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Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have
crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing
diseases in animals. To better characterize the diversity, abundance and biogeography of marine
NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 lm size range)
collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented
in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons.
By combining computationally derived relative abundance and direct prokaryote cell counts, the
abundance of NCLDVs was found to be in the order of 104–105 genomes ml� 1 for the samples from the
photic zone and 102–103 genomes ml�1 for the OMZ. The Megaviridae and Phycodnaviridae dominated
the NCLDV populations in the metagenomes, although most of the reads classified in these families
showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a
potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes.
In support of this predicted association, we identified six cases of lateral gene transfer between
Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic
organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise
to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.
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Introduction

Viruses are thought to be extremely abundant in the
sea. Indeed, phages alone outnumber all other life
forms in seawater, reflecting the abundance of their

bacterial hosts (Suttle, 2007). However, little is
known about the diversity, abundance and biogeo-
graphy of marine viruses infecting other cellular
organisms, in particular eukaryotes. Although less
numerous than bacteria, eukaryotes often represent
the bulk of plankton biomass and mediate important
biogeochemical and food web processes (Falkowski
et al., 2004, Massana, 2011).

Nucleo-cytoplasmic large DNA viruses (NCLDVs;
Iyer et al., 2006, Yutin and Koonin, 2012) constitute an
apparently monophyletic group of eukaryotic viruses
with a large double-stranded DNA (dsDNA) genome
ranging from 100 kb up to 1.26 Mb. Their hosts show a

Correspondence: H Ogata, Education Academy of Computational
Life Sciences, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152 8552, Japan.
E-mail: ogata@acls.titech.ac.jp, hiroyuki.ogata@igs.cnrs-mrs.fr
11These authors contributed equally to this work.
12Current address: Departament de Genètica i de Microbiologia,
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remarkably wide taxonomic spectrum from micro-
scopic unicellular eukaryotes to larger animals,
including humans. Certain NCLDVs are known to
have important roles in marine ecosystems. For
instance, Heterosigma akashiwo virus (HaV) affects
the population dynamics of their unicellular algal
host, which forms seasonal harmful blooms in coastal
areas (Tomaru et al., 2004). Another well-known virus
(Emiliania huxleyi viruses (EhV)) controls the popula-
tion of the ubiquitous haptophyte E. huxleyi, which
can form vast oceanic blooms at temperate latitudes
and exerts complex influence on the carbon cycle
(Pagarete et al., 2011). Other NCLDVs cause diseases
in fishes and can lead to economic damages in
aquaculture industries (Kurita and Nakajima, 2012).
NCLDVs include viruses with very large virion
particles, which do not pass through 0.2-mm filters
typically used in viral metagenomics to separate free
viruses from other organisms (Van Etten, 2011). The
prototype of such large viruses, also referred to as
giruses (Claverie et al., 2006), is the amoeba-infecting
Acanthamoeba polyphaga Mimivirus with a 0.75-mm
virion particle and 1.18-Mb genome (Raoult et al.,
2004). Since the discovery of the giant Mimivirus from
fresh water samples, NCLDVs have become a subject
of broader interest. This has led to several conceptual
breakthroughs in our understanding of the origin of
viruses and their links to the evolution of cellular
organisms (Claverie, 2006; Forterre, 2006; Raoult and
Forterre, 2008; Forterre, 2010; Legendre et al., 2012).
The sequencing of the Mimivirus genome prompted
the discovery of many close homologs in environ-
mental sequence data (Lopez-Bueno et al., 2009;
Cantalupo et al., 2011). Most notably, Mimivirus gene
homologs were detected in the Global Ocean Sam-
pling (GOS) marine metagenomes (Ghedin and
Claverie, 2005; Monier et al., 2008a; Williamson
et al., 2008), suggesting Mimivirus relatives exist
in the sea. Soon afterwards, two giant viruses related
to Mimivirus were isolated from marine environ-
ments. These are Cafeteria roenbergensis virus
(CroV; 750 kb) infecting a major marine microflagellate
grazer (Fischer et al., 2010) and Megavirus chilensis
(1.26 Mb) infecting Acanthamoeba (Arslan et al.,
2011). About 70 NCLDV genomes have been
sequenced so far, of which about 15 represent marine
viruses (Pruitt et al., 2012). Thanks to this recent
accumulation of sequence data and analyses, the
visible portion of the NCLDV phylogenetic tree is fast
expanding, and NCLDV abundance in the sea is
increasingly being recognized. However, our knowl-
edge of their biology is still limited, leaving such
fundamental ecological parameters as their abundance
and host taxonomic range to be determined.

Previous studies examined the abundance of
specific species/groups of NCLDVs in marine envir-
onments using either laboratory culture of viral
hosts or flow cytometry (FC). The concentration of
HaVs infecting the raphidophyte H. akashiwo could
reach 104 viruses ml� 1 in natural sea water during
the period of host blooms (Tomaru et al., 2004).

The abundance of viruses (Ostreococcus tauri virus
(OtVs)) infecting the smallest free-living green alga
O. tauri could vary from undetectable levels to over
104 viruses ml� 1 depending on the season and the
distance from the shore (Bellec et al., 2010). The
abundance of EhVs could reach over 107 viruses ml�1

in rapidly expanding host populations in mesocosm
experiments simulating host blooms (Schroeder
et al., 2003, Pagarete et al., 2011). A typical observa-
tion in these studies was an episodic sudden increase
(4 several orders of magnitude) in virus concentra-
tion. These studies focused on specific viral species/
strains and depended on the availability of host
cultures for lysis evaluation or on relatively simple
community compositions amenable to FC analysis.
Currently, no direct method is available to assess the
abundance of diverse NCLDVs in a complex micro-
bial assemblage dominated by an overwhelming
amount of bacterial cells and phages.

To better understand the diversity and geographi-
cal distribution of marine NCLDVs, we analyzed a
subset of metagenomic sequence data (0.2–1.6mm
size fraction) generated by Tara Oceans, an interna-
tional multidisciplinary scientific program aiming
to characterize ocean plankton diversity, the role of
these drifting microorganisms in marine ecosystems
and their response to environmental changes
(Karsenti et al., 2011). Samples were collected during
the first year of the expedition from the Strait of
Gibraltar, through the Mediterranean and Red Sea,
down to the middle of the Indian Ocean (Table 1).
Some marine regions under-represented in previous
metagenomic studies are included in this sample set,
such as those from the Arabian Sea oxygen minimum
zone (OMZ) and Indian Ocean lagoons. Most prokar-
yotic cells and many large virus particles are
expected to be captured within the 0.2–1.6mm size
fraction used in the present metagenome study. Here
we show that putative NCLDV sequences differ
substantially from known reference genomes, sug-
gesting a high diversity of giant marine viruses. The
concentration of NCLDV genomes in the samples was
estimated by factoring the metagenome data set with
prokaryotic abundance determined by FC and micro-
scopy on samples collected concurrently on Tara.
Finally, we tested the capacity of the taxon co-
occurrence patterns (Chaffron et al., 2010, Steele
et al., 2011) present in our data set to provide hints
about potential natural hosts for marine NCLDVs.

Materials and methods

Sampling and DNA extraction
At the end of March 2012, a 2.5-year circum-global
expedition was completed onboard Tara, an arctic
exploration schooner modified for global marine
research with innovative systems for multiscale
sampling of planktonic communities. During the
expedition, planktonic organisms ranging in size from
viruses to fish larvae together with physico-chemical
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contextual data were collected from several depths at
153 stations across the world oceans. Plankton were
collected from up to three depths: near the surface
(SRF; B5 m), at the depth of maximum chlorophyll
a fluorescence (deep chlorophyll maximum, DCM;
20–200 m) and in the mesopelagic layer (MESO;
200–1000 m) to capture deep oceanographic features,
such as OMZs. As much as possible where sampling
was shallower than 80 m, SRF and DCM samples
were collected using a large peristaltic pump (A40,
TECH-POMPES, Sens, France), whereas samples from
deeper DCM and MESO were collected using 12-l
Niskin bottles mounted on a rosette equipped with
physico-chemical sensors. For samples analyzed in
this study, 100 liters of seawater from each depth were
first passed through 200- and 20-mm mesh filters to
remove larger plankton, then gently passed in series
through 1.6- and 0.22-mm filters (142mm, GF/A
glass microfiber pre-filter, Whatman, Maidstone, UK;
and 142 mm, 0.22mm Express PLUS Membrane,
Millipore, Billerica, MA, USA, respectively) using
a peristaltic pump (Masterflex, EW-77410-10,
Cole-Parmer International, Vernon Hills, IL, USA).
The filters were kept for 1 month at � 20 1C on board
Tara and then at � 80 1C in the laboratory until DNA
extraction. DNA was extracted using a modified CTAB

