Recognition of different nucleotide-binding sites in primary structures using a property-pattern approach

Peer BORK and Christian GRUNWALD

Department of Biomathematics, Central Institute of Molecular Biology, Academy of Sciences of German Democratic Republic, Berlin-Buch, German Democratic Republic

(Received March 2, 1990) - EJB 90 0326

Consensus sequence patterns for $\beta \cdot \alpha \cdot \beta$ folds binding FAD, NAD and GTP were constructed on the basis of 11 steric and physicochemical properties. These property patterns permit detection and distinction of the respective nucleotide-binding sites on the basis of amino acid sequence analysis alone. The SWISS-PROT database (release 9) was screened with the three calculated patterns, and nucleotide-binding sites identified are presented. They correspond to existing structure data (if known). For the detected sequence segments we are able to predict the $\beta \cdot \alpha \cdot \beta$ motif as well as the respective binding sites. For some of the proteins so detected a nucleotide-binding capacity has not previously been reported.

Many mononucleotide- and dinucleotide-binding proteins possess a common structural motif although the underlying primary structures vary greatly. Often two neighboring β strands and an antiparallel interconnecting α helix participate in the binding of the ribose moiety of different nucleotides [1]. The evolutionary history of this $\beta - \alpha - \beta$ motif is stil unclear [2]. Whereas for the NAD-binding domain the existence of a common ancestor NAD-binding protein is assumed [3], a convergent development is more likely in the case of ATPbinding sites [4]. Apart from this obvious evolutionary interest, a study of the sequence relationship is of practical importance as well. Nucleotide binding is involved in many metabolic reactions and in central regulatory mechanisms of the cell. Furthermore, the nucleotide-binding properties of several oncogene products have stimulated the interest in the relationship between primary structure and the β - α - β motif. Many papers have therefore dealt with recognition and prediction of nucleotide-binding sites. In most cases such studies have focussed on preservation of amino acid patterns in the nucleotide-ribose-binding loop [5-9] between βa and αb (for nomenclature see [1]). Wierenga and Hol [10] included hydrophobic properties of the interacting secondary structures into their predictions. This hydropathy pattern has been further refined [11-13]. But steric and other structural properties of amino acids may also contribute to the functional and structural features of the β - α - β motif.

The recognition and prediction of nucleotide-binding sites is a suitable application for our pattern-search algorithm based on steric and physicochemical properties [14] (for a review of pattern-search methods see [15]). Our program PAT [14] tested on many examples [16] calculates consensus patterns of steric and physicochemical properties from a master set of aligned sequence segments and subsequently screens protein-sequence databases. By including known interactions within the β - α - β folds and the functional requirements of nucleotide binding it has been possible to discriminate the different binding sites of FAD, NAD and GTP on the basis of information of the primary structure alone.

MATERIALS AND METHODS

Each amino acid is represented by a vector of steric and physicochemical properties, either present or absent. The property set proposed by Taylor [17] was taken from Zvelebil et al. [18]. Because of some special features, glycine as well as proline have each been treated as a 'property'. The vector of each amino acid contains 11 properties (Fig. 1). There are also vectors standing for an undefined amino acid and for a gap. The program PAT analyzes the master set, position by position, and evaluates whether a considered property is present 'always' (1) or 'never' (0) or 'sometimes' (dot) (Fig. 2). This leads to vectors of 1's, 0's and dots characterizing the property pattern in each sequence position. These vectors are compatible with sets of amino acids (Fig. 2) according to their property vectors. It may seem to be a complicated way to calculate a pattern, but for predictive use it has the advantage, that similar amino acids which are not in the master set nevertheless belong to the property pattern.

Database screening

The basis of database search may be the different sets of amino acids (for this task many programs exist) or the property pattern itself (Fig. 2). Because of additional weighting possibilities (not used here) PAT directly compares the property pattern with all possible subsequences of all entries in the database. Any amino acid is called compatible with the pattern, if its property vector contains all properties that have to be 'always' present and no property that has to be 'never'

Correspondence to P. Bork, Academy of Sciences of German Democratic Republic, Central Institute of Molecular Biology, Department of Biomathematics, Robert-Rössle-Straße 10, Berlin, GDR 1115

Enzymes. Alcohol dehydrogenase (EC 1.1.1.1); glucose dehydrogenase (EC 1.1.1.47); glutathione reductase (EC 1.6.4.2); lipoamide dehydrogenase (EC 1.8.1.4); malate dehydrogenase (EC 1.1.1.37); mercuric reductase (EC 1.16.1.1); NADH dehydrogenase (EC 1.6.99.3); phosphoribosyl aminoimidazole carboxylase (EC 4.1.1.21); ribitol dehydrogenase (EC 1.1.1.56); tryptophan 2-monooxygenase (EC 1.13.12.3); UDP-glucose epimerase (EC 5.1.3.2).

ASR

Hyd Pos Neg Pol Chr Sml Tin Ali Aro Pro Gly

structure

1	Ala A	1	0	0	0	0	ı	1	0	0	0	0
2	Суъ С	1	0	0	0	0	1	0	0	0	0	0
з	Asp D	0	0	1	1	1	1	0	٥	0	0	0
4	Glu E	0	0	1	1	1	0	٥	٥	٥	0	0
5	Phe F	1	0	0	0	0	0	0	0	1	0	0
6	Gly G	1	0	0	0	0	1	1	0	0	0	1
7	His H	1	1	0	1	1	0	0	0	1	0	0
8	Ile I	1	o	0	0	0	0	0	1	0	0	0
9	Lys K	1	1	0	1	1	0	0	0	0	0	0
10	Leu L	1	0	0	o	0	0	0	1	0	0	0
11	Met M	1	0	0	0	0	0	0	0	0	0	0
12	Asn N	0	0	0	1	0	1	0	0	0	0	0
13	Pro P	0	0	0	0	0	1	Q	0	0	1	0
14	Gln Q	0	0	0	1	0	0	0	0	0	0	0
15	Arg R	0	1	0	1	1	0	0	0	0	0	0
16	Ser S	0	0	0	1	0	1	1	0	0	0	0
17	ĩhr T	1	0	0	1	0	1	0	0	0	0	٥
18	Val V	1	0	0	0	0	1	0	1	0	0	0
19	ĭrp ₩	1	0	0	1	0	0	0	0	1	0	0
20	Tyr Y	1	0	o	1	0	0	0	0	1	0	0
21	Asx B	0	0	0	1	0	0	٥	0	0	0	0
22	? X	1	1	1	1	1	1	1	1	1	1	1
23	Gl× Z	0	0	0	1	0	0	0	0	0	0	0

Fig. 1. The properties of amino acids used in this approach. Hyd, hydrophobic; Pos, positive charge; Neg, negative charge; Pol, polar; Chr, charge; Ali, aliphathic; Sml, small; Tin, tiny; Aro, aromatic; Pro, proline; Gly, glycine. An amino acid either possesses the property (1) or not (0) (for details see [14, 18])

present. 'Dot' places in the pattern are considered to be neutral. If an amino acid is not compatible with the property pattern, a mismatch is recorded. The number of allowed mismatches can be specified. For details including the search for several motifs see [14].

