.embl.de/ [17]

A machine-readable side effect resource that connects 888

approved drugs to 1450 recorded adverse effects extracted from

public documents and package inserts. Moreover, it integrates and

makes available side-effect frequency, and drug and side effect

classifications.

NPC: NCGC Pharmaceutical Collection

http://tripod.nih.gov/npc/ [18]

A comprehensive resource of approved and experimental drugs

useful for drug repositioning. In addition to being an electronic

resource for computational approaches, it also offers a physical

compound collection for high-throughput screening experiments.

www.sciencedirect.com 
classes (such as GPCRs), and will be omitted here (but are

covered elsewhere, e.g. [21]).

To globally map drug-target associations, Keiser et al.
characterized drug targets in terms of their known ligands

and subsequently inferred novel associations from sim-

ilarity between ligand sets [22�,23]. The resulting pre-

dictions revealed extensive polypharmacology and ligand

promiscuity. They thus challenged the ‘one-drug-one-

target’ dogma and instead support the notion that broad
Current Opinion in Biotechnology 2012, 23:609–616
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The promise of integrative methods for gaining a systems level

understanding of complex biological responses to drug treatment. The

growing diversity of publicly accessible bioactivity data has created

many possibilities for integrative approaches. For example, gene

expression profiles have been combined with drug-target information to

infer mechanism of action and feedback regulation of target expression

[13�,32,33��]. Integrating heterogeneous data from many bioactivity

resources under one umbrella (i.e. on the basis of a common set of

drugs) will be an important strategy to advance a systems level

understanding of drug action.
activity across a family of targets may be required for

efficacy against some diseases [22�,24].

Other studies integrated more heterogeneous data types

for target identification, yet still relied to some extent on

chemical similarity between drugs. One such approach

combined structural chemical descriptors of drugs with

protein sequence features of the targets [25]. From these

a combined distance measure was derived to predict non-

trivial drug-target interactions, that is, to propose novel

drugs that are not chemically similar to a target’s set of

known ligands [25].

Systemic concepts that utilized human phenotypic data

opened new avenues in drug target prediction and

became feasible by using computational approaches.

Campillos et al. developed ontologies that allowed to

quantify side effect similarities derived from package

inserts and have shown that from a similarity measure

of side-effect profiles, it can be inferred whether two

drugs share a target with implications for drug repurpos-

ing [26�]. They experimentally validated several novel

drug-target relations demonstrating the feasibility of

approaches that utilize organism level readouts to predict

interactions at the molecular level. Another method by

Yamanishi et al. [27] integrated chemical similarity and

protein-sequence similarity with additional pharmaco-

logical data extracted from package labels by text-mining.
Current Opinion in Biotechnology 2012, 23:609–616 
From the combination of these heterogeneous data, their

machine learning-based method predicted new drug-tar-

get interactions [27].

Pursuing a metabolomics approach, Folger et al. have

introduced a new systemic method for the identification

of (potential) anti-cancer drug targets [28��]. By integrat-

ing a network of human cellular metabolism with cancer

expression data, they constructed a generic model of the

metabolic fluxes in cancer cells [28��]. This approach

predicted specific targets whose disruption would

severely impact cancer metabolism while exhibiting only

mild toxicity according to metabolic models of non-can-

cerous cells and liver tissue. Importantly, they not only

identified many known metabolic anticancer drug-targets

and novel candidates, but also provided a mechanistic

model of the metabolic consequences of drug interven-

tions. This even allowed the authors to propose combi-

nation therapies, where synergistic drug interference

appeared most effective in the metabolic model [28��].

Recent developments have clearly demonstrated the

feasibility and benefits of combining heterogeneous data

from systemic readouts for drug-target prediction. In the

near future, the increased quantity and diversity of avail-

able data from cellular and phenotypic assays will further

empower integrative approaches. Growing knowledge of

the physiological roles of drug targets in disease etiology

and adverse drug reactions will both, profit from and

facilitate, accurate computational assessments of a drug’s

full interaction profile and thus be a key step towards a

systemic understanding of drug action.