(hexadecyltrimethylammonium bromide) protocol
(Winnepenninckx et al., 1993): (i) the filters were
incubated at 60 1C for 1 h in a CTAB buffer (2% CTAB;
100 mM TrisHCl (pH¼ 8); 20 mM EDTA; 1.4 M NaCl;
0.2% b-mercaptoethanol; 0.1 mg ml�1 proteinase K;
10 mM DTT (dithiothreitol), (ii) DNA was purified
using an equal volume of chloroform/isoamylalcohol
(24:1) and a 1-h-long RNase digestion step, and (iii)
DNA was precipitated with a 2/3 volume of isopro-
panol and washed with 1 ml of a EtOH/NH4Ac
solution (76% and 10 mM, respectively). Finally, the
extracted DNA samples were dissolved in 100ml of
laboratory grade water and stored at � 20 1C until
sequencing. On average, an approximate yield of
1mgml� 1 was obtained for each sample.

Metagenomic sequence data
All sequencing libraries were created using the
Roche-454 Rapid Library kit (Roche Applied
Science, Meylan, France). The input for nebuliza-
tion used 500 ng of extracted DNA. Each library
was indexed to avoid cross-contamination and
sequenced on one-eighth to one-half of a GS-FLX
Titanium plate (Meylan, France). Quality checking
of the reads was performed using the 454 standard

Table 1 General description of the samples analyzed in this study

Name Station
number

Region Marine
system type

Depth
(m)

Locationa T
(1C)

Salinity
(psu)

Chl a
(mg Chl
a m�3)

Date and
time (UTC)a

Sample identifiers

3_S 3 Atlantic Ocean Open ocean SRF 36143.520’N
10128.250’W

NA NA NA 2009/09/13 10:40 TARA-Y200000001 (A6.1)

4_S 4 Atlantic Ocean Open ocean SRF 36133.200’N
6134.010’W

NA NA NA 2009/09/15 10:15 TARA-Y200000002 (A11)

6_S 6 Mediterranean Sea Enclosed sea SRF 36131.239’N
410.443’W

17.0 37.35 3.121 2009/09/21 14:49 TARA-Y200000003 (A32)

7_S 7 Mediterranean Sea Enclosed sea SRF 3712.321’N
1156.99’W

23.8 37.48 0.075 2009/09/23 17:05 TARA-A200000113

7_D 7 Mediterranean Sea Enclosed sea DCM
(42 m)

3712.321’N
1156.99’W

17.8 37.09 0.296 2009/09/23 17:05 TARA-A200000159

23_S 23 Mediterranean Sea Enclosed sea SRF 42110.462’N
17143.163’E

17.1 38.22 0.036 2009/11/18 12:44 TARA-E500000066

23_D 23 Mediterranean Sea Enclosed sea DCM
(56 m)

42110.462’N
17143.163’E

16.0 38.30 0.119 2009/11/18 12:44 TARA-E500000081

30_S 30 Mediterranean Sea Enclosed sea SRF 33155.077’N
32153.622’E

20.4 39.42 0.025 2009/12/14 12:44 TARA-A100001568

31_S 31 Red Sea Enclosed sea SRF 2718.100’N
34148.400’E

25.0 39.91 0.005 2010/01/09 10:03 TARA-A100001568

36_S 36 Arabian Sea Semi-enclosed sea SRF 20149.053’N
63130.727’E

26.0 36.53 0.047 2010/03/12 10:36 TARA-Y100000022

38_S 38 Arabian Sea Semi-enclosed sea SRF 1912.318’N
64129.620’E

26.3 36.62 0.052 2010/03/15 03:45 TARA-Y100000288

38_Z 38 Arabian Sea Semi-enclosed sea OMZ
(350 m)

1912.103’N
64133.825’E

14.7 36.00 0.002 2010/03/16 06:14 TARA-Y100000294

39_S 39 Arabian Sea Semi-enclosed sea SRF 18134.213’N
66129.167’E

27.4 36.29 0.026 2010/03/18 09:56 TARA-Y100000029

39_Z 39 Arabian Sea Semi-enclosed sea OMZ
(270 m)

18144.043’N
66123.375’E

15.6 35.91 0.003 2010/03/20 08:17 TARA-Y100000031

43_S 43 Indian Ocean Lagoon SRF 4139.582’N
73129.128’E

30.0 34.49 0.075 2010/04/05 08:50 TARA-Y100000074

46_S 46 Indian Ocean Lagoon SRF 0139.748’S
7319.664’E

30.1 35.11 0.050 2010/04/15 02:40 TARA-Y100000100

49_S 49 Indian Ocean Open ocean SRF 16148.497’S
59130.257’E

28.3 34.49 0.024 2010/04/23 10:29 TARA-Y100000120

Abbreviations: DCM, deep chlorophyll maximum; NA, not applicable; OMZ, oxyzen minimum zone; SRF, surface; UTC, Coordinated Universal
Time.
aLocations, date and time correspond to events for the collection of contextual physicochemical data. Events for water sampling could slightly
differ from these values.
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tools. 454-based pyrosequencing is known to gen-
erate artificial duplicates (Briggs et al., 2007).
Therefore, for each set of reads generated from the
same sample by the same 454 run, we identified and
removed artificial duplicates using the 454 Repli-
cate Filter software (Gomez-Alvarez et al., 2009) by
applying the following criteria: X5 identical starting
nucleotides and X97% overall nucleotide sequence
identity. This resulted in an overall reduction of the
number of reads by 16%, ranging from 3% to 47%
depending on the sample. Metagenomic sequence
data generated from Tara Oceans are referred to as
Tara Oceans Project (TOP) metagenomes. The
sequence data analyzed in this study is based on a
subset of TOP metagenomes (Table 2), which is
referred to as TOP pyrosequences or, in the present
study, simply as TOP data. The sequence data are
accessible from the Sequence Read Archive of the
European Nucleotide Archive through the accession
number ERA155562 and ERA155563. Additional
sequence and annotation data are accessible from
http://www.igs.cnrs-mrs.fr/TaraOceans.

The GOS metagenomic sequence reads (Rusch
et al., 2007) were downloaded from CAMERA (Sun
et al., 2011). We used only the sequence data
recovered from the samples corresponding to the
size fraction between 0.1 and 0.8 mm (that is, 40
samples corresponding to GS001 to GS051). Protein-
coding regions in the metagenomic sequences (TOP
and GOS) were identified using the FragGeneScan
software (Rho et al., 2010).

Enumeration of prokaryotes by 4,6-diamidino-2-
phenylindole (DAPI)
In all, 10 ml of seawater for SRF and DCM and
90 ml for OMZ (pre-filtered through 20-mm mesh)
were fixed in paraformaldehyde (1.5% final

concentration), filtered onto a 0.2-mm polycarbonate
filter and kept frozen until processing. For the
enumeration of total prokaryotes, cells were stained
with DAPI and between 500 and 1000 DAPI-positive
cells were counted manually in a minimum of 10
microscope fields using an Olympus BX51TF epi-
fluorescence microscope (Olympus, Tokyo, Japan).