Construction of property patterns for nucleotide-binding sites

Several general properties of the nucleotide-binding β - α - β folds were included in the calculation of all property patterns. (a) In the nucleotide-ribose-binding loop between the βa strand and the αb helix a pattern of tiny amino acids is typical (see the region of the two conserved glycines in Fig. 2), because more bulky side chains would interfere with the effect of the α b dipole moment upon the ligand [19, 20] and would fail to

structure	երբթ	aaaaaaaaaaaaa	ьррр
remark	!	!	***
hydrophobic	.11111.1		.0.11.1.
pos.charge	.0000000		.0.00000.
neg.charge	.0000000	0.000.000.00.00	
polar	1.0000.0		10.1
charge	.0000000		000001
small	111	1.1	.1
tiny	000111	100.	
aliphatic	011000		.00010
aromatic	.0000000	0000.0000.0.	.0.00.00000
proline	0000000	.000000000000	0.000.00.00
glycine	000001.1		.0000000.00
corresponding permissible	DIAAIGA	JAAACAAAAAAADA	ADHAACAAAID
amino acids:	ELCCL G	CCGICCCCCCEC	CNKCCDCCCLE
	HVIIV S	GG LDIGFDIFKF	DPNMIEIIGVK
	KWLL	NI MGLIGELGNH	ESQTKFLLIWR
	NYMM	PL TIMLIFMHQI	F-R-LHMMLY
	Q VV	SM VKNMLHVIRK	G T MINTM
	R	TN WLONMI K L	H - NKOVP
	т	Q YMSQNK L M	I QLSWV
		S NTSOL M N	
		T QVTSM T G	IL SNV
		V RWVTN V F	M TPW
		W SYWVD W S	SN WQY
		Y TYWRY	ra yr
		V YS	VR T
		ωт	ws v
		γV	YT W
		W	V Y
		Y	W
			Y

Fig. 2. Property pattern for FAD-binding sites. In the remark line the sign '!' means that at this position the amino acid is obligatory (mismatch forbidden) and '*' marks positions where deletions are allowed. The specified properties occur 'always' (1), 'never' (0) or 'sometimes' (.) in the respective positions. In the lower part of the figure all those amino acids have been inserted which are compatible with the pattern in the pertinent position. For example aspartate (D) is compatible at the first place of the pattern, because it is polar and neither tiny, nor aliphatic, nor glycine, nor proline. The dot places are not evaluated, because they stand for non-obligatory properties. The longer the 'tail' of permissible amino acids, the less the corresponding position is specified by the property vector. Amino acids compatible with the pattern may or may not have been present in the master set; pos, positive; neg., negative

meet steric requirements (see e. g. [21]). (b) The two interacting β strands are highly hydrophobic [22], because they are located in the core of a β sheet, or are otherwise shielded against the protein surface (positions in both β strands are therefore mostly hydrophobic in Fig. 2). (c) In order to interact with the two β strands, the α helix must have a hydrophobic moment [23] which implies a particular hydrophobicity pattern in the sequence [24] (see the α helix in Fig. 2). (d) The side chain of the last residue in the second β strand forms a stable bond with the nucleotide-ribose moiety [12] and therefore has

structure	56666	aaaaaaaaaa aaaa	ррррр
remark	* ! *!		****
hydrophob.	.1111.11	.1111	1.1.0
pos.charged	.000000000	.0000.000.	
neg.charged	0000000000	0000.0000.0.	
polar	100.0.00	.000	0.0.1
charged	.000000000	.00000	0.001
small	1.11	1	
tiny	.00.0.1.11	1	
aliphatic	.11.0.00		
aromatic	000.0.0.00	.00000000	
proline	00000.0000		
glycine	000.0011	.0.0.0000.0.0	

Fig. 3. *Property pattern of NAD-binding sites.* The symbols are the same as in Fig. 2. Most conserved are the glycines in the ADP-ribose binding loop (marked with '!'). The second loop without a role in nucleotide binding may vary to a much greater extent (many insertions may occur). Hydrophob., hydrophobic

to be polar (last position in Fig. 2). (e) The loop between the αb helix and the βb strand is turned away from the binding site, and its length can be expected to vary (in the pattern such positions are marked by '*'). The relationship outlined under (a) – (e) have been included and appear in corresponding positions in the consensus property patterns (Figs 2–4 and Appendix).

Property pattern of FAD-binding sites

The pattern of FAD-binding sites is based on an alignment of five known FAD-binding sites using simularities with glutathione reductase, whose structure has been determined (see Table 2 in [6]). Some possible insertions in the region between the helix and the second β strand (β b) were taken into account. In a second step some closely related enzymes from other species were included. PAT calculated the consensus pattern in Fig. 2.

Property pattern of NAD-binding sites

The structure of several NAD-dependent dehydrogenases is known (see Protein Structure Data Bank [25]). Since the primary structures of closely related enzymes from other species is available, a good initial alignment of 30 binding sites could be established. An insertion was permitted (Fig. 3) within the well-known GXGXXG/A amino acid pattern of the nucleotide-ribose-binding loop (cf. alcohol dehydrogenases of yeast). NADP-binding sites do not always form a β - α - β fold. For instance, only one of the two NADP-binding sites of dihydrofolate reductase possesses a β - α - β -like structure. Because of this uncertainty, no separate pattern was constructed for NADP.

Property pattern of GTP-binding sites

The structure of some GTP binding sites is known [26–28]. The specific nucleotide-ribose-binding loop exhibits a G/

structure	pppp	3 3333333333 333		
remark			!	11
hydrophob.	.11111	.11.1111	1.1101.1	1101
pos.charged	.000000	.01000000.00.	0000000	0001.0
neg.charged	000000.0.	00000000000	0.0.00.00000	0000
polar	1.0.00	.0110	101	0011.1
charged	.00000	.0100000	00.000	0001
small	1	.10110	11.1	10
tiny	00.001	.10000.0	0.00010	00.0
aliphatic	0100.0	.0000	0.000.0	
aromatic	0.0.00.00	.0000000000000	0000.00.00	.000000.
proline	000000000	00000000000000.0.00	0000000.000000	0000000.
glycine	00.00	0100000.000000	.0000000.1000000	000000

Fig. 4. Property pattern of GTP-binding sites. The symbols are the same as in Fig. 2. The first sequence segment forms a β - α motif (the second β -strand does not necessarily lie in the segment), the second sequence segment is a magnesium-binding site, and the third a turn specific for guanidine fixation

Fig. 5. A cumulative representation of the number of detected sequence segments, depending on the number of permissible mismatches. The 'total' number of respective binding sites denoted in the SWISS-PROT is also shown. \Box Binding sites as looked for. \blacksquare Binding sites with similar function to those looked for (for example, a FAD-binding site detected by the NAD pattern or a ATP-binding site detected by the GTP-binding pattern). \blacksquare Nucleotide-binding β - α - β motifs in general. \blacksquare Proteins whose nucleotide-binding capacity has not been reported so far. A β - α - β motif is conceivable. \blacksquare Sequence sections with different folding patterns, without nucleotide binding. The thresholds (T1-T3) were chosen to allow searches with different degrees of relatedness to the sites looked for. The most stringent criterion (threshold 1, up to T1 mismatches) was found to exclude any type of binding site other than that looked for. Threshold 2 (up to T2 mismatches) was found to detect already similar functions (for instance dinucleotides) and the β - α - β fold. Threshold 3 (up to T3 mismatches) was found to tolerate additional β - α - β motifs performing binding of even less related nucleotides. For all thresholds no sequence section with known different folding pattern was found

AXXXXGK pattern [29]. Since this is not yet sufficient for a distinctive recognition, we included also the conserved magnesium-binding site and a turn region specific for guanine fixation [27-29] into the pattern calculation (Fig. 4). The master set containing 25 sequences was taken from Table 1 of [30].

Tubulins seem to have a different GTP-binding mode. The conserved guanine-ribose-binding loop contains the consensus pattern GGGXGXG [7]. Such binding sites have been excluded from the master set.

ATP-binding sites are considerably more flexible in their structure than GTP-binding sites. In numerous primary structures of ATP-binding proteins we could determine only one glycine as a common essential constituent of the ribose-binding loop. A universal pattern for distinctive recognition of ATP-binding sites has not been found. For instance, some protein superfamilies contain the so-called Walker motif [5], the protein kinases have a motif similar to dinucleotide-binding proteins [30-32], at least the cation-dependent ATPases show a different pattern in their nucleotide-ribose-binding loop [33], and within the tRNA-synthetase family this loop exists in many variants [9].

RESULTS

The three property patterns for FAD, NAD, GTP (Figs 2-4) were used to search matching sequences in the SWISS-PROT database ([30], release 9.0). Sequence segments showing a match were studied in detail to determine whether the segment was really an expected site as predicted by the pattern. Fig. 5 shows the statistics of predictions. Permitting some mismatches functionally and structurally, related regions were also recognized.

By defining optimal thresholds (Fig. 5) we may separate 'wanted' from 'unwanted' samples of segments. The quality of prediction may be assessed by the number of false positives (i.e. sites predicted for a pattern, but in fact not belonging to that class) and by the number of false negatives (i.e. sites not found by the pattern).

FAD-binding sites

SWISS-PROT keyword lines list 29 proteins as 'Fas-binding'; we found 14 of them with threshold T1 (0 or one mismatch), see Fig. 5. A less stringent search (up to five mismatches) did not identify additional FAD-binding proteins (Fig. 6) but recognized NAD-binding sites (see threshold T2 in Fig. 5) and other $\beta - \alpha - \beta$ motifs. In most of the FAD-binding proteins not detected FAD is covalently bound. They may have a different structure.

