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Summary

Sequencing of 16S rDNA polymerase chain reaction
(PCR) amplicons is the most common approach for
investigating environmental prokaryotic diversity,
despite the known biases introduced during PCR.
Here we show that 16S rDNA fragments derived from
Illumina-sequenced environmental metagenomes
(mitags) are a powerful alternative to 16S rDNA
amplicons for investigating the taxonomic diversity
and structure of prokaryotic communities. As part of
the Tara Oceans global expedition, marine plankton
was sampled in three locations, resulting in 29
subsamples for which metagenomes were produced
by shotgun Illumina sequencing (ca. 700 Gb). For
comparative analyses, a subset of samples was also
selected for Roche-454 sequencing using both
shotgun (m454tags; 13 metagenomes, ca. 2.4 Gb)
and 16S rDNA amplicon (454tags; ca. 0.075 Gb)
approaches. Our results indicate that by overcoming
PCR biases related to amplification and primer mis-
match, mitags may provide more realistic estimates of
community richness and evenness than amplicon
454tags. In addition, mitags can capture expected beta
diversity patterns. Using mitags is now economically
feasible given the dramatic reduction in high-
throughput sequencing costs, having the advantage
of retrieving simultaneously both taxonomic (Bacte-
ria, Archaea and Eukarya) and functional information
from the same microbial community.

Introduction

Microbes have fundamental roles in the functioning of
most ecosystems (Falkowski et al., 2008), particularly in
the vast ocean biome (DeLong, 2009). They also encom-
pass a large taxonomic and metabolic diversity (Pace,
1997) that reflects their long history of evolutionary
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diversification. Still, many important questions in microbial
ecology remain unsolved and have been awaiting tech-
nological progress to be investigated. The advent of high-
throughput sequencing (HTS) technologies (e.g. 454 and
Illumina) (Logares et al., 2012) is enabling the exploration
of microbial diversity at an unprecedented scale. One of
the first applications of 454 pyrosequencing in microbial
ecology was the sequencing of ribosomal DNA gene
(rDNA) amplicons (hereafter 454tags) from environmental
samples (Sogin et al., 2006). So far, only a handful of
studies have used Illumina-sequenced polymerase chain
reaction (PCR) amplicons (itags) to explore natural micro-
bial assemblages (Caporaso et al., 2011; 2012; Werner
et al., 2012; Bokulich et al., 2013). However, Illumina
sequencers have a cost per base which can be 100 times
lower than the 454 platform as well as a higher throughput
(Glenn, 2011). As both technologies became popular in
microbial ecology relatively recently, a careful evaluation
of their performances and biases is still ongoing (Huse
et al., 2007; 2010; Quince et al., 2009; 2011; Claesson
et al., 2010; Minoche et al., 2011; Nakamura et al., 2011).
A limited number of HTS cross-platform studies have indi-
cated different biases associated with 454 and Illumina
platforms (Harismendy et al., 2009). For example, com-
parisons between 454tags and itags derived from the same
DNA samples showed different classification efficiencies
(Claesson et al., 2010). In general terms, amplicon-based
approaches using both 454tags and itags recovered previ-
ously observed global diversity patterns (Caporaso
et al., 2011; Zinger et al., 2011), thus validating these
approaches. Still, regardless of the sequencing technol-
ogy, the biases associated with the PCR step in amplicon-
based studies distort the estimations of richness and
evenness in microbial communities (Acinas et al., 2005;
Hong et al., 2009; Engelbrektson et al., 2010).