Enumeration of prokaryotes by FC
For FC counts, three aliquots of 1 ml of seawater (pre-
filtered through 200-mm mesh) were collected from
each depth. Samples were fixed immediately using
cold 25% glutaraldehyde (final concentration
0.125%), left in the dark for 10 min at room
temperature, subsequently flash-frozen and kept in
liquid nitrogen on board, and then stored at � 80 1C
in the laboratory. Two sub-samples were taken for
separate counts of heterotrophic prokaryotes and
phototrophic picoplankton. For heterotrophic pro-
karyote determination, 400ml of sample was added to
a diluted SYTO-13 (Molecular Probes Inc., Eugene,
OR, USA) stock (10:1) at 2.5mmol l�1 final concen-
tration, left for about 10 min in the dark to complete
the staining and run in the flow cytometer. We used a
FacsCalibur (Becton and Dickinson, Franklin Lakes,
NJ, USA) flow cytometer equipped with a 15-mW
Argon-ion laser (488 nm emission). At least 30 000
events were acquired for each subsample (usually
90 000 events). Fluorescent beads (1mm, Fluoresbrite
carboxylate microspheres, Polysciences Inc., War-
rington, PA, USA) were added at a known density as
internal standards. The bead standard concentration
was determined by epifluorescence microscopy.
Heterotrophic prokaryotes were detected by their
signature in a plot of side scatter vs FL1 (green
fluorescence). In a red (FL3) –green (FL1) fluores-
cence plot, beads fall in one line, heterotrophic
prokaryotes in another and noise in a third (respec-
tively, with more FL3 than FL1). Picocyanobacteria
fall in between noise and heterotrophic prokaryote.
This method is based on del Giorgio et al. (1996) as
discussed in Gasol and del Giorgio (2000). For
phototrophic picoplankton, we used the same pro-
cedure as for heterotrophic prokaryote but without
addition of SYTO-13. Small eukaryotic algae were
identified in plots of side scatter vs FL3, and FL2 vs
FL3 (Olson et al., 1993), and excluded in the
enumeration of phototrophic prokaryotes. Data ana-
lysis was performed with the Paint-A-Gate software
(Becton and Dickinson). The abundance of prokar-
yotic cells was based on the enumerations of
heterotrophic and phototrophic prokaryotes.

NCLDV classification
Throughout this study, we used the NCLDV nomen-
clature derived from the common ancestor hypo-
thesis (Iyer et al., 2006) based on seven distantly
related viral families: Megaviridae, Phycodnaviri-
dae, Marseilleviridae, Iridoviridae, Ascoviridae,

Table 2 Quality-controlled Tara Oceans pyrosequence data

Sample
name

Total size
(bp)

Number
of reads

GþC
(%)

Average
size (bp)

Number
of pre-
dicted
ORFs

Average
ORF

size (aa)

3_S 21 533 646 63 994 37 336 65 656 99
4_S 52 953 075 140 754 38 376 149 018 108
6_S 36 129 806 95 255 48 379 98 996 111
7_S 98 750 180 332 049 38 297 335 408 90
7_D 279 389 388 1 117 888 37 250 1 013 853 81
23_S 67 695 268 196 190 39 345 201 447 101
23_D 83 539 478 239 447 38 349 246 948 102
30_S 89 180 466 256 028 37 348 268 616 101
31_S 245 463 121 614 743 39 399 660 949 114
36_S 245 945 064 737 506 39 333 757 448 100
38_S 214 253 370 601 110 39 356 631 351 103
38_Z 223 188 575 638 843 45 349 659 041 104
39_S 233 273 851 590 664 43 395 629 501 114
39_Z 249 558 778 679 589 46 367 708 056 108
43_S 167 515 516 529 506 37 316 545 641 93
46_S 251 310 870 648 425 41 388 689 641 112
49_S 222 417 021 680 573 43 327 696 974 98

Abbreviation: ORF, open reading frame.
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Asfarviridae and Poxviridae. Among theses, Mega-
iridae is a recently proposed family (Arslan et al.,
2011), which includes Mimivirus, Mamavirus,
Megavirus, CroV and other marine viruses such as
Pyramimonas orientalis virus, Phaeocystis pouchetii
virus (PpV), Chrysochromulina ericina virus (CeV)
as well as Organic Lake Viruses (OLPV1, OLPV2)
(Ogata et al., 2011; Yau et al., 2011). Although the
order Megavirales was recently proposed to refer to
the taxonomic classification of NCLDVs (Colson
et al., 2012), we simply refer here to these viruses
collectively as NCLDVs.

Marker genes
Sixteen NCLDV marker genes were selected from the
1445 clusters of NCLDV orthologs, represented in
the NCVOG database (Yutin et al., 2009). These
marker genes were selected based on their conserva-
tion in nearly all known NCLDV genomes (four
markers) or in a majority of viruses from the two
major marine NCLDV families (Megaviridae and
Phycodnaviridae; 12 markers), as well as on the
observation that these genes typically occur only once
in their genomes if present (Supplementary Table S1).
For cellular organisms, we used 35 conserved genes
normally encoded as a single copy in all the cellular
organisms (Raes et al., 2007). Profile-hidden Markov
models (Eddy, 2008) derived from the sequence
alignments of these marker genes were used to
identify their homologs (E-valuep10� 3) in the trans-
lated amino-acid sequence sets derived from metage-
nomic data. After identification of the marker gene
homologs, taxonomic assignment was performed
using the dual BLAST based last common ancestor
(2bLCA) method described below in order to separate
these sequences in distinct NCLDV, Bacteria, Archaea
and eukaryote bins. For each marker gene, we then
obtained marker gene density in the metagenomes
(number of hits per Mbp). A normalization process for
the marker gene size was introduced by dividing the
computed marker gene density by the length of the
reference multiple sequence alignment of the profile-
hidden Markov model.

Phylogenetic mapping
Phylogenetic mapping (Monier et al., 2008a) is a
method to place and classify a new sequence (usually
a short environmental sequence) within a reference
tree using a precompiled multiple sequence align-
ment. In this study, we compiled a reference sequence
set composed of 187 type B DNA polymerase (PolB)
homologs and a reference sequence set composed of
154 MutS homologs from diverse cellular organisms
and viruses (Supplementary Figures S1 and S2).
Multiple sequence alignments and phylogenetic trees
were constructed using T-Coffee (Notredame et al.,
2000) and RAXML (Rokas, 2011). HMMALIGN was
used to align metagenomic sequences on the refer-
ence alignments and Pplacer (Matsen et al., 2010) was

used to map the sequences in the reference trees
using the Bayesian option. This Pplacer approach was
used also for the phylogenetic analysis of the reads
assigned to the Megaviridae and oomycetes taxo-
nomic nodes. For the visualization of phylogenetic
trees, we used Archaeopteryx (Han and Zmasek,
2009), FigTree (http://tree.bio.ed.ac.uk/software/fig-
tree/) and MEGA version 5.1 (Tamura et al., 2011).

2bLCA taxonomic annotation
Each 454 read 4100 bp in length was assigned a
taxonomic classification using a dual BLAST
(Altschul et al., 1997; Monier et al., 2008b) based
last common ancestor (2bLCA) approach somewhat
similar to the method applied by MEGAN (Huson
et al., 2007) but using an adaptive E-value threshold
specific for each protein. For each 454 read, the best
local alignment (high-scoring segment pair (HSP))
with known proteins was obtained by a first BLAST
(B1; BLASTx) against the UniProt database release
April 2011 (UniProt Consortium, 2012). Reads
without any HSPs at an E-valuep10�5 were classi-
fied as ‘no hits’. For each read with at least one
significant HSP, the subsequence of the UniProt
subject fragment aligned in the best scoring B1 HSP
was used as a second BLAST (B2; BLASTp) query
against the same UniProt database. All the B2
database hits with an E-valuepB1 HSP were recorded
and defined to constitute a set of close homologs for
the read (denoted as set H). The taxonomic classifica-
tions (Benson et al., 2012) of the set H were then
reduced to their LCA, which was finally assigned to
the read as its taxonomic annotation. Reads were
annotated as ‘ambiguous’ if the set H contained
representatives from several domains of life. This
2bLCA protocol was applied to the metagenomic
reads as well as to the metagenomic marker gene
homologs (predicted protein sequences). For the latter
case, we used BLASTp for B1 (instead of BLASTx)
against a customized reference database (that is, a
subset of UniProt) with enriched taxonomic annota-
tions for NCLDVs. The use of two protein reference
databases in this study merely reflects the period
when the computation was performed.

Read abundance per taxon
For each set of taxa at a given depth (here fifth level
from the root) in the National Center for Biotechno-
logy Information (NCBI) taxonomic tree of life,
we estimated the relative read abundance of
plankton representatives for each taxon in each
Tara Oceans sample (providing a samples� taxa
matrix). The relative read abundance of a specific
taxon for a specific sample was calculated as the
number of 454 metagenomic reads with a taxonomic
annotation at or below the taxon level divided by the
total number of 454 reads in the sample. The
resulting matrix composed of 712 taxa (rows) across
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17 samples (columns) is provided (Supplementary
Files S1 and S2).