Binding sites for FAD and NAD(P) are well distinguished even when they coexist in one molecule. They are apparently closely related by evolutionary descent, as are those of e.g. glutathione reductase (GHSR\$HUMAN, GHSR\$ECOLI), lipoamide dehydrogenase (POD3\$PSEPU, PYD3\$ECOLI) and NADH dehydrogenase (DUNA\$ECOLI) (see Fig. 6 and Appendix I).

NAD-binding sites

The database includes 117 NAD-binding proteins (excluding membrane-resident proteins of the electron-transport chains, being apparently unrelated to our master set of NADbinding proteins). The pattern search detects 90 of them, together with a number of NADP-binding sites (with a $\beta - \alpha - \beta$ fold). With less than three mismatches only a small number

code	protein (broad class)	pos	mis	[aB][bA][bB]	nucl.
ALOX\$HANPO =	alcohol oxidase	8	0	DIIVVGGGSTGCCIAGRLANLDDQNLTVALIE	FAD
DHNA\$ECOLI =	NADH dehydrogenase	171	٥	NIAIVGGGATGVELSAELHNAV-KQLHSYGYK	(FAD?)
MERA\$NEUCR =	mercuric reductase	99	٥	HIAVIGSGGAAMAAALKAVEQGARVTLIE	FAD
MERA\$PSEAE =	:	100	0	QVAVIGSGGAAMAAALKAVEQGAQVTLIE	FAD
MERA\$SHIFL =	:	99	0	HIAVIGSGGAAMAAALKAVEDGARVTLIE	FAD
PHHY\$PSEFL =	p-hydroxybenzoate hydroxylase	4	0	QVAIIGAGPSGLLLGQLLHKAG1DNVILE	FAD
PYD3\$ECOLI =	lipoamide dehydrogenase	7	0	QVVVLGAGPAGYSAAFRCADLGLETVIVE	FAD
ADRO\$BOVIN =	NADPH:adrenodoxin oxidoreductase	40	1	QICVVGSGPAGFYTAQHLLKHHSR-AHVdIYE	FAD
FRDA\$ECOLI =	fumarate reductase	7	1	DLAIVGAGGAGLRAAIAAAQANPNAKIALIsK	FAD
GSHR\$ECOLI ≃	gluthathione reductase	6	1	DYIAIGGGSGGIASINRAAmYGQKCALIE	FAD
GSHR\$HUMAN =	:	22	1	DYLVIGGGSGGLASArRAAELGARAAVVE	FAD
MERA\$STAAU =	mercuric reductase	87	1	DLLIIGSGGAAFSAAIKAnENGAKVAMVE	FAD
OXDA\$PIG =	D-amino acid oxidase	2	1	RVVVIGAGVIGLSTALCIHERY-H-SVLqPLD	FAD
POD3\$PSEPU =	lipoamide dehydrogenase	8	1	tLLIIGG6P66YVAAIRA6QLGIPTVLVE	FAD
TR2M\$PSESY =	t⊬yptophan 2-monooxygenase	40	2	RVAIVGAGISGLVAATELLRAGvKDVVLYE	? (1)
BEN4\$PSEPU =	benzene degratation system	145	3	RLLIVGGG1IGCEVATTArKLGLsVTILE	? (2)
DHLO\$AGRT4 ≍	lysopine dehydrogenase	3	3	KVAILGAGNVALTLAGDLARRLgQVSsIWa	NAD
DHSO\$SHEEP =	sorbitol dehydrogenase	172	3	KVLVcGAGPIGLVNLLAAKaMG~-AAQVVVtD	NAD
P49\$STRLI =	P49 protein	3	3	DavvvGAGPNGLTAAVELARRGfPVAVfE	? (3)
TDH\$ECOLI ≅	threonine 3-dehydrogenase	166	3	DVLVsGAGPIGIMAAAVAKhVGARNVVItD	NAD
YNIZ\$METTH =	hypothetical nif protein	2	3	KIVVVGGGTSGLLSALALeKeGhDVLVLE	? (4)
Y21K\$ECOLI =	hypothetical 21K protein	е	3	DVIIIGGGhAGtEAAMAAARMGOQTLLLt	? (5)
GDHA\$NEUCR =	glutamate dehydrogenase	221	4	RVALSGSGNVAqYAALKLIELGATVVSLSD	NADP
GSHR\$HUMAN =	gluthathione reductase	189	4	RsVIVGAGyIAVEMAGILsaLGSKTSLMIR	NAD(P)
LDH\$BACST =	actate dehydrogenase	8	4	RVVVIGAGfVGaSYVFALMNQG-iAdEIVLID	NAD
PNTA\$ECOLI =	pyr. nucleotide transhydrogenase	166	4	KVMVIGAGVAGLAAIGAAnsLGAIVrAfD	NAD
POD3\$PSEPU =	lipoamide dehydrogenase	174	4	HLVVVGGGyIGLELGIAyrKLGAQVsVVE	NAD
PUR6\$ECOLI =	phos.rib.aminoimidazol carboxylase	64	4	QVIIaGAGGAAhLpGMIAAKTLVPVLGVp	? (6)
TR2M\$AGRT4 =	tryptophan 2-monooxygenase	238	4	KVAVIGAGiSGLVVANELLHAGvdDVTIYE	? (7)

Fig. 6. Screening result for the FAD pattern. First column, SWISS-PROT codes; second column, position of the sequence segment; third column, number of mismatches, fourth column, alignment of detected sequence segments as one letter code (amino acids not compatible with the pattern are in lower case; fifth column, nucleotide bound (for those in parentheses binding is not certain). The β strands are denoted by [β a] or [β b], the α b helix by [α b]. Remarks. (1) and (7), tryptophan 2-monoxygenases were also detected with the NAD pattern (see Appendix I). (2) This enzyme is involved in benzene degradation, a dinucleotide as hydrogen acceptor is conceivable. (3), (4) and (5) Hypothetical proteins. (6) This phosphoribosyl aminoimidazole carboxylase is involved in purine synthesis

of false positives was found (Fig. 5 and Apendix I). They all correspond to a β - α - β motif.

GTP-binding sites

Apart from tubulins, a total of 82 proteins are labeled as 'GTP binding' in the database. By comparison with our property pattern we found 67 of them (Fig. 5, for details see Appendix II). Nearly all of the remaining 15 sequences belong to the protein family of the so-called 'negative factors'.

The pattern G/AXXXXGK expected for the guanineribose-binding loop [29] is confirmed by our results. Already the β - α - β motif excludes nearly all other functionally unrelated sequence segments. In this step of database search many ATPbinding β - α - β folds were also detected. The second and third motif of the pattern (Fig. 4) discriminated clearly the otherwise very similar binding sites for GTP from those for ATP. Other GTP-binding proteins, not yet contained in SWISS-PROT (release 9.0), do match the property pattern. In proteins without a GTP-binding property at least five mismatches were noted (thresholds T1 in Fig. 5).

DISCUSSION

Our strategy is based on the obligatory presence or absence of amino acid properties (Fig. 1) at a position defined by a set of aligned master specimens. This is a plausible and simple heuristic rule wich does not require complicated score calculations.

Our results document satisfactory identification and discrimination of nucleotide-binding sites. A stringent search (up to threshold T1 in Fig. 5) lists only sites looked for (with a risk of false negatives, i.e. overlooked sites). A more relaxed criterion eliminates nearly all false negatives (at the risk of false positives, i.e. the related NAD-binding sites appear during a search for the FAD motif), whereas the loosest criterion finds nucleotide-binding β - α - β folds in general, and excludes structures to a satisfactory degree (threshold T3 in Fig. 5).

Thus mononucleotide- and dinucleotide-binding sites could be clearly distinguished. ATP-binding sites are not found by a property-pattern search for GTP-binding motifs, showing the importance of the second and third motif. The FAD pattern does not recognize the closely related NAD-bindng sites, even when both occur in one protein. Strong position-dependent differences between the two sites were not found, but the FAD motif has a more stringent set of properties (only relatively few 'dots'; compare Figs 2 and 3). In the FADbinding site no insertion was observed in the adenine-ribosebinding loop and at least five of the six amino acids in this region have to be tiny. Flavin, being more bulky than the nicotinamide of NAD, may restrict the variability of the FADbinding site. More sequences are needed to verify this conclusion.