An alternative approach to circumvent PCR is to identify
rDNA fragments from metagenomic data (hereafter
mtags). Until recently this approach was unrealistic, as the
fraction of rDNA present in metagenomes was very low.
For example, the Global Ocean Sampling (GOS) (Rusch
et al., 2007) produced 7.7 million metagenomic reads, of
which only 4100 turned out to be usable 16S rDNA reads
(0.05%; see CAMERA, http://camera.calit2.net/). On the
second release of GOS, the fraction of rDNA detected
was 1.4%, with a total of 142 783 16S rDNA fragments
from 80 metagenomes (Yilmaz et al., 2011). Other
metagenomic studies based on 454 FLX Titanium
sequencing identified hundreds to thousands of rDNA
fragments (hereafter m454tags) after sequencing several
million reads (Bryant et al., 2012; Ghai et al., 2012). Thus,
substantial sequencing is needed to recover enough
rDNA reads from metagenomes for community taxonomic
profiling. However, the high throughput of Illumina HiSeq
platforms circumvents this limitation. For example, using

the HiSeq2000 platform, we could expect about 10 000
16S rDNA fragments (> 100 bp) out of 10 million
metagenomic reads (assuming a 0.1% recovery) at a total
cost of about €100; this number of reads would be enough
to capture the structure of microbial communities
(Caporaso et al., 2011). Although 16S rDNA fragments
derived from Illumina-sequenced metagenomes have not
been subjected to PCR, they have undergone amplifica-
tion steps associated with the Illumina platform that may
generate base-composition biases that, in many cases,
are not randomly distributed (Aird et al., 2011; Nakamura
et al., 2011). A number of protocols and base call algo-
rithms have been developed to minimize such biases
and improve the error rate of Illumina sequencing
(Harismendy et al., 2009; Aird et al., 2011).

The short length of Illumina reads may represent a
limitation, although 16S rDNA reads as short as 100 bp
can be enough for an accurate taxonomic characteriza-
tion of microbial communities (Liu et al., 2007). In
addition, simulations have shown that 16S rDNA frag-
ments > 150 bp from multiple rDNA regions could be as
accurate as the entire 16S rDNA sequence for taxonomic
profiling of communities (Hao and Chen, 2012). Longer
composite reads can be produced by merging paired-end
reads from small insert-size libraries, a strategy that
has been shown to produce results comparable to 454
FLX sequencing (Rodrigue et al., 2010). Read-length
limitations are relaxing with the introduction of newer
Illumina sequencers that produce longer reads (e.g.
the HiSeq2500 and MiSeq produce 2 × 150 bp and
2 × 250 bp reads respectively, which after merging can
generate reads up to, e.g., 290 and 490 bp).

Other limitations may be related to the intrinsic charac-
teristics of the 16S rDNA. This gene has regions with
different evolutionary rates (Hillis and Dixon, 1991). Diver-
sity metrics and classification accuracy depend on
what region is being used (Claesson et al., 2009;
Engelbrektson et al., 2010; Mizrahi-Man et al., 2013), and
16S rDNA gene fragments extracted from metagenomes
will more or less randomly cover different areas of the
gene, thus providing a mixed taxonomic and evolutionary
signal. Nevertheless, using different regions may allow
reconstruction of the whole 16S rDNA sequence, which
could improve diversity analyses (Miller et al., 2011),
although this method may be affected by the generation of
chimeric sequences between closely related taxa.

Altogether, considering the mentioned biases, it is not
surprising that taxonomic profiles of microbial communi-
ties based on 16S rDNA derived from amplicons or
metagenomes may disagree (Shah et al., 2011). In
general, controlled quantitative studies comparing rDNA-
based diversity using different sequencing platforms (e.g.
Illumina vs 454) and PCR-based versus non-PCR-based
tags are very limited. Still, a recent study using synthetic
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microbial communities tested the capacity of PCR-based
versus non PCR-based sequencing for recovering known
diversity and indicated that the non-PCR-based approach
performed better (Shakya et al., 2013). Despite the
obvious value of the latter approach for quantitatively
uncovering biases and potential errors, synthetic commu-
nities are still a great simplification of natural microbial
communities. The environmental DNA pool is highly
complex, encompassing thousands of different genomes,
many of which are unknown and normally present in very
low abundances (Pedrós-Alió, 2006); therefore, kinetics
and amplification PCR biases may behave differently than
in controlled studies. Thus, studies based on natural
samples are also needed to complement controlled labo-
ratory experiments and in combination generate more
realistic descriptions of microbial diversity.