Inference of a drug’s mechanism of action
utilizing cellular readouts
Directly inferring drug target relations from complex

cellular readouts may not always be possible owing to

convergence of several molecular events onto the same or

very similar phenotypes. Nonetheless, such data may be

useful for characterizing a drug’s general mechanism of

action (MoA) on a biological system. MoA refers to the

molecular mechanisms by which a drug achieves its

pharmacological effect [29]. Elucidating a drug’s MoA

experimentally is currently still very time and labor

intensive, but there is hope that a combination of high-

throughput screening technologies and computational

analyses can shortcut many aspects by generating hypoth-

eses early on.

There are plenty of computational challenges in the

analysis of complex multi-parametric screening data that

start with the delineation of (molecular or phenotypic)

drug response profiles from several high-throughput

screening technologies covering gene expression, proteo-

mics, metabolomics or cellular phenotypes. The hope of

large-scale profiling efforts is indeed to capture the mol-

ecular or phenotypic signatures of the screened drugs’
www.sciencedirect.com
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MoAs [13�]. However, the resulting profiles typically also

include general stress or other secondary responses, and

effects due to off-target binding. Another challenge is the

establishment of adequate similarity measures that reflect

the common underlying MoA(s) of chemicals. This is a

prerequisite to apply the ‘guilt by association’ rule to infer

novel drug indications from profile similarity [30]. Finally,

it is an open computational problem how to best integrate

heterogeneous data from different screening technologies

in order to improve overall prediction accuracy and gain a

systemic understanding of a drug’s MoA.

Large-scale profile-based comparisons of drug treatments

were pioneered by the Connectivity Map (CMap) project

[13�]. Generating and comparing genome-wide gene

expression readouts of several cell-lines treated with more

than 1000 drug-like chemicals illustrated the potential of

complex biological readouts for mapping relations be-

tween drugs, diseases and genes. Expression-based com-

parison of drugs has been facilitated by concomitant

research into statistical methods for profile similarity

search [31,32,33��]. Building on the CMap resource, Iorio

et al. [33��] identified network communities of drugs with

similar expression profiles. These drug communities were

found to generally have similar MoA and higher like-

lihood of sharing targets or therapeutic effect and com-

munity membership was successfully exploited for drug

repositioning.

Mechanistic insights into drug action have also been

gathered based on their effect on cellular morphology,

by exploiting high-content phenotypic screening in con-

junction with automated microscopy and image analysis

[34�,35]. Young et al. reduced primary image features to a

more compact representation, allowing the computational

identification of chemicals with pronounced morphologi-

cal effects [34�]. Clustering these chemicals according to

their morphological phenotype revealed relationships to

an independent chemical similarity-based clustering. A

combination of target prediction and phenotype cluster-

ing allowed MoA inference for some chemical classes.

Taking high-throughput phenotypic screening to the

whole-organism level, behavioral alterations in zebrafish

larvae were quantified upon treatment with drug-like

chemicals [36�,37]. Rihel et al. computationally derived

profiles from these complex behavioral phenotypes and

showed that behavioral profile clustering is strongly cor-

related with similarity of known bioactivities of drugs in

mammals (e.g. target proteins and MoA). This estab-

lished the screen as a valuable tool for MoA inference

of poorly characterized psychotropic compounds which

are particularly challenging to study in vitro [36�].

The concept of profiles capturing drug MoA has been

successfully extended to diseases. Diseases, which are

accompanied by disruptions of processes and networks at

the cellular level, can also be characterized by profiles of
www.sciencedirect.com 
altered gene expression, metabolite concentrations, and

so on. Through guilt-by-association, diseases with similar

profiles are proposed to be treated with the same drugs

[38,39]. Furthermore, drug and disease profiles have been

combined based on the idea of ‘reversing disease profiles’:

A drug showing an expression profile that is strongly

anticorrelated with a disease profile might actually

reverse some of the disease effects [13�,40,41�,42]. Sirota

et al. systematically developed this concept further into a

method, which combines disease expression profiles

extracted from publicly available microarray repositories

(see Box 1) [12] with drug-induced expression profiles for

rational drug repositioning [41�]. Extensive experimental

follow-up work established that this approach can indeed

lead to novel treatments that showed promise in animal

models [41�,42].