The adenine-ribose-binding loop between the β a strand and the α b helix also represents the most stringent criterion in the NAD-binding sites (Fig. 3). Tiny amino acids (t) were found at the only permissible insertion locus of the binding loop (GXtGXXG/A). In this case, nearly all the amino acids of the loop have to be tiny (GttGtXG/A). Ribitol dehydrogenase and glucose dehydrogenase contain a similar pattern in their potential nucleotide-ribose-binding loop: GttXGXG [34], as do the GTP-binding tubuline.

Only some NADP-binding sites were detected by the NAD pattern. We suspect that the additional phosphate group of

NADP increases the flexibility of the motif. Thus, in the NADP-binding site of several mercuric reductases the second glycine in the adenine-ribose-binding loop, presupposed to be essential in NAD-binding sites (in Fig. 3 both glycines are marked by '!'), is replaced by histidine. The third important glycine of the NAD motif is replaced by alanine in NADP-binding sites [35, 36], but specific NAD-bindig sites may likewise have an alanine, as do certain FAD-binding motifs, like mercuric reductases. Nevertheless, this alanine seems to be one of the key residues in the distinction between NAD- and NADP-binding sites [36].

Distinction of binding sites as described here is impossible with patterns in which only one amino acid appears in one position [37], even by allowing for conservative exchange. Obviously, it is the conservation of obligatory steric and physicochemical properties to which our method is tailored. The nucleotide-binding sites found with the property patterns are in accordance with structural data (where available).

Furthermore, we are able to predict nucleotide-binding sites in hitherto unstudied sequences with the mismatch threshold chosen (Fig. 5). We have found a number of binding sites that were not labeled in the database, i.e. a NAD-binding site on an enzyme involved in benzene degradation (BEN4\$-PSEPU). UDP-glucose epimerase (GALX\$SACCA), detected without deviation from the NAD pattern is not labeled, but indeed has NAD as a cofactor. We were further compelled to conclude that one dinucleotide-binding site is present in tryptophan 2-monooxygenases (TR2M\$PSESY, TR2M\$-AGRT4) and in the hypothetical protein 21K (Y21K\$ECOLI), because they were detected by both dinucleotide patterns. For the hypothetical P49 protein (P49\$STRLI), the hypothetical *nif* protein (YNI2\$METTH), phosphoribosyl aminoimidazole carboxylase (PUR6\$-ECOLI) and the pentafunctional aromatic polypeptide (ARO1\$ASPNI) we can predict nucleotide-binding sites. (The exact positions and the respective sequence segments are aligned in Fig. 6 and in the Appendix.)

Our method is also useful for sequenced proteins known to bind nucleotide because we are able to predict the exact position of their β - α - β topology (if present). Therefore this determination of functional sites implies prediction of topological elements (in this case the β - α - β motif).

We conclude that NAD, FAD- and GTP-binding sites forming a $\beta - \alpha - \beta$ motif can be detected and classified by our method. We are present studying the same task for other functional sites or domains conserved in their topology.

We thank Prof. J. G. Reich for helpful discussions and critical reading of the manuscript. This work was supported by Prof. W. Pfeil and Dr W. Schöpp.

REFERENCES

- Rossmann, M. G., Liljas, A., Bränden, C.-I. & Banaszak, L. I. (1975) in *The enzymes*, 3rd edn (Boyer, P., ed.) vol. 11, pp. 61– 102, Academic Press, New York.
- McLachlan, A. D. (1987) Cold Spring Harbor Symp. Quant. Biol. 52, 411-420.
- 3. Rossmann, M. G., Moras, D. & Olsen, K. W. (1974) Nature (Lond.) 250, 194-199.
- Fothergill-Gilmore, L. A. (1986) in Multidomain protein structure and evolution (Hardie, D. G. & Coggins, J. R. eds) pp. 85– 174, Elsevier Press.
- Walker, J. E., Saraste, M., Runswick, W. J. & Gay, N. J. (1982) EMBO J. 1, 945-951.

- Rice, D. W., Schulz, G. E. & Guest, J. R. (1984) J. Mol. Biol. 174, 483-496.
- 7. Möller, W. & Amons, R. (1985) FEBS Lett. 186, 1-7.
- Fry, D. C., Kuby, S. A. & Mildvan, A. S. (1986) Proc. Natl Acad. Sci. USA 83, 907-911.
- 9. Webster, T. A., Lathrop, R. H. & Smith, T. F. (1987) *Biochemistry* 26, 6950-6957.
- 10. Wierenga, R. K. & Hol, W. G. J. (1983) Nature (Lond.) 302, 842-844.
- Sternberg, M. J. E. & Taylor, W. R. (1984) FEBS Lett. 175, 387– 392.
- Wierenga, R. K., DeMayer, M. C. H. & Hol, W. G. J. (1985) Biochemistry 24, 1346-1357.
- Wierenga, R. K. & Hol, W. G. J. (1986) J. Mol. Biol. 187, 101 107.
- 14. Bork, P. & Grunwald, C. (1989) Stud. Biophys. 129, 231-240.
- 15. Taylor, W. R. (1988) Protein Eng. 2, 77-86.
- 16. Bork, P. (1989) FEBS Lett. 257, 191-195.
- 17. Taylor, W. R. (1986) J. Mol. Biol. 188, 233-258.
- Zvelebil, M. J., Barton, G. J., Taylor, W. R. & Sternberg, M. J. E. (1987) J. Mol. Biol. 195, 957-961.
- Hol, W. G. J., Van Duijnen, P. T. & Berendsen, H. J. C. (1978) Nature (Lond.) 273, 443-446.
- 20. Hol, W. G. J. (1985) Prog. Biophys. Mol. Biol. 45, 149-195.
- Edwards, M. S., Sternberg, M. J. E. & Thornton, J. M. (1987) Protein Eng. 1, 173-181.
- 22. Lim, V. I. (1974) J. Mol. Biol. 88, 857-872.
- 23. Sweet, R. M. & Eisenberg, D. (1983) J. Mol. Biol. 171, 479-488.

- 24. Palu, J. & Puigdomenech, P. (1974) J. Mol. Biol. 88, 475-469.
- Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rogers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977) *J. Mol. Biol.* 112, 535-542.
- LaCour, T. F. M., Nyborg, J., Thirup, S. & Clark, B. F. C. (1985) EMBO J. 4, 2385-2388.
- 27. Jurnak, F. (1985) Science 230, 32-36.
- Pai, E. F., Kabsch, W., Krengel, U., Holmes, K. C., John, J. & Wittinghofer, A. (1989) *Nature (Lond.)* 341, 209-214.
- Dever, T. E., Glynias, M. J. & Merrick, W. C. (1987) Proc. Natl Acad. Sci. USA 84, 1814–1818.
- 30. Bairoch, A. & Claverie, J. M. (1988) Nature (Lond.) 331, 22.
- 31. Hanks, S. K., Quinn, A. M. & Hunter, T. (1988) Science 241, 42-52.
- 32. Leader, D. P. (1988) Nature (Lond.) 333, 308.
- Taylor, W. R. & Green, N. M. (1989) Eur. J. Biochem. 179, 241– 248.
- 34. Jörnvall, H., van Bahr-Lindström, H., Jung, K. V., Ulmer, W. & Fröschl, M. (1984) FEBS Lett. 165, 190-196.
- Hanukoglu, I. & Gutfinger, T. (1989) Eur. J. Biochem. 180, 479– 484.
- 36. Scrutton, N. S., Berry, A. & Perham, R. N. (1990) *Nature (Lond.)* 343, 38-42.
- 37. Argos, P. & Lebermann, R. (1985) Eur. J. Biochem. 152, 651-656.
- 38. Joh, T., Takeshima, H., Tsuzuki, T., Shimada, K., Tanase, S. & Morino, Y. (1987) *Biochemistry* 26, 2515-2520.