Here we investigate whether 16S rDNA fragments
derived from environmental metagenomes sequenced
with Illumina (hereafter mitags) can capture diversity pat-
terns of microbial communities. Our results are based on
data from three marine stations that were part of the Tara
Oceans global expedition (Karsenti et al., 2011) and
which were sequenced extensively using Illumina
HiSeq2000 and GAIIx platforms. For comparative pur-
poses, we generated metagenomes and 16S rDNA
amplicon sequence data using the 454 GS FLX Titanium
platform for a subset of these stations. We show that
mitags can be used for taxonomic profiling of natural micro-
bial communities as well as for richness, evenness and
beta diversity estimations. Using mitags has at least two
main advantages: (i) it avoids PCR biases; and (ii) a large
amount of functional data are simultaneously produced
when mitags are generated. Thus, mitags are a powerful
alternative to the commonly used amplicon-based tags for
community analyses. Using mitags is now feasible thanks
to the dramatic decrease in sequencing costs.

Results

The 29 Illumina metagenomes from the three analysed
marine stations consisted of about 700 Gb of sequence
data covering five planktonic size fractions (0.2–1.6,
0.8–5, 5–20, 20–180 and 180–2000 μm). The approach
used to extract and process mitags is displayed in Sup-
porting Information (Fig. S1). On average, 2.08 × 104

16S mitags > 100 bases were extracted per sample
(metagenome), although 7.9 × 104 16S mitags were
retrieved from the typically free-living bacterial size frac-
tion (0.2–1.6 μm) (Supporting Information Table S2). Alto-
gether, these mitags covered all 16S rDNA hypervariable
regions (V1 to V9), with a decrease in coverage at the 16S
extremes (Supporting Information Fig. S2). A cross-
platform analysis using mitags, m454tags and 454tags indi-
cated that the three methods showed similar degrees of

taxonomic classification efficiency to the Ribosomal Data-
base Project (RDP) (Cole et al., 2009) when using the
naïve Bayesian classifier (Wang et al., 2007), albeit mitags
had shorter sequence length (Supporting Information
Fig. S3). These results show that thousands of 16S mitags
covering all 16S DNA regions can be extracted from
metagenomes and taxonomically classified to RDP.

Assignment of mitags, m454tags and 454tags to
reference OTUs

Most of the 16S mitags corresponded to the prokaryote
size fraction (0.2–1.6 μm), and 94% of them were
assigned to SILVA reference operational taxonomic units
(OTUs) (Supporting Information Table S2). This indicates
that the main fraction of bacterial taxa was represented in
the SILVA reference database (Quast et al., 2013). About
28% of the total number of mitags mapped to the V1–V3
region (Supporting Information Table S2), which was later
used in comparative cross-platform analyses. This
number was expected when considering a more or less
uniform read coverage of the 16S rDNA (about 1300 bp)
and the length of the V1–V3 region (about 500 bp). The
V1–V3 was selected because it includes the V3 region,
which is frequently used for marine 454tag rDNA amplicon
studies and has a better resolution than the V6 region
(Huse et al., 2008). Similar results were obtained with
m454tags (about 92% of reads were assigned to SILVA
reference OTUs, and of these about 20% were assigned
to the V1–V3 segment; Supporting Information Table S3).
The number of 454tags that could be assigned to OTUs
was slightly smaller (about 86%; Supporting Information
Table S4). The range of OTUs obtained per sample using
de novo clustering (i.e. not based on a reference data-
base) with the 454tags from regions V1 (287–1204) and V3
(310–1443) was not different from what was obtained by
assignment to reference OTUs (524–1070) (ANOVA;
P > 0.58) (Supporting Information Table S4).