A significant advance towards integration of multiple

evidences for drug repositioning was recently made by

Gottlieb et al. [43��]. They combined many different

profile-based similarity measures for drugs and diseases

to identify novel drug indications using a machine learn-

ing-based method. It incorporates drug–drug similarity

measures derived from chemical structures, expression

profiles, side-effect profiles and properties of the drugs’

targets. Additionally, disease–disease similarity is calcu-

lated based on phenotypic as well as molecular profiles

(gene expression similarity among others). The integ-

ration achieved higher prediction accuracy than each

dataset alone and allowed an MoA inference that is robust

against weaknesses and errors in individual sources of

evidence [43��].

Prediction of higher level systemic features
such as drug toxicity and adverse reactions
Toxicity and adverse reactions of small molecules pose a

public health risk, as well as cause high attrition rates in

later stages of drug development [44]. This led the U.S.

National Research Council (NRC) to propose the de-

velopment of high-throughput in vitro toxicology assays

along with controlled vocabularies on toxicity phenotypes

and computational methods for assessing a compound’s

mechanism-based toxicity [45]. Ultimately, the collected

data will allow integrative computational approaches to

characterize fundamental biological processes leading to

drug-induced organ and organism failures. Such

approaches might prove useful to predict toxicity of novel

compounds.

Already now, chemical structures and/or physiochemical

properties are being used to predict in vivo toxicity and

adverse drug reactions as has been demonstrated by

quantitative structure–activity relationship (QSAR) stu-

dies [19,46]. Chemical structure and its predicted protein

targets were further associated with adverse drug reac-

tions in order to pinpoint targets and pathways respon-

sible for the undesired drug effect [19]. An integrative
Current Opinion in Biotechnology 2012, 23:609–616
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model by Sedykh et al. [47] combines chemical with

biological descriptors mined from PubChem in vitro
assays (see Box 1) [4�]. It has shown that for assessing

in vivo toxicity, bioassay data provide unique, valuable

information that cannot be derived from chemical struc-

tures alone [47].

For the prediction of toxicity-related aspects of drugs,

genome-wide expression data derived form drug-per-

turbed states should be a valuable resource allowing

conceptually novel avenues. Natsoulis et al. have gener-

ated a large-scale dataset of gene expression profiles from

liver tissue of rats treated with 344 chemicals [48]. To

identify biomarkers predictive of the observed toxico-

logical and pharmaceutical outcomes, they used a super-

vised classification algorithm, which extracted a small set

of �200 representative genes sufficient to distinguish

more than 30 liver toxicity outcomes [48]. To improve

the molecular understanding of in vivo liver toxicity, Low

et al. combined drug-induced expression profiles of rat

liver with chemical descriptors and provided insights into

chemical substructures and regulated genes that are

responsible for liver toxicity [49].

Side effects of FDA-approved drugs provide information

on human phenotypic response to drug treatment (see

Box 1) and their variation in the human population [17].

Fliri et al. clustered drugs using either side effect or drug-

target profiles [50]. They found seven classes of drugs that

are coherent between both clusterings. This implies that

for some drugs, target profiles are predictive of side

effects. Although these and other results suggest strong

associations between side effects and drug targets

[26�,50], additional work has shown that targeting distinct

proteins that are interaction partners also contributes to

similarity between side-effect profiles [51]. Pouliot et al.
[52] correlated side effect classes summarized at the organ

level with heterogeneous bioassay data from Pubchem

(see Box 1) [4�] in order to build models that reliably

predict safety-related issues [52].

The integrative approaches presented here represent the

first steps towards a systemic understanding that is likely

to impact toxicology and safety issues in drug develop-

ment by improving our understanding of mechanism-

based toxicity at molecular, cellular and organismal level.

Summary and outlook
Emphasizing data integration, we have summarized

recent computational approaches that might have an

impact on rational drug design. Whatever implementa-

tion will be accepted by a wider community, we believe

that these integrative concepts are promising for the near

future, building on the current rapid expansion of pub-

licly accessible resources on the bioactivity of chemical

compounds (see Box 1). Integration of diverse types

of data describing drug action at multiple levels from
Current Opinion in Biotechnology 2012, 23:609–616 
molecular interactions to cellular and organismal aspects

will provide a systemic view of drug response processes

that is likely to heavily impact drug development. This

holistic view will not only enhance drug discovery, but also

facilitate a better understanding of the ‘system’ human.

Large-scale drug perturbation experiments represent

important new entry points for the reconstruction of human

molecular and physiological networks and thus represent

important contributions to systems biology [53].
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