Appendix I. A sample of sequence segments, detected by a search for NAD-binding sites

The symbols are the same as in Fig. 6. All sequence segments, detected with up to two mismatches are shown. Dinucleotide-binding motifs containing three mismatches are also shown. Other proteins that do not have nucleotide-binding sites were also found with three mismatches. (1) Enzyme related to benzene degradation. The existence of a NAD-binding site is probable. (2) Cytosolic malate dehydrogenase of pig [38] was included to support the hypothesis of the variable loop 2 length. (3) Threonine dehydrates may have a different fold. (4) and (5) Tryptophan 2-monooxygenase were also found with the FAD pattern (Fig. 4). A nucleotide-binding site is probable, because the pathway is cofactor dependent. (7) Contact site A protein precursor is unlikely to have a nucleotide-binding site as it is localised on the surface of cell membranes. (6), (8), (9) and (10) Pentafunctional aromatic polypeptide (it has at least one ATP-binding site), α -amylase inhibitor, sporulation protein and hypothetical protein 21K may indeed have a hitherto undescribed nucleotide-binding site

code	protein (broad class) pos	mis	[əB] [bA] [bB]	nucl
ADH\$ARATH	= alcohol dehydrogenase	197	0	S-VAIFGL-GAVGLGAAEGARIAGASRIIGVD	NAD
ADH\$DROMA	= :	8	0	NVIFVAGL-GGIGLDTSKELVKRDLKNLVILD	NAD
ADH\$DROME	= :	В	0	NVIFVAGL-GGIGLDİSKELLKRDLKNLVILD	NAD
ADH\$DROOR	= :	8	o	NVIFVAGL-GGIGLDTSKELVKRDLKNLVILD	NAD
ADH\$DROPS	= :	6	0	NVVFVAGL-GGIGLDTSRELVKRNLKNLVILD	NAD
ADH\$DROSI	- :	8	0	NVIFVAGL-GGIGLDTSKELLKRDLKNLVILD	NAD
ADH\$SCHPD	= ;	175	0	W-ICIPGAGGGLGHLAVQYAKAMAMRVVAID	NAD
ADH1\$DROMU	= ;	6	0	NIIFVAGL-GGIGFDTSREIVKSGPKNLVILD	NAD
ADH1\$HOR∨U	= :	197	0	T-VAIFGL-GAVGLAAAEGARIAGASRIIGVD	NAD
ADH1\$MAIZE	- :	197	o	T-VAVFGL-GAVGLAAAEGARIAGASRIIGVD	NAD
ADH1\$YEAST	= :	172	0	W-VAISGAAGGLGSLAVQYAKAMGYRVLGID	NAD
ADH2\$DROMU	- :	6	0	NIIFVAGL-GGIGFDTSREIVKSGPKNLVILD	NAD
ADH2\$MAIZE	- :	197	0	T-VAIFGL-GAVGLAAMEGARLAGASRIIGVD	NAD
ADH3\$YEAST	- :	200	o	W-VAISGAAGGLGSLAVQYATAMGYRVLGID	NAD

ADHA\$HUMAN	-	1	194	0	T-CAVFGL-GGVGLSAIMGCKAAGAARIIAVD	NAD
ADHA\$MOUSE	-	:	194	0	T-CAVFGL-GGVGLSVIIGCKAAGAARIIAVD	NAD
ADHB\$HUMAN	=	:	194	o	T-CAVFGL-GGVGLSAVMGCKAAGAARIIAVD	NAD
ADHE\$HORSE	-	;	194	0	T-CAVFGL-GBVGLSVIMGCKAAGAARIIGVD	NAD
ADHG\$HUMAN	=	:	194	0	T-CAVFGL-GGVGLSVVMGCKAAGAARIIAVD	NAD
ADHP\$HUMAN	=	:	200	0	T-CAVFGL-GGVGLSAVMBCKAAGASRIIGID	NAD
ADHS\$HORSE	-	1	194	0	T-CAVFGL-GBVGLSVIMGCKAAGAARIIGVD	NAD
BEN4\$PSEPU	= be	enzene degradation system	145	0	R-LLIVGG-GLIGCEVATTARKLGLSVTILE	? (1)
ECH\$RAT	= er	noyl-CoA hydrolase	297	0	S-VGVLGL-GTMGRGIAISFARVGISVVAVE	NAD
G3P\$BACST	= g	lyceraldehyde-3-P dehydrogenas	e 3	0	K-VGINGF-GRIGRNVFRAALKNPDIEVVAVND	NAD
63P\$CAEEL	=	:	5	0	N-VGINGF-GRIGRLVLRAAVEKDTVQVVAVND	NAÐ
G3P\$CHICK	-	:	2	0	K-VGVNGF-GRIGRLVTRAAVLSGKVQVVAIND	NAD
G3P\$ECOLI	=	:	4	o	K-VGINGF-GRIGRIVFRAAGKRSDIEIVAIND	NAD
G3P\$RAT	-	:	2	0	K-VGVNGF-GRIGRLVTRAAFSCDKVDIVAIND	NAD
G3P\$THEAQ	=	:	2	0	K-VGINGF-GRIGROVFRILHSRGVEVALIND	NAD
G3P1\$DROME	-	:	3	o	K-IGINGF-GRIGRLVLRAAIDKGASVVAVND	NAD
G3P2\$DROME	-	:	3	0	K-IGINGF-GRIGRLVLRAAIDKGANVVAVND	NAD
G3P2\$HUMAN	-	:	4	0	K-VGVNGF-GRIGRLVTRAAFNSGKVDIVAIND	NAD
G3P2\$YEAST	=	ĩ	2	0	R-VAINGF-GRIGRLVMRIALSRPNVEVVALND	NAD
G3PC\$MAIZE	=	:	5	0	K-IGINGF-GRIGRLVARVALQSEDVELVAVND	NAD
G3PC\$SINAL	=	:	6	0	K-IGINGF-GRIGRLVARVILQRNDVELVAVND	NAD
GAL X\$SACCA	= 0	DP-glucose epimerase	12	0	KIVLVTGGAGYIGSHTVVELIENGYDCVVAD	(NAD?)
LDH\$BACME	= 1	actate dehydrogenase	11	0	K-VAVIGT-GFVGSSYAFSMVNQGIANELVLID	NAD
LDH\$BACST	-	ĩ	8	o	R-YVVIGA-GFVGASYVFALMNQGIADEIVLID	NAD
LDH\$THECA	#	:	2	0	K-VGIVGS-GMVGSATAYALALLGVAREVVLVD	NAD
LDHH\$CHICK	-	:	21	0	K-ITVVGV-GQVGMACAISILGKGLCDELALVD	NAD
L DHH\$HUMAN	-	:	22	0	K-ITVVGV-GQVGMACAISILGKSLADELALVD	NAD
LDHH\$PIG	=	:	22	0	K-ITVVGV-GQVGMACAISILGKSLTDELALVD	NAD
LDHM\$HUMAN	=	:	21	٥	K-ITVVGV-GAVGMACAISILMKDLADELALVD	NAD
LDHM\$MOUSE	-	1	21	0	K-ITVV&V-GAVGMACAISILMKDLADELALVD	NAD
LDHM\$PIG	=	:	21	0	K-ITVVGV-GAVGMACAISILMKELADEIALVD	NAD
LDHM\$RAT	-	r	22	0	K-ITVVGV-GAVGMACAISILMKDLADELALVD	NAD
LDHM\$SQUAC	=	:	22	0	K-ITVVGV-GAVGMACAISILMKDLADEVALVD	NAD
LDHX\$HUMAN	=	;	21	0	K-ITIVGT-GAVGMACAISILLKDLADELALVD	NAD
LDHX\$MOUSE	=	:	21	0	K-ITVVGV-GNVGMACAISILLKGLADELALVD	NAD
MDHM\$MOUSE	= n	alate dehydrogenase	26	٥	K-VAVLGASGGIGQPLSLLLKNSPLVSRLTLYD	NAD
MDHM\$P16	-	:	2	0	K-VAVLGASGGIGOPLSLLLKNSPLVSRLTLYD	NAD
MDHM\$RAT	-	:	26	ø	K-VAVLGASGGIGQPLSLLLKNSPLVSRLTLYD	NAD
PNTA\$ECOLI	≖ F	yridine transhydrogenase	166	٥	K-VMVIGA-GVAGLAAIGAANSLGAIVRAFD	NAD (P)
ADH1\$ASPNI	= a	lcohol dehydrogenase	173	1	T-VAIVGAGGGLGSLAqQYAKAMGIRVVAVD	NAD
ADH2\$YEAST	=	:	173	1	W-aAISGAAGGLGSLAVQYAKAMGYRVLGID	NAD
ADH3\$ASPNI	-	:	175	1	T-VAIVGAGGGLGSLAqQYAKAMGLRTIAID	NAD
DAPB\$ECOL I	= c	lihydrodipicolinare reductase	7	1	R-VAIAGAGGRMGRQLIQAALALEgVQLGAALE	NAD(P)
DHNO\$AGRT7	= r	opaline dehydrogenase	23	1	T-VGVLGS-GHAGTALAAWFASRhVPTALWAPAD	NAD (P)