Co-occurrence analysis
The 712 taxa� 17 samples matrix from above was
first filtered to exclude taxa with o5 total reads,
reducing the matrix to 609 taxa. To normalize the
read counts with respect to varying sequencing
depth across samples, the number of reads in each
cell of the matrix was divided by the total number of
reads for the corresponding column. In order to
detect putative taxon co-occurrences across the 17
samples, rank-based Spearman correlation coeffi-
cients (r) were first computed between taxon pairs
using the R ‘stats’ package ‘cor’ function (R
Development Core Team, 2011). Significance of each
r was tested by computing a two-sided P-value
(asymptotic t approximation) using the R ‘stats’
package ‘cor.test’ function and controlled for multi-
ple tests using false discovery rate (q-value) com-
puted by the tail area-based method of the R ‘fdrtool’
package (Strimmer, 2008). Taxon associations with
|r|40.7 and qo0.05 were reported with this first
approach. Taxon co-occurrences/co-exclusions were
also independently assessed by the method
described by Faust et al. (2012). In this second and
more stringent approach, the two samples from
OMZ were excluded to reduce the detection of
biome-specific patterns in species distributions. In
addition, we excluded parent–child taxonomic
relationships (for example, an association between
‘Viruses’ and ‘Phycodnaviridae’) in this second
analysis. Briefly, taxon associations were measured
with Spearman’s correlation (denoted as r’) and
Kullback–Leibler distance on the input matrix. The
1000 top- and 1000 bottom- ranking edges for each
method were further evaluated according to Faust
et al. (2012), which mitigates biases introduced by
data normalization. This method builds a null
distribution of scores for each edge by permuting
the corresponding taxon rows while keeping the rest
of the matrix unchanged and then restores the
compositional bias by renormalizing the matrix. We
ran 1000 rounds of permutation-renormalization for
each edge and 1000 bootstraps of the matrix columns
to calculate the confidence intervals around the edge
score. The P-value for each measure was obtained
from the Z-scores of the permuted null and bootstrap
confidence interval; they were combined (denoted as
P’-values) using a method conceived for non-inde-
pendent tests (Brown, 1975) and corrected for multi-
ple testing using false discovery rate q-values
(denoted as q’-values) according to Benjamini and
Hochberg (1995). Taxon associations with q’o0.05
were reported with this second approach.

Horizontal gene transfer (HGT) analysis
To identify potential HGTs between Megaviridae
and oomycetes, comprehensive proteome databases
for each taxon were assembled as follows. The

Megaviridae proteome database contained all
6678 publically available peptides for M. chilensis
(1120 peptides), Megavirus courdo7 (1139 peptides),
Acanthamoeba castellanii mamavirus (997
peptides), A. polyphaga mimivirus (972 peptides),
A. polyphaga mimivirus isolate M4 (756 peptides),
Moumouvirus Monve (1150 peptides) and CroV BV-
PW1 (544 peptides). Because complete oomycete
proteomes were poorly represented in the Uni-
Ref100 database release December 2010 (Suzek
et al., 2007) which we intended to use for HGT
detection, we enriched UniRef100 with oomycete
proteomes from the following publically available
oomycete genome and transcriptome projects
(Supplementary Table S2): Aphanomyces euteiches
ESTs (161 384 open reading frames (ORFs)) (Gaulin
et al., 2008), Hyaloperonospora arabidopsidis
(14 937 ORFs) (Baxter et al., 2010), Pythium ultimum
(14 224 peptides) (Levesque et al., 2010), as well as
Hyaloperonospora parasitica (6452 peptides), Phy-
tophthora infestans (14 580 peptides), Phytophthora
ramorum (10 892 peptides), Phytophthora sojae
(13 995 peptides) and Saprolegnia parasitica
(17 437 peptides) available from the Broad Institute
of Harvard and MIT ‘Saprolegnia and Phytophthora
Sequencing Project’. Where peptides were not made
available, nucleotide sequences were translated
into ORFs 450 amino acids. To these 265 433
non-redundant oomycete peptides, we added a
none-oomycete stramenopile proteome from Tha-
lassiosira pseudonana (11 532 peptides), absent
from UniRef100 but publically available at the
NCBI. The 386 000 additional stramenopile peptides
were clustered (90% identity, 265 433 peptides)
before concatenation with UniRef100 to form the
‘UniRef100þ stramenopiles’ database.

Potential HGTs between Megaviridae and cellular
proteins were first approximated by reciprocal best
BLAST hits computed by a method similar to
the one described by Ogata et al. (2006). Briefly,
the best cellular homolog in the UniRef100þ
stramenopiles database was first identified for each
Megaviridae peptide (BLASTp, E-valuep10�5).
If this best cellular homolog obtained a best hit
against a Megaviridae peptide in a second BLASTp
search against the UniRef100þ stramenopilesþ
Megaviridae database (excluding hits in the same
cellular taxonomic group at the first three NCBI
classification levels), they were considered a poten-
tial Megaviridae-cell HGT candidate.

The six Megaviridae-oomycete HGT candidates
revealed by reciprocal BLAST were then subjected
to phylogenetic analysis. Homologs for the six
Megaviridae peptides were collected by keeping
representative sequences among all detected taxo-
nomic groups using BLAST-EXPLORER (Dereeper
et al., 2010). Alignments were built using MUSCLE
(Edgar, 2004) and GBLOCKS (Talavera and
Castresana, 2007) except for the following two cases.
For the putative fucosyltransferase AEJ34901, we
used MAFFT/l-INS-i method (Katoh et al., 2005).
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For the putative RNA methylase gi|311977703,
we used CLUSTALW (Chenna et al., 2003) followed
by manual curation of the alignment. For these two
cases, all alignment positions with 445% gaps were
removed before phylogenetic analysis. Phylogenetic
trees were inferred using PhyML (Guindon
and Gascuel, 2003) implemented in Phylogeny.fr
(Dereeper et al., 2008) with 100 bootstrap replicates.
The generated trees were mid-point rooted.

Results

General features of the metagenomes
Samples in this study were collected as part of the
Tara Oceans expedition between 13 September 2009
and 23 April 2010. The 17 microbial samples
analyzed are from the 13 sampling sites and
correspond to the size fraction between 0.2 and
1.6 mm (Table 1). These samples were selected to
represent a broad range of biomes. Direct sequencing
of extracted DNA by the GS-FLX Titanium 454
pyrosequencing technology yielded 2.8 billion bp
(8 million reads; Table 2), which correspond to
440% of the size of sequence data in total base pairs
produced by the previous GOS survey (Rusch et al.,
2007). Average GþC % varied from 37% to 48%
across samples, and 8 358 544 ORFs (102 aa in
average) were identified. These constitute the TOP
data set analyzed in this study.

Abundance of NCLDVs
We used 16 NCLDV marker genes and 35 cellular
marker genes to assess the abundance of genomes
represented in the metagenomic data. These markers
are usually encoded as single copy genes in their
genomes, therefore their abundance in metagenomes
reflects the number of (haploid) genomes in the
sequenced samples. The median density (hits per
Mbp) of the NCLDV marker genes in our whole
metagenomic data set was found to be 0.019
(Figure 1), which is lower than the marker gene
density for Archaea (0.028) and corresponds to 3%
of the density for Bacteria (0.64). The median
density of the marker genes for eukaryotes was
about half that of NCLDVs (0.008). The same method
applied to the GOS marine metagenomic data,
recovered from microbial samples (0.1–0.8mm size
fraction) collected along a transect from the North
Atlantic to the Eastern Tropical Pacific, revealed that
the marker gene density of NCLDVs (0.05) was as
high as 10% of Bacteria (0.47) (Supplementary
Figure S3). This ratio is higher than that for TOP
samples likely reflecting the exclusion of large
bacterial cells and the inclusion of small NCLDVs
in the GOS 0.1–0.8 mm size fraction.