172 1 K-VLVCGA-GPIGLVnLLAAKAMGA-----AQVVVTD

NAD

DHSO\$SHEEP = sorbitol dehydrogenase

G3P\$HOMAM	=	glyceraldehyde-3-P dehydrogenas	e 2	1	K-IGIdGF-GRIGRLVLRAALSCGAQVVAVND	NAD
63P\$P16	=	:	2	1	K-VGVdGF-GRIGRLVTRAAFNSGKVDIVAIND	NAD
G3P\$ZYGRD	-	:	3	1	N-VSVNGF-GRIGRLVTRIAISRKDINLVAIND	NAD
G3P1\$HUMAN	=	:	4	1	K-VGVdGF-GRIGRLVTRAAFNSGKVDIVAIND	NAD
G3P3\$YEAST	-	:	2	1	R-IAINGF-GRIGRLVLRLALQRKDIEVVAVbD	NAD
G3PA\$TOBAC	=	:	59	1	K-VAINGF-GRIGRNFLRCWHGRKDSpLDVIAIND	NAD
G3PB\$TOBAC	÷	:	56	1	K-VAINGF-GRIGRNFLRCWHGRKDSpLDVVVVND	NAD
GPDA\$DROVI	-	glycerol-3-P dehydrogenase	5	1	N-VCIV68-GNnGBAIAKIVGANAAALPEFEERVTMFVYE	NAD
GPDA\$RABIT	=	:	4	1	K-VCIV68-GdW65AIAKIV66NAAQLAQFDPRVTMWVFE	NAD
HCDH\$PIG	=	hydroxyacyl acid dehydrogenase	17	1	h-VTVIGG-GLMGAGIAQVAAATGHTVVLVD	NAD
LDH&LACCA	=	lactate dehydrogenase	10	1	K-VILVGD-GAVG5SYAFAMVLQGIAQEIgIVD	NAD
LDHM\$CHICK	=	:	21	1	K-IsVVGV-GAVGMACAISILMKDLADELTLVD	NAD
MDH\$ECOLI	=	malate dehydrogenase	2	1	K-VAVLGAAGGIGDALALLLKTQ1PSGSELSLYD	NAD
(2)	=	:	5	1	R-VLVTGAAGQIAYSLLYSIGNgSVFGKDOPIILVLLD	NAD
MERASPSEAE	=	mercuric dehydrogenase	100	1	Q-VAVIGS-GGAAMAAALKAVEQGAQVTLIE	FAD
:	=	:	252	1	R-LAVIGS-GYIAAELGOMFHNLGTEVTLMg	NADP
OXDA\$PIG	-	D-amino acid oxidase	2	1	R-VVVIGA-GVIGLSTALCIHERyHSVLQPLD	FAD
POD3\$PSEPU	-	lipoamide dehýdrogenase	8	1	T-LLIIGG-GPGGYVAAIrAGQLGIPTVLVE	FAD
:	-	;	174	1	h-LVVV66-6YIGLELGIAYRKL6AQVSVVE	NAD
PYD3\$ECOLI	-	:	7	1	Q-VVVLGA-GPAGYSAAFrCADLGLETVIVE	FAD
	=	:	176	1	R-LLVMGG-GIIGLEMGTVYHALGSQIdVVE	NAD
SERASECOLI	-	phosphoglycerate dehydrogenase	153	1	K-LGIIGY-GHIGTQLGILAeSLGMYVYFYD	NAD
TDH\$ECOLI	=	threonine dehydrogenase	166	1	d-vlvsga-gpigimaaavakhvgaRNVvITD	NAD
THDH\$ECOLI	-	threonine dehydratase	182	1	RVFVpVGG-GGLAAGVAVLIKQLMPQIKVIAVE	? (3)
TR2M\$AGRT4	=	tryptophane 2-monooxygenase	238	1	K-VAVIGA-GISGLVVANELLHAGVDDVTIYE	? (4)
TR2M\$PSESY	-	:	40	1	R-VAIVGA-GISGLVAATELLRAGVKDVVLYE	? (5)
AR01\$ASPNI	-	aromatic polypeptide	1418	2	S-alvvGG-GGTARAAIYALHNMGYSPIYIVgE	? (6)
CSA\$DICDI	=	contact site A protein	36	2	Y-ITITGT-GFTGTPVVTIgGQTCDPVIVANt	? (7)
DDH\$CORGL	=	diaminopimelate dehydrogenase	5	2	R-VAIVGY-GNLGRSVekLIAKQPDMDLVGIf	NADP
DHGL\$BOVIN	=	glutamate dehydrogenase	246	2	T-FAVQGF-GNVGLH3MRYLHRFGAKCVAVgE	NAD(P)
DHGL\$CHICK	=	:	249	2	T-FAVQGF-GNVGLH&MRYLHRFGAKCVAVgE	NAD(P)
DHGL\$HUMAN	=	1	303	2	T-FVVQGF-GNVGLHSMRYLHRFGAKCIAVgE	NAD(P)
DHNA\$ECOL I	=	NADH dehydrogenase	170	2	N-IAIVGG-GATGVELSAELHNAVKQLHSYGYKGLtNE	(NAD?)
DHOM\$CORGL	=	homoserine dehydrogenase	19	2	g-IALLGF-GTVGTEVMRLMTEYGDELAHRIGgPLE	NAD
DHSA\$BACSU	=	succinate dehydrogenase	5	2	S-IIVVGG-GLAGLMATIKAAESGMAVKLFs	NADP
FRDA\$ECOL I	-	fumarate reductase	7	2	d-LAIVGA-GGAGLRAAIAAADANPNAKIALIs	FAD
GDHA\$NEUCR	=	glutamate dehydrogenase	221	2	R-VALSGS-GNVAQYAALKLIELGATVVSLsD	NADP
GSHR\$ECOLI	=	glutathione reductase	169	2	R-VAVVGA-GYIAVELAGVINGLGAKThLFVr	NAD(P)
IAA\$STRGS	-	alpha-amylase inhibitor	47	z	dILTFPGY-GTrGNEVLGAVLCATDGSALPVD	? (8)
MERA\$NEUCR	=	mercuric reductase	99	2	h-IAVIGS-GGAAMAAALkAVEQGARVTLIE	FAD
MERA\$SHIFL	=	:	99	2	h-IAVIGS-GGAAMAAALKAVEQGARVTLIE	FAD
MERA\$STAAU	=	:	87	2	d-lliigs-ggaafsaaikanengaKvamve	FAD
PHHY\$PSEFL		p-hydroxybenzoate hydroxylase	4	2	Q-VAIIGA-GPsGLLLGQLLHKAGIDnVILE	FAD
PROC\$ECOLI	=	pyrroline-carboxylate reductase	2 4	2	K-IGFIGC-GNMGKAILGGLIASGQVLPgQIW√	NAD(P)
SP5F\$BACSU	=	sporulation protein	117	2	f-LGLIGLSGFVGLVLSApYRIKRITSYLNPWE	? (9)

Appendix I.

TYRA\$ECOLI ∝ prephenate dehydrogenase	99	2	RpvvIvGGGGGMGRLFeKMLTLSGYQVRILE	NAD
Y21K\$ECOLI = hypothetical protein	8	2	d-VIIIGG-GHAGTEAAMAAARMGQQTLLLTh	? (10)
AKIH\$ECOLI = homoserine dehydrogenase	466	3	e-VFVIGV-GGVGgALLEQLKRQQSWLKnGHID	NAD
AK2H\$ECOLI = ;	458	3	g-LVLFGK-GNIGSRWLELFAREQSTLSArTGFE	NAD
DHNA\$ECOLI = NADH dehydrogenase	5	3	K-IVIV66-GAGGLEMATQLGHK1g-~-~RKKKAKITLVD	(FAD?)
GDHA\$ECOLI ≈ glutamate dehydrogenase	234	3	R-VsVS65-GNVAQYAIEkAMEFGARVITAsD	NADP
GDHA\$YEAST ≈ :	219	3	R~VTIS65-6NVAQYAALkVIELGg~TVVSLsD	NADP
GSHR\$HUMAN ≈ glutathione reductase	189	3	R-svivga-gyiavemagilsalgsKislmir	NADP
GUAB\$ECOLI ≈ IMP dehydrogenase	316	3	S-avkvGI-GPGsICTTRIVTGvGVPDITAVAD	NAD
LDH\$STRCR = lactate dehydrogenase	7	3	K-VILVGD-GAVGSAYAILddEHAVLPVSVFq	NAD

Appendix II. List of identified GTP-binding sites containing the three motifs: guanine-ribose-binding fold, magnesium-binding site and a turn specific for guanine fixation.

The symbols are the same as in Fig. 6 or Appendix I. For the first motif four mismatches were allowed, for both other motifs only two. The program system PAT lists only proteins with sequence sections that match all three motifs. In the cases marked by '?' the existence of a mononucleotide-binding site is not known to the authors

codes	proteins (broad class)		guanine	ribo	se bind	ing motif		Mg-binding site	guañine	fixation	nucl.
	r	05. A	[beta]	£	alpha	J	pos.	ân.	pos. m	[turn]	
EF1A\$ARTSA	= elongation factor	8.0		JDSGK		IYKCGGIDKRTIF		0 YYVIIIDAPGHRbFT		GVNK#051	61P
EFINADKONE		, 0	NIVVIGH	/ 20 K	51110 0 0.	I (KCBOIDKR)IE	03	V TTVIIIDAPBARDFI	K 151 U	GVNKITU85	01P
EFIASHUMAN	¥ 1	90	NIVVIGH	DSGK	STTTGHL	1YKCGG1DKRT1E	85	0 YYVTIIDAPGHRDFI	K 151 0	GVNKMDST	GTP
EF1A\$RH1RA	* :	90	NVVVIGH	DSGK	STTTGHL	IYKCGGIDKRTIE	85	0 YNVTVIDAPGHRDFI	K 151 0	AINKMDTT	GTP
EF1A\$YEAST	= :	90	NVVVIGH	/05GK	STTTGHL	LYKCGGIDKRTIE	85	O YOVTVIDAPGHRDFI	K 151 O	avnkmdsv	615
EF184DROME	- :	90	NIVVIGH	DSGK	STTTGHL	IYKCGGIDKRTIE	85	0 YYVTIIDAPGHRDFI	K 151 0	GVNKMØST	GTP
EFTU\$ECOLI		14 0	NVGTIGH	лрнек.	TTLTAAI	TTVLAKTYGGAAR	75	0 RHYAHVDCPGHADYV	K 134 0	FLNKCDMV	GIP
EFTU\$EUGGR	= :	14 0	NIGTIGH	VDHGK	TTLTAAI	TMALAATGNSKAK	75	O RHYAHVDCPGHADYV	K 134 0	FLNKEDQV	GTP
EFTUSMETVA	* I	90	NVAFIGH	VDAGK	STTVGRL	LLDGGAIDPQLIV	85	O YEVTIVDCPGHRDFI	K 147 0	AVNKMDTV	GTP
EFTUSTHETH	= :	14 0	NVGT16H	adhor.	TTLTAAL	TYVAAAENPNVEV	76	O RHYSHVDCPGHADYI	K 135 0	FMNKVDMV	GTP
GBA1\$YEAST	= G-protein	43 0	KLLLLGA	GESGK	STVLKQL	KLLHQGGFSHQER	313	O SKEKULDABGORSER	K 396 0	FLNKIDLF	GTP
GBA0\$BOVIN	- :	35 0	KLLLGA	GESGK	STIVKOM	KIIHEDGFSGEDV	195	O LHFRLFDVGGQRSER	K 268 0	FLNKKDLF	GTP
GBAS\$BÛVIN	× ;	42 0	RLLLLGA	GESGK	STIVKQM	RILHVNGFNGEGG	217	0 VNFHMFDVGGQRDER	R 290 0	FLNKQDLL	GTP
GBAS\$HUMAN	z :	42 0	RLLLLGA	GESGK	STIVKOM	RILHVNGFNGEGG	217	0 VNFHMFDVGGORDER	R 290 0	FLNKQDLL	GTP
GBAS\$MDUSE	n. :	40 0	RLLLLGA	GESGK	STIVKOM	RILHVNGFNGDEK	200	0 VNFHMFDVGGQRDER	R 273 C	FLNKQDLL	GTP
GBAS\$RAT	- 1	42 0	RLLLLGA	GESGK	STIVKOM	RILHVNGFNGEGG	217	0 VNFHMFDVGGDRDER	R 290 0	FLNKQDLL	GTP
GBI1\$BOVIN	ц. :	35 0	KLLLLGAG	GESGK	STIVKOM	KIIHEAGYSEEEC	194	O LHFKMFDVGGQRSER	K 267 (FLNKKØLF	GTP
GBI2\$HUMAN	₹	35 0	KLLLLGA	GESGK	STIVKQ⊭	KIIHEDGYSEEEC	195	0 LHFKMFDVGGQRSER	K 268 (FLNKKDLF	GTP
GBI2\$MOUSE	s :	35 0	KLLLLGA	GESGK	STIVKOM	KIIHEDGYSEEEC	195	0 LHFKMFDVGGQRSER	K 268 (FLNKKDLF	GTP
GB12\$RAT	- :	35 0	KLLLLGA	GESGX	STIVKOM	KIIMEDGYSEEEC	175	0 LHFKMFDVGGQRSER	K 268 (FLNKKØLF	STP
GBI3\$HUMAN	≠ :	35 0	KLLLLGA	GESGK	STIVKOM	KIIHEDGYSEDEC	194	0 LYFXMFDVGGQRSER	K 267 (FLNKKOLF	GTP
GBI3\$RAT	# :	35 0	KLLLLGA	GESGX	STIVKOR	KIIHEDGYSEDEC	194	0 LYFKMFDVGGQRSER	K 267 (FLNKKDLF	GTP
GBT1\$BOVIN	≭ :	31 0	KLLLLGA	GESGK	STIVKOR	KIIHQDGYSLEEC	190	O LNFRMFDVGGQRSER	К 263 (FLNKKDVF	GTP
RABISRAT	= ras related oncogene products	13 0	KLLLIGD	SGVGK	SCLLLRF	ADDIVIESVISTI	60	0 IKLQIWDTAGQERFR	122 (VGNKCDLT	GTP