The computed abundance of NCLDV genomes
relative to prokaryotic genomes varied from 0.2% to
5.6% across the 17 Tara samples (Figure 2a). We
used prokaryotic cell abundances measured by FC

and microscopy on water samples collected onboard
Tara concomitantly with the metagenome samples,
to re-scale the relative NCLDV genome abundance
into absolute concentrations. FC analysis performed
on 16 water samples (o200 mm size fraction)
showed that prokaryotic cell density varied from

NCLDV

Bacteria

Archaea

Eucarya

Marker gene density (number of hits/Mbp) 

100.510-2.5 10-010-0.510-110-1.510-2

Figure 1 Metagenome-based relative abundance of NCLDV and
cellular genomes in the TOP data set. Seventeen TOP metagen-
omes (0.2–1.6mm size fraction) were pooled and analyzed as a
single data set to generate this plot. Each dot in the plot represents
the density of one of the marker genes used in this study
(16 markers for NCLDVs and 35 markers for cellular genomes).
The estimated abundance of NCLDVs genomes is slightly lower
than that of Archaea genomes and amounts to approximately 3%
of bacterial genomes.
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Figure 2 NCLDV genome abundance in the TOP data set.
(a) Proportion of the average marker gene density for NCLDVs
relative to that of prokaryotes (Bacteria and Archaea) for each of
the 17 TOP metagenomes. (b) Experimentally measured prokar-
yotic cell densities (gray circles; 16 samples by microscopy and 13
samples by FC) were used to estimate the absolute abundances of
NCLDV genomes (black squares) by rescaling the metagenome-
based relative abundances. ‘S’, ‘D’ and ‘Z’ in the sample names
indicate the depths from which the samples were collected: ‘S’ for
surface, ‘D’ for deep chlorophyll max and ‘Z’ for oxygen minimum
zone.
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2.5� 105 to 3.5� 106 cells ml� 1 (Figure 2b). Direct
cell count by microscopic analysis for 13 samples
(0.2–20 mm size fraction) provided comparable mea-
sures varying from 4.0� 105 to 2.2� 106 cells ml� 1.
We observed no algal bloom during our sampling,
and these measures fall within typical ranges of
prokaryotic cell density in the oceans (Suttle, 2005).
We used GF/A pre-filters (glass microfiber, 1.6 mm
nominal pore size) to collect samples for the present
metagenomic sequencing as previous works indicate
that the vast majority of prokaryotic cells (90–94%)
pass through GF/A filters (Lambert et al., 1993;
Massana et al., 1998). By assuming that 90% of
prokaryotic cells observed by FC (o200 mm) or
microscopy (0.2–20 mm) could pass through the
1.6-mm GF/A pre-filters, the absolute abundance of
NCLDV genomes ml� 1 of sea water in the 0.2–1.6mm
size fraction was estimated (Figure 2b). The
NCLDV genome abundance was found to vary from
4� 103 to 1.7� 105 ml�1 with an average of 4.5� 104

genomes ml�1 for samples from photic zones (SRF
and DCM). Samples from OMZ showed reduced
NCLDV abundances (7.7� 102–2.3� 103 NCLDV
genomes ml�1).

The detection of homologous sequences by a
marker gene depends on numerous factors such as
its level of conservation and gene length, as well
as the taxonomic composition of the metagenomes
being analyzed. We presumed that the use of multi-
ple genes with largely different enzymatic functions
would increase the overall accuracy of our procedure.
To estimate the effect of possible artifacts, we
repeated the above calculations after adding marker
gene size normalization. This reduced the abundance
estimates of NCLDV genomes by 38% compared
with calculations without gene size normalization
(Supplementary Figure S4).

Megaviridae and prasinoviruses are the most abundant
group of NCLDVs
In total, we identified 1309 NCLDV marker gene
homologs in the TOP metagenomes. Our BLAST-
based taxonomic annotation (see Materials and
methods) revealed two dominant NCLDV families
(Figure 3). Over half (52%) of them were attributable
to the Phycodnaviridae family, while 36% were
most closely related to the Megaviridae family.
These two families together represented nearly
90% of the detected NCLDV marker gene sequences.
This result confirmed a previous observation on the
relative abundance of these two families among
NCLDVs in a survey of the GOS data set (Monier
et al., 2008a). At the same sampling locations
(stations 7 and 23), prasinoviruses (infecting green
algae of the Mamiellophyceae class) were found to
be relatively more abundant in DCM than in SRF
samples (2.4–8.3-folds in absolute abundance), con-
sistent with the photosynthetic activity of their
hosts. No other notable difference in the virus

family patterns was observed across depths (SRF,
DCM, OMZ for stations 7, 23, 38, 39).

An independent classification using PolB phylo-
genetic mapping analysis showed a globally similar
taxonomic distribution of reads across different
NCLDV lineages (Figure 4). Thanks to the recent
expansion of available reference genomic sequences
for Phycodnaviridae and Megaviridae families,
prasinoviruses can now clearly be recognized as
the most abundant group of marine phycodna-
viruses. Within the Megaviridae branches, the two
largest amoeba-infecting viruses (Mimivirus and
Megavirus) are rather under-represented (3.5% of
Megaviridae), while most reads were assigned to
other Megaviridae branches, leading to viruses
characterized by reduced genomes (from B300 to
730 kb). The hosts of the latter viruses are distrib-
uted widely in the classification of eukaryotes:
C. roenbergensis (stramenopiles; Bicosoecida),
P. orientalis (Viridiplantae; Chlorophyta; Prasino-
phyceae), P. pouchetii (Haptophyceae; Phaeocys-
tales) and Haptolina ericina (formerly C. ericina;
Haptophyceae; Prymnesiales). Interestingly, many
metagenomic reads were assigned to relatively deep
branches. For example, 17 PolB-like reads were
assigned to the branch leading to the clade contain-
ing three prasinoviruses (OsV5, MpV1, BpV1), and
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Figure 3 Metagenome-based relative abundance of NCLDV
families. (a) Representation of different viral groups in the whole
TOP metagenomic data set as measured by the NCLDV marker
gene density. The number of marker reads taxonomically assigned
to each viral group is shown in parentheses in the legend.
(b) Representation of different viral groups in the 17 TOP
metagenomic samples. ‘S’, ‘D’ and ‘Z’ in the sample names
indicate the depths from which the samples were collected: ‘S’ for
surface, ‘D’ for deep chlorophyll max and ‘Z’ for oxygen minimum
zone. In both (a) and (b), three reads and one read assigned to
Asfarviridae and Poxviridae, respectively, were omitted for
presentation purpose.
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39 PolB-like reads were assigned to the basal branch
leading to four marine viruses (PpV, CeV, OLPV1
and OLPV2). To illustrate metagenome sequence
divergence with known viral sequences, we arbi-
trary classified the metagenomic NCLDV marker
sequences as ‘known’ if they showed X80% amino-
acid sequence identity to their closest homolog in
the databases and otherwise as ‘novel’ (or ‘unseen’).
A vast majority (73–99%) of the sequences turned
out to be ‘novel’ when they were searched against
the UniProt sequence database (Figure 5). Similarly,
searches against the GOS sequence database
revealed that large proportions (36–76%) of the
TOP marker gene homologs were ‘unseen’ in this
previous large-scale marine microbial survey.
A fragment recruitment plot for the OLPV1 PolB
protein sequence applied to PolB-like metagenomic
reads that best matched OLPVs (OLPV1 or OLPV2)
further showed a high level of richness among these
sequences (even within a single sample) and their
large divergence from the reference OLPV1 sequence
(Supplementary Figure S5). Overall, these results
suggest that the majority of the NCLDVs represented

in the TOP samples are highly diverse and only
distantly related to known viruses, thus potentially
corresponding to viruses infecting different marine
eukaryotes.

Correlated abundance of MutS protein subfamilies with
Megaviridae abundance
Two recently identified subfamilies of DNA mis-
match repair protein MutS are specific to a set of
viruses with large genomes (Ogata et al., 2011). The
MutS7 and/or MutS8 subfamilies are encoded in all
the known members of the Megaviridae family and
in HcDNAV (356 kb); the latter virus infects the
bloom-forming dinoflagellate Heterocapsa circular-
isquama and appears to be related to the Asfarvir-
idae family (Ogata et al., 2009). It has been suggested
that these hallmark genes of giant viruses are
required to maintain the integrity of viral genomes
with large sizes (mostly 4500 kb; Ogata et al., 2011).
These MutS genes are not included in our NCLDV
marker gene set. Prompted by the observed high
abundance of sequences of possible Megaviridae
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origin in the TOP data set, we screened our data for
MutS7 and MutS8 homologs. In total, we identified 78
reads similar to MutS (68 and 10 reads for MutS7 and
MutS8, respectively) in 13 samples (Supplementary
Figure S6a). If these MutS genes originate from
putative Megaviridae viruses detected by our marker
gene method, we expect to see a correlation in their
abundance across samples. We tested this hypothesis
and found a statistically significant correlation
between the relative abundance of the Mut7/8 homo-
logs and the Megaviridae marker gene density
(R¼ 0.725, P¼ 9.90� 10�4; Supplementary Figure
S6b). A similar level of correlation was also found
in the GOS data set (R¼ 0.647; P¼ 6.55� 10� 6;
Supplementary Figure S6c). This result suggests that
the TOP reads assigned to the Megaviridae family
probably originate from viruses with a large genome as
found in known viruses of this family.

Oomycetes or their stramenopile relatives co-occur
with marine Megaviridae
To test whether the present data set might serve
to identify potential hosts of marine NCLDVs,
we assessed association of taxon occurrences
(‘co-occurences’ and ‘co-exclusions’) across samples

using the whole set of the TOP metagenomic reads.
We used two approaches for the detection of taxon
associations: the first based on Spearman’s correla-
tion across all samples (3696 associations, qo0.05),
and the second combining Spearman’s correlation
with a Kullback–Leibler measure of dissimilarity on
a reduced data set excluding two outlier OMZ
samples (108 associations, q’o0.05). This resulted
in the identification of a total of 3703 potential taxon
association pairs, of which 101 were supported by
both methods (Supplementary Table S3). The dis-
crepancy between the two lists was due to the higher
intrinsic stringency of the second method, as well as
to the specific photic-OMZ contrasts, which were
only taken into account by the first method. Some of
the inferred taxon associations simply reflected
uncertainty in the taxonomic assignments, such as
the associations between ‘Archaea; environmental
samples’ and ‘Archaea; Euryarchaeota; Marine
Group II; environmental samples;’ (q¼ 1.38� 10� 8,
q’E0) or between environmental viruses and myo-
viruses (q¼ 3.8� 10�5, q’¼ 9.4� 10� 3). These could
be explained by the taxonomic assignments of
similar organisms into related but distinct taxo-
nomic nodes in the NCBI taxonomy database.

However, our analysis also revealed known biolo-
gical associations of lineages. For instance, a corre-
lated occurrence (q¼ 1.33� 10�3, q’¼ 8.42� 10�7)
was detected between two distinct Bacteroidetes
lineages (that is, Sphingobacteria and Cytophagia),
which are known to co-exist in seawater likely being
attached to phytoplankton cells (Gomez-Pereira
et al., 2012). We also observed known virus–host
pairs, such as a T4-like phage/cyanobacteria associa-
tion (q¼ 9.7� 10�3) and an association between
unclassified phycodnaviruses (mostly prasino-
viruses) and a group of environmental prasinophytes
(q¼ 0.014). An example of co-excluding taxa was a
relationship between Prochlorococcus, existing in
the euphotic zone, and sulfur-oxidizing symbionts, a
lineage of g-Proteobacteria known to have an
important role in sulfur-oxidizing microbial commu-
nities in deeper aphotic OMZs (q¼ 0.011; Canfield
et al., 2010; Stewart et al., 2012). The latter case
appeared to simply reflect their non-overlapping
waters of residence. These known association exam-
ples served as controls, suggesting that the inferred
network might be mined usefully for putative novel
associations (or segregations) of plankton organisms.

Examples of positive and negative correlations
between virus and cellular organism abundances are
listed in Table 3. We have no simple explanation for
some of the taxon pairs, such as the virus–cell
mutual exclusions as well as the association of
eukaryotic viruses with some bacteria (although the
latter could be due to bacterial genes acquired by
HGT in a viral genome). However, the association
between the taxonomic node for ‘Megaviridae’
(NCBI taxonomy: Viruses; dsDNA viruses, no
RNA stage; Mimiviridae.) and the node for ‘oomy-
cetes’ (NCBI taxonomy: Eukaryota; stramenopiles;
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Figure 5 Classification of NCLDV marker genes in the TOP data
based on the level of sequence similarity to database sequences.
Metagenomic reads showing X80% amino-acid sequence identity
to database sequences were classified as ‘known (or seen)’,
otherwise as ‘novel (or unseen)’. (a) BLAST result against UniProt.
(b) BLAST result against the GOS data. The large proportions of
‘novel (and unseen)’ genes suggest current environmental surveys
are far from reaching saturation and that diverse yet unknown
NCLDVs exist in the sea.
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oomycetes.) attracted our attention, as this does not
correspond to a known virus–host relationship. The
association of these two taxonomic nodes, the
highest we observed between virus and cells, was

statistically significant by both of the two methods
we used (r¼ 0.95, q¼ 2.2� 10�5, r’¼ 0.94,
q’¼ 0.018; Figure 6), albeit based on a modest
number of reads assigned to each of these taxonomic

Table 3 Examples of positive and negative viral-cell associations

Taxon 1 Taxon 2 r q r’ q’

Co-occurrence
Viruses; dsDNA viruses, no RNA stage;
Mimiviridae

Eukaryota; stramenopiles; Oomycetes 0.949 2.22E-05 0.939 1.7E-02

Viruses; dsDNA viruses, no RNA stage;
Iridoviridae; Lymphocystivirus; unclassified
Lymphocystivirus

Bacteria; Tenericutes; Mollicutes;
Mycoplasmataceae

0.883 1.44E-03 — —

Viruses; unclassified phages; environmental
samples

Bacteria; Cyanobacteria; environmental
samples

0.864 2.92E-03 — —

Viruses; dsDNA viruses, no RNA stage;
Caudovirales; Siphoviridae

Eukaryota; Alveolata; Apicomplexa;
Aconoidasida; Piroplasmida

0.861 3.26E-03 — —

Viruses; dsDNA viruses, no RNA stage;
Herpesvirales; Herpesviridae;
Gammaherpesvirinae

Bacteria; Proteobacteria; Gammaproteo-
bacteria; Thiotrichales; Thiotrichaceae

0.853 4.20E-03 — —

Viruses; dsDNA viruses, no RNA stage;
Phycodnaviridae

Bacteria; Proteobacteria; Gammaproteo-
bacteria; Alteromonadales; Alteromona-
dales genera incertae sedis

0.838 6.30E-03 — —

Viruses; dsRNA viruses; Reoviridae;
Sedoreovirinae; Mimoreovirus

Eukaryota; Metazoa; Chordata; Craniata 0.834 6.98E-03 — —

Viruses; dsDNA viruses, no RNA stage;
Herpesvirales; Herpesviridae;
Gammaherpesvirinae

Bacteria; Chloroflexi; Thermomicrobiales;
Thermomicrobiaceae; Thermomicrobium

0.830 7.61E-03 — —

Viruses; dsDNA viruses, no RNA stage;
Herpesvirales; Herpesviridae;
Gammaherpesvirinae

Bacteria; Proteobacteria; Magnetococcus 0.825 8.53E-03 — —

Viruses; dsDNA viruses, no RNA stage;
Phycodnaviridae; unclassified
Phycodnaviridae

Eukaryota; Viridiplantae; Chlorophyta;
Prasinophyceae; Mamiellales

0.821 9.36E-03 — —

Viruses; dsDNA viruses, no RNA stage;
Herpesvirales; Herpesviridae;
Gammaherpesvirinae

Bacteria; Acidobacteria; Solibacteres;
Solibacterales; Solibacteraceae

0.820 9.51E-03 — —

Viruses; dsDNA viruses, no RNA stage;
Herpesvirales; Herpesviridae;
Gammaherpesvirinae

Bacteria; Proteobacteria; Deltaproteobac-
teria; Desulfobacterales;
Desulfobacteraceae

0.820 9.51E-03 — —

Viruses; dsDNA viruses, no RNA stage;
Caudovirales; Myoviridae; T4-like viruses

Bacteria; Cyanobacteria; environmental
samples

0.819 9.71E-03 — —

Viruses; dsDNA viruses, no RNA stage;
Caudovirales; Podoviridae;
Autographivirinae

Bacteria; Cyanobacteria; environmental
samples

0.817 1.02E-02 — —

Viruses; dsDNA viruses, no RNA stage Eukaryota; Alveolata; Ciliophora;
Intramacronucleata; Spirotrichea

0.803 1.36E-02 — —

Viruses; dsDNA viruses, no RNA stage;
Caudovirales; Podoviridae; N4-like viruses

Bacteria; Firmicutes; Clostridia;
Clostridiales; Peptococcaceae

0.802 1.38E-02 — —

Viruses; dsDNA viruses, no RNA stage;
Caudovirales

Eukaryota; Alveolata; Apicomplexa;
Aconoidasida; Piroplasmida

0.802 1.39E-02 — —

Viruses; dsDNA viruses, no RNA stage;
Viruses; dsDNA viruses, no RNA stage;
unclassified dsDNA viruses