RAR2SHIMAN = 1	0 KYIIIGDIGVGKSCLLLQFIDKRFQPVHDLII	55 0 IKLQIWDTAGQESFRS	117 0 IGNKSDLE	GTP
PAR74PAT = 1	8 0 KYTTIGDIGVGKSCILLOFTDKREOPVHDLTM	55 0 IKLQIWDIAGQESERS	117 0 TONKSDIF	GTP
		57 O VELOINDIAGOERERS		GTP
RAB1#RA1				CT0
KALDLALJA = :			125 C VONKADLE	ore
RAS\$CARAU = :	5 0 KLVVVGAGGVGKSALIIGLIGNHFVDETDPII	51 0 CLEDIEDTAGGEETSA	114 O VGNKEDLP	614
RAS\$DICDI = :	5 0 KLVIVGGGGVGKSALTIQLIQNHFIDEYDPTI	51 O CLLDILDTAGQEEYSA	114 O VGNKADLD	GTP
RAS\$SCHPO = :	10 0 KLVVVGDGGVGKSALTIQLIQSHFVDEYDPTI	56 0 AVLDLLDTAGQEEYSA	119 0 VANKCDLE	GTP
RAS1\$YEAST = :	12 0 KIVVVGGGGVGKSALTIQFIQSYFVDEYDPTI	58 0 SILDILDTAGQEEYSA	121 0 VGNKLDLE	GTP
RAS2\$DROME = :	7 0 KLVVVGGGGVGKSAITIQFIQSYFVTDYDPTI	56 0 IFYLVLDTAGQEEFSA	119 0 VGNKCDLK	GTP
RAS2\$YEAST = :	12 0 KLVVVGGGGVGKSALTIQLTQSHFVDEYDPTI	58 0 SILDILDTAGGEEYSA	121 0 VGNKSDLE	GTP
RAS3\$DROME = :	5 0 KIVVLGSGGVGKSALTVQFVQCIFVEKYDPTI	51 0 CMLEIVNTAGTEQFTA	113 O VGNKEDLE	GTP
RASH&CHICK = :	5 0 KLVVVGAGGVGKSALTIQLIQNHFVDEYDPTI	51 0 CLLDILDTAGQEEYSA	114 0 VGNKCDLP	GTP
RASH\$HUMAN = I	5 0 KLVVVGAGGVGKSALTIQLIQNHFVDEYDPTI	51 0 CLLDILDTAGQEEYSA	114 O VGNKEDLA	GT P
RASH\$MSV = :	5 0 KLVVVGAKGVGKSALTIQLIQNHFVDEYDPTI	51 0 CLLDILDTAGQEEYSA	114 0 VGNKCDLA	GTP
RASH\$MSVHA = 1	57 0 KLVVVGARGVGKSALTIQLIQNHFVDEYDPTI	103 O CLLDILDTTGQEEYSA	166 0 VGNKCDLA	GTP
RASH\$RRASV ≃ ;	64 0 KLVVVGARGVGKSALTIGLIGNHFVDEYDPTI	110 0 CLLDILDTAGGEEYSA	173 O VGNKCDLA	GTP
RASK\$HUMAN = :	5 0 KLVVVGAGGVGKSALTIQLIQNHFVDEYDPTI	51 O CLLDILDTAGQEEYSA	114 0 VGNKCDLP	GTP
RASK\$MOUSE = :	5 0 KLVVVGAGGVGKSALTIQLIQNHFVDEYDPTI	51 O CLLDILDTAGQEEYSA	114 O VGNKCDLP	GTP
RASK\$MSVKI = :	5 0 KLVVVGASGVGKSALTIQLIQNHFVDEYDPTI	51 Q CLLDILDTTGQEEYSA	114 0 VGNKCDLP	GTP
RASI SHUMAN = +	5 0 KLVVVGAGGVGKSALTIDLIDNHFVDEYDPTI	51 0 CLLDILDIAGQEEYSA	114 0 VGNKCDLP	GTP
RASI \$10015F = •	5 0 KI VVVGAGGVGKSALTIQI IQNHEVDEYDPTI	51 O CLIDILDIAGGEEYSA	114 0 VONKEDLP	GTP
				CTO
KASN9HUMAN = :	3 U KEVVVOHOOVOKSHLITALTANHFVDETDETT	SI O CELDIEDIHOWEETSH		017
RASN\$MOUSE = :	5 0 KLVVVGAGGVGKSALTIQLIQNHFVDEYDPTI	51 O CLLDILDTAGQEEYSA	114 0 VGNKCDLP	GTP
RHO\$APLCA = :	7 0 KLVIVGDGACGKTCLLIVFSKDQFPEVYVPTV	53 O VELALWDTAGQEDYDR	115 0 VGNKKDLR	GTP
RHO1\$HUMAN = :	7 0 KLVIVGDGACGKTCLLIVFSKDQFPEVYVPTV	53 O VELALWDTAGQEDYDR	115 0 VGNKKDLR	GTP
RHD6\$HUMAN = :	7 0 KLVVVGDGACGKTCLLIVFSKDEFPEVYVPTV	53 O VELALWDTAGQEDYDR	115 0 VANKKDLR	GTP
RHO9\$HUMAN = :	7 0 KLVIVGDGACGKTCLLIVFSKDQFPEVYVPTV	53 O VELALWDTAGQEDYDR	115 0 VGNKKDLR	GTP
SEC4\$YEAST = :	22 0 KILLIGDSGVGKSCLLVRFVEDKFNPSFITTI	69 O VKLQLWDTAGQERFRT	131 0 VGNKSDME	GTP
YPT1\$YEAST = :	10 0 KLLLIGNSGVGKSCLLLRFSDDTYTNDYISTI	57 O VKLQIWDTAGQERFRT	119 0 VGNKCDLK	GTP
EFG\$ECOLI = elongation factor	12 1 NIGISAHIDAGKTTTTERILFYTGVNHKIGEV	82 Ø HRINIIDTPGHVDFTI	140 0 FVNKMDRM	GTP
EFTU\$YEAST = :	50 1 NIGTIGHVØHGKTTLTAAITKTLAAKGGANFL	111 O RHYSHVDCPGHADYIK	170 O FVNKVDTI	GTP
GBT2\$BOVIN = G~protein	35 1 KLLLLGAGESGKSTIVKQMKIIHQDGYSpEEC	194 0 LNFRMFDVGGQRSERK	267 0 FLNKKDLF	GTP
GST1\$YEAST = :	262 1 SLIFMGHVDAGKSTMgGNLLYLTGSVDKRTIE	338 O RRYTILDAPGHKMYVS	404 0 VVNKMDDP	GTP
IF2\$BACST = initiation factor	246 1 vVTIMGHVDHGKTTLLDAIRHSKVTEQEABGI	291 O KKITFLDTPGHEAFTT	349 0 AINKMDKP	GTP
IF2\$ECOLI = :	395 1 vVTIMGHVDHGKTSLLDYIRSTKVASKEAGGI	440 0 GMITFLDTPGHAAFTS	498 0 AVNKIDKP	GTP
ŁEPA\$ECOLI = LEPA protein	6 1 NFSIIAHIDHGKSTLSDRIIQICGGLSDREME	71 0 YQLNFIDTPGHVDFSY	129 O VENKIDEP	GTP
RAB3\$RAT = ras related oncogene products	3 24 1 KILIIGNSSVGKTSFLFRyADDSFTPAFVSTV	71 0 IKLQIWDTAGQERYRT	133 0 VGNKCDME	GTP
RAS1\$DROME = :	5 1 KLVVVGpGGVGKSALTIQLIQNMFVDEYDPTI	51 0 CLLDILDTAGGEEYSA	114 0 AGNKCDLA	GTP
SUF1\$YEAST = SUF12 supressor protein	262 1 SLIFMGHVDAGKSTMgGNLLYLTGSVDKRTIE	338 O RRYTILDAPGHKNYVS	404 0 VVNKMDDP	GTP
EF2\$MESAU = elongation factor	21 1 NMSVIAHVDHGKSTLTDSLVCKAGIIASARAG	98 1 FLINLIDsPGHVDFSS	156 0 MMNKMDRA	GTP
PPCK\$RAT = PEP carboxykinase	232 1 gSGYGGNSLLGKKCFALRIASRLAKEEGWLAE	312 0 IAWMKFDAQGNLRAIN	386 1 WKNKEWRP	GTP
PPCK&CHICK = :	232 1 gSGYGGNSLLGKKCFALRIASRIAKEEGWLAE	312 1 IAWMKFDeLGNLRAIN	386 1 WKNKDWTP	GTP

358

ERA\$ECOLI = ERA gene product	10 2 fIAIVGRPNVGKSTLLNKLLgQKISITSRKAQ	56 2 YQAIYVDTPG1hNESK	122 O AVNKVDNV	GTP
POLG\$₩NV = polyprotein	1407 3 gLMFAAFVISGKSTdMWIeRTADITWESDAEI	122 2 GAVTLSNfQGKVMMTV	71 O GVNKQTAM	?
			1713 1 AINKRIRT	
ITAV\$HUMAN = vitronectin receptor	912 4 iVCqVGRLDRGKSAILYVKSLLWTeTFMNKEN	97 2 CQpieFDATGNRDYAK	938-0 FMNKENQN	?
NIFH\$METVO = nitrogenase	3 3 KFCIyGKGGIGKSTnVGNMAAALAmDGKKVLV	101 2 TAVDMLDrLGvYDQLK	234 2 IANKfrEL	ATP
			246 1 YeNKKTTI	
POLG\$ENHTV = polyprotein	1307 3 vVVLrGAAGQGKSvTSQIIAQSVSKMAFGRQS	1794 2 GSaIICNVNGKKAVYg	473 2 TnNKRYpY	?
	••	• •	2203 1 pANKTTTF	
TALA\$MPOV3 = large T antigen	570 3 NILFr@pVNSGKTgLAAALISLLGGKSLNINC	617 2 FVVCFeDVkGQIALNK	629 1 ALNKQ1QP	(no?)
TALA\$POVMA = :	568 3 NILFrGpVNSGKTgLAAALISLLGGKSLNINC	615 2 FVVCFeDVkGQIALNK	627 1 ALNKQ1QP	(no?)
				.