Bacteria; Proteobacteria; Alphaproteo-
bacteria; Rickettsiales; SAR11 cluster

0.801 1.39E-02 — —

Viruses; dsDNA viruses, no RNA stage;
Phycodnaviridae; Phaeovirus

Eukaryota; stramenopiles; Actinophryi-
dae; Actinophrys

0.801 1.39E-02 — —

Viruses; dsDNA viruses, no RNA stage;
Phycodnaviridae; unclassified
Phycodnaviridae

Eukaryota; Viridiplantae; Chlorophyta;
Prasinophyceae; environmental samples

0.800 1.42E-02 — —

Mutual exclusion
Viruses; dsDNA viruses, no RNA stage;
Caudovirales; Myoviridae; phiKZ-like
viruses

Eukaryota; Euglenozoa; Kinetoplastida;
Trypanosomatidae; Leishmania

�0.742 3.32E-02 —0.804 1.72E-02

Viruses; dsDNA viruses, no RNA stage;
Iridoviridae; Ranavirus

Bacteria; candidate division OP8;
environmental samples

�0.751 2.95E-02 � 0.695 3.83E-02

Viruses; dsDNA viruses, no RNA stage;
Caudovirales; Myoviridae; phiKZ-like
viruses

Eukaryota; Rhodophyta; Bangiophyceae;
Cyanidiales; Cyanidiaceae

— — � 0.659 2.95E-02

Viruses; dsDNA viruses, no RNA stage;
Caudovirales; Myoviridae; phiKZ-like
viruses

Bacteria; Spirochaetes; Spirochaetales;
Spirochaetaceae

— — � 0.715 3.95E-02

Abbreviation: dsDNA, double-stranded DNA.
Statistical significance of taxon associations was assessed by two methods. r (Spearman’s correlation coefficient) and q (false discovery rate) were
calculated by the first method and r’ (Spearman’s correlation coefficient) and q’ (false discovery rate) were calculated by a more stringent second
method. See Materials and methods for details.
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nodes. Thirty-five reads were assigned to the
Megaviridae node (31 reads similar to D5 family-
predicted DNA helicase/primase sequences
(De Silva et al., 2007); 4 reads similar to collagen-
like proteins), while 19 reads were assigned to the

oomycetes node (homologous to 12 different pro-
teins; Supplementary Table S4). A much larger
number of reads were, in fact, assigned to lower
taxonomic levels, such as 721 reads assigned to the
Mimivirus genus node (that is, ‘Viruses; dsDNA
viruses, no RNA stage; Mimiviridae; Mimivirus’).
The fact that the majority of the 35 Megaviridae
reads corresponded to D5 family primases may be
explained by their large gene sizes and usually high
sequence conservation (for example, 2880 nt for the
Mimivirus L207/L206), a similar observation having
been made in a previous marine metagenomic study
(Monier et al., 2008b). Consistent with the relatively
high ranks of their taxonomic assignments, the reads
for the Megaviridae and oomycetes nodes were
found to show large divergence from reference
protein sequences. The average BLASTx sequence
identity for the 35 reads against their closest
Megaviridae protein sequences was 50% (ranging
from 28% to 88%), and the average sequence
identity for the 19 reads assigned to ‘oomycetes’
was 58% (30–90%) against their closest known
oomycete protein sequences. Their GþC composi-
tions were significantly different with each other
(35% for Megaviridae and 48% for oomycete reads,
in average; t-test, P¼ 8.5� 10�4) and comparable
with those of their respective reference genomes.

We performed phylogenetic analyses of the 19
reads assigned to the oomycete taxonomic node in an
attempt to obtain better taxonomic resolution.
Despite their short sizes (B100 aa) and large
evolutionary distances from database homologs,
many of these reads appeared related to strameno-
piles (12 out of 19 cases), including six cases showing
distant yet specific relationships to known oomycete
sequences (Supplementary Figures S7-1––S7-12). For
the remaining seven reads, their phylogenetic posi-
tions were rather poorly resolved and showed no
coherent relationship to specific taxonomic groups
(Supplementary Figures S7-13––S7-19). A similar
analysis of the 31 reads (D5 family proteins) assigned
to the Megaviridae node confirmed in most cases
their initial taxonomic annotation (Supplementary
Figure S8), with some of them assigned close to the
root of the viral family. These reads are not closely
related to the sequences from CroV (Megaviridae)
and phaeoviruses (Phycodnaviridae), the only known
NCLDVs parasitizing marine stramenopiles. Phylo-
genetic analysis was not performed for the four
Megaviridae reads similar to collagen-like proteins
due to insufficient quality of sequence alignments.

If this Megaviridae–stramenopile sympatry
revealed by metagenomics reflected an intimate
biological interaction (for example, virus–host), we
reasoned that an increased rate of genetic exchange
might be observable between these organisms.
Detection of HGTs between extant genomes of these
organisms would thus provide strong independent
support for the predicted co-occurrence. We there-
fore undertook a systematic screening of all publicly
available Megaviridae and cellular sequences for
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Figure 6 Taxon associations inferred from co-occurrence analy-
sis. (a) Distribution of P-values for Spearman’s correlation
coefficients for taxon associations observed in the TOP meta-
genomic data. Colored (red and green) areas of the histogram
represent taxon pairs showing statistically significant correla-
tions. The position of the P-value for the hypothetical positive
association between the ‘Megaviridae’ and ‘oomycetes’ taxonomic
groups is indicated by a red triangle. (b) Correlated occurrence of
454 reads taxonomically assigned to the ‘Megaviridae’ and the
‘oomycetes’ groups by the BLAST-based 2bLCA method. Each dot
corresponds to one of the 17 TOP samples analyzed. Axes
represent the density of these reads (number of reads per Mbp) for
each of the ‘Megaviridae’ and the ‘oomycetes’ groups.
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hints of potential HGTs. A first reciprocal BLAST best
hit search identified 31 candidate HGTs between
Megaviridae and cellular organisms (Supplementary
Table S5). Surprisingly, the most frequent cellular
partner happened to be from the oomycete lineage
(six genes). Phylogenetic tree inference provided
further evidence that the six genes were likely bona
fide HGTs (Figure 7 and Supplementary Figure S9).
These are a hypothetical protein with a von Will-
ebrand factor type A domain and an in-between ring
fingers domain, a putative fatty acid hydroxylase, a
hypothetical protein of unknown function, a putative
phosphatidylinositol kinase, a putative fucosyltrans-
ferase and a putative RNA methylase (S-adenosyl-L-
methionine-dependent methyltransferase). For four
of these six cases, the monophyletic grouping of the
Megaviridae and oomycete sequences was supported
by a very high bootstrap value (497%).

Discussion

In the late 1970s, Torrella and Morita (1979)
revealed unexpected high viral concentrations in

aquatic environments using electron microscopy
(Bergh et al., 1989). Proctor and Fuhrman (1990)
then discovered that viruses were quantitatively
important components of marine food webs through
the observation of numerous bacteria visibly
infected by viruses. Ever since these pioneering
works, a large body of research continuously
revealed the fascinating ecological and evolutionary
functions of viruses, including NCLDVs in marine
environments (Wilson et al., 2005; Sullivan et al.,
2006; Frada et al., 2008; Nagasaki, 2008; Moreau
et al., 2010; Danovaro et al., 2011; Breitbart, 2012).

The abundance of NCLDV genomes was found
to be in the range from 4� 103 to 1.7� 105 geno-
mes ml�1 for the TOP photic layer samples. Our
indirect metagenomic estimate of virus abundance
is likely to be affected in two opposite ways:
overestimation, for instance, due to actively repli-
cating viral genomic DNA in infected small eukar-
yotic cells, and underestimation due to smaller or
larger virion particles not being captured by our size
fractionation or reduced efficiency of DNA extrac-
tion for encapsidated genomes. In fact, a substantial
proportion of prasinovirus OtV particles (B120 nm

Oomycetes

Megaviridae

Fungi

 Trichophyton tonsurans {Ascomycota; GI 326470413}
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 Aspergillus flavus {Ascomycota; GI 238507261}

 Chaetomium thermophilum {Ascomycota; GI 340915059}
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 Glomerella graminicola {Ascomycota; GI 310795940}
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 Saprolegnia parasitica {PRG 03092}
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in diameter) cannot be retained on the 0.2-mm
membrane (Grimsley and Clerissi, data not shown).
Furthermore, underestimation was likely to be
compounded by the fact that most NCLDV-infected
cells are 41.6 mm and thus were excluded from our
size fraction. Filtration efficiency is another pitfall
of quantitative estimates. Size of retained microbes
may vary during pre- and retention filtration
(progressively excluding smaller infected cells and
retaining smaller NCLDVs than the filter’s nominal
pore sizes), though we rarely encountered filter
clogging for the samples analyzed in this study.
Regarding our experimental measurements, we used
well-established methods for prokaryotic cell counts
(FC and epifluorescence microscopy), which distin-
guish cells from many viruses, including marine
NCLDVs (Jacquet et al., 2002). Yet, we cannot
exclude the possibility of the existence of cell-sized
(and -shaped) marine viruses that could not be
discriminated from cells by these methods. Our
metagenomic based ratio of NCLDVs to prokaryotes
(o5%) then suggests that the resulting prokaryote
overestimation (due to contaminated large viruses)
could be 5% at most. Therefore, our estimate should
be considered a first approximation for genome
abundance of core gene containing NCLDVs in the
analyzed size fraction. An early metagenomic survey
showed that only 0.02% of the total predicted
proteins from the GOS metagenomes corresponded
to Mimivirus homologs (Williamson et al., 2008).
Such a small proportion cannot be directly com-
pared with the higher genome abundance estimate
we obtained in this study (that is, 10% of bacterial
genomes in the GOS data), as gene abundance
estimates are heavily dependent on genome diver-
sity and the availability of reference genomes. We
consider that our marker gene-based approach is
rather suitable to quantify the abundance of NCLDV
genomes, given the limited number of sequenced
NCLDV genomes and the large genomic diversity
observed even within a single family of NCLDVs.
The abundance of eukaryotic organisms (mainly
unicellular) in marine microbial assemblages is
typically three orders of magnitude lower than that
of prokaryotes (Suttle, 2007; Massana, 2011). In the
euphotic zone of the Sargasso Sea, phototrophic/
heterotrophic nanoplankton (2–20 mm) and photo-
trophic/heterotrophic microplankton (20–200 mm)
were found to amount to only 0.3% of bacterial
abundance (Caron et al., 1995). Therefore, the
predicted NCLDV genome abundance by the present
study suggests that NCLDVs equal or even out-
number eukaryotic organisms in the photic layer of
the sea. In other words, our suggested NCLDV/
eukaryote ratio is not unlike the ratio of phage/
bacteria in seawater (Suttle, 2007). Whole-genome
amplification and sequencing of single microbial
cells/viruses is becoming a powerful tool in reveal-
ing genomic contents of environmental uncultivated
microorganisms (Allen et al., 2011; Yoon et al.,
2011). These studies reveal that a substantial

fraction of the unicellular organisms in a population
may be infected by viruses. The estimated relative
genome abundance of NCLDVs (3% and 10% of
bacteria in the TOP and GOS data sets, respectively)
suggests that such single virus genomics approaches
will be helpful in analyzing uncultivated marine
NCLDVs from size-fractioned natural water samples.

The predicted abundance of NCLDV genomes was
found to vary from 104 to 105 genomes ml� 1 for most
of the TOP euphotic samples. Interestingly, the
suggested variation in the abundance of NCLDVs
(at a high taxonomic level) across sampling sites
makes a very sharp contrast with the known and
more remarkable fluctuations (spanning more than
several orders of magnitudes) in the abundance of
specific viral species/strains measured in time series
monitoring (Tomaru et al., 2004). Moreover, our
phylogenetic (Figure 4) and fragment recruitment
analyses (Supplementary Figure S5) indicated that
numerous distinct genotypes exist (for the Megavir-
idae family and the prasinovirus clade) in the
analyzed samples (even within a single sample). It
has been recently suggested (Rodriguez-Brito et al.,
2010) that dominant phage and bacterial taxa in
microbial communities persist over time in stable
ecosystems but their populations fluctuate at the
genotype/strain levels in a manner predictable by
the ‘killing-the-winner’ hypothesis (Winter et al.,
2010). Multiple and perpetual prey–predator inter-
actions and functional redundancy across species/
genotypes may lead to the apparent stability they
observed in the community composition at high
taxonomic levels. A similar mechanism might be
acting on marine NCLDV-host communities. The
relatively stable NCLDV sequence abundance across
geographically distant locations may be caused by
compensating local community changes at low
taxonomic levels, in which diverse NCLDV strains
are involved in the control of specific eukaryotic
host populations.

Isolation of new viruses requires host cultures.
Among known hosts of NCLDVs, amoebas of the
Acanthamoeba genus have been the most efficient
laboratory hosts to isolate new NCLDVs from aquatic
samples (Arslan et al., 2011, Boyer et al., 2009, La
Scola et al., 2010, Thomas et al., 2011). Taxon
association analysis on the TOP data set hinted at an
unexpected sympatric association between Mega-
viridae and stramenopiles possibly distantly related
to oomycetes. The two sets of reads involved in this
correlation showed a clear difference in their GþC
compositions. This rather suggests two distinct
source organisms for these reads. Yet, an alternative
scenario is that they originated from a single
organism (a virus very recently acquiring cellular
genes or a cellular organism with recently integrated
viral genomes). In this case, the taxonomic associa-
tion would not correspond to a direct observation of
the co-occurring organisms but would be a by-
product of very recent genetic exchanges between
Megaviridae and oomycete relatives. However, there
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is no known example of a lysogenic virus of the
Megaviridae family and recent research shows little
evidence for recent HGTs between marine NCLDVs
and eukaryotes (Monier et al., 2007; Derelle et al.,
2008; Moreira and Brochier-Armanet, 2008; Filee
and Chandler, 2010).

Oomycetes are filamentous eukaryotic microor-
ganisms resembling fungi in many aspects of their
biology, but they form a totally distinct phylogenetic
group within the stramenopile (heterokont) super-
group (Richards et al., 2011). Some of them are
devastating crop pathogens, such as Phytophthora
infestans causing late blight of potato (Haas et al.,
2009), but others include pathogens of fishes and
algae, such as the water mold Saprolegnia parasitica
causing diseases in fishes (Kale and Tyler, 2011) and
Eurychasma dicksonii infecting marine brown algae
(Grenville-Briggs et al., 2011). To our knowledge,
there is no report of a giant virus infecting oomy-
cetes. However, other stramenopile lineages include
C. roenbergensis (stramenopiles; Bicosoecida; Cafe-
teriaceae; Cafeteria) and brown algae (stramenopiles;
Phaeophyceae; Ectocarpales), which are hosts of
known NCLDVs (CroV and phaeoviruses). Yet, our
sequence analysis of the predicted Megaviridae
reads indicated that they are not closely related to
the sequences from these viruses. The possible
promiscuity of these two marine dwellers was
further supported by the identification of several
putative HGTs between Megaviridae and oomycete
genomes. Incidentally, some of the analyzed trees
exhibited oomycete homologs near the Phycodnavir-
idae clade (Supplementary Figure S8) and several
fungal homologs adjacent to the Megaviridae/oomy-
cete clade (Figure 7 and Supplementary Figure S9-1).
Multiple gene transfers have been described from
fungi to oomycetes, and the suggestion was made
that they contributed to the evolution of the
pathogenicity of oomycetes (Richards et al., 2011).

We found in the literature an intriguing coin-
cidence in the biogeography of Megaviridae and
oomycetes. Megaviridae was identified as a domi-
nant family of NCLDVs in a sample from a mangrove
forest (Monier et al., 2008a), while 20 years earlier
marine oomycetes (for example, Phytophthora
vesicula) were described as the major decomposers
of mangrove leaves (Newell et al., 1987). Taken
together, these observations lead us to hypothesize
that there is a yet unrecognized close interaction
between Megaviridae and stramenopiles (distantly
related to oomycetes), either as a direct virus/host
couple (Monier et al., 2009) or through co-infection
of a common third partner (Ogata et al., 2006; Boyer
et al., 2009). Limitations in the available genome
data for marine stramenopiles and the scope of the
present TOP data set, which targeted the girus/
prokaryote size fraction, make it difficult to obtain
finer taxonomic resolutions for the potential eukar-
yotic counterpart.

The present work provides a proof of principle
that metagenomic sequence analyses promise to

shed new light on the biodiversity of marine viruses
and their interactions with potential hosts. Larger
sets of environmental sequence data from diverse
locations and different size fractions, such as those
from remaining Tara Oceans samples, will be useful
not only to test our ‘Megaviridae–stramenopile’
hypothesis but also to provide a larger picture of
NCLDV–eukaryote interactions.
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