Richness and evenness: a comparative analysis

When using all mitags from all 16S rDNA V regions, mitags
recovered on average 61% more OTUs than 454tags (Sup-
porting Information Table S5, Fig. 1A). When using a
subsample of 2000 reads per sample, the increase is
between 31.1 to 43.2% of OTUs per sample (Supporting
Information Table S5). This increase translated to Chao-1
richness diversity estimator was 40.3% on average,
and equivalent results were also observed using the
abundance-based coverage estimator index (Supporting
Information Table S6). Under the most comparable sce-
nario, taking into account only mitags from the V1–V3
region and 454tags trimmed to the same length range as
mitags, both mitags and trimmed 454tags recovered similar
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numbers of OTUs, ranging between 994 and 1178 for
mitags and between 586 and 1824 for trimmed 454tags
(Fig. 1B).Values were even closer when subsampling at
2000 reads per sample (mitags 428–508 OTUs and
trimmed 454tags 443–515 OTUs). Rarefaction analyses
using all mitags (covering the entire 16S rDNA gene) from
the size fractions 0.2–1.6 and 0.8–5 μm indicated a larger
richness in the 0.8–5 μm size fraction (Supporting Infor-
mation Fig. S4). Interestingly, it was in the size frac-
tions > 5μm that the percentage of mapped mitags among
reference OTUs dropped to 58% (Supporting Information
Table S2), suggesting prokaryote novelty probably asso-
ciated with larger particles.

We compared the capability of mitags and 454tags to
detect prokaryote taxonomic diversity using both single
reads and OTUs. At higher taxonomic levels, mitags
uniquely recovered several phyla (e.g. Fibrobacteres and
Tenericutes) and classes (Halobacteria, Chloroflexi) in
RDP classifications (Cole et al., 2009) (Supporting Infor-
mation Table S7). At lower levels, we found 748 genera
that were exclusively detected by mitags (Supporting
Information Fig. S5A; Supporting Information Table S7),
whereas only nine genera were exclusively detected by
454tags (Supporting Information Table S8). Similar results
were obtained in OTU-based analyses when using the
TARA-V1–V3 dataset both with and without subsampling
(see Supporting Information Fig. S1). Again, a higher
number of unique OTUs were recovered by mitags than by
454tags. When using the complete dataset, we observed

that 40.8% of the OTUs were recovered by both mitags
and 454tags, while 43.7% and 15.5% were recovered
exclusively by mitags and 454tags respectively (Supporting
Information Fig. S5B, left panel). For the subsampled
dataset, normalization corrected artefacts that produced
some of the differences between techniques, but 446
OTUs were still exclusively obtained by mitags and 274
OTUs by 454tags (Supporting Information Fig. S5B, right
panel).

We investigated the phylogenetic differences between
the OTUs retrieved by mitags and 454tags from the same
V1–V3 region (Fig. 2). Both methods, mitags and 454tags,
presented a good agreement by recovering taxa from the
same evolutionary groups (Fig. 2). Still, there were cases
where mitags recovered small clusters that were not recov-
ered by 454tags, as well as a few cases displaying the
opposite pattern (Fig. 2). In general, unique OTUs from
mitags were spread over all bacterial classes (see unique
mitags clusters labelled with numbers in Fig. 2 and
Supporting Information Table S7). Furthermore, mitags
retrieved Archaea, which were expectedly absent in
454tags because of the use of bacterial primers.

The primer bias effect, as a potential explanation for the
differences in OTU detection between the two techniques,
was further investigated on two fronts by (i) analysing the
in silico coverage of the primer pair set used for generat-
ing 16S rDNA amplicon tags and by (ii) statistical analyses
comparing the number of OTUs detected by each
approach to the presence of mismatches with the primer

Fig. 1. Rarefaction analyses using two datasets. The dashed vertical line indicates a comparative sampling size for the datasets presented in
A and B. Note that in A and B the sample size was different because of the different characteristics of the datasets. Also note that the vertical
axes have different lengths.
A. Only the dataset including all mitags and 454tags was considered, representing the data actually gathered. The horizontal arrow indicates the
maximum vertical value of B.
B. The dataset considered included mitags falling into the V1–V3 region and trimmed 454tags, representing the data most comparable between
platforms and approaches.
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pair used. First, we tested the theoretical accuracy of the
primer pair (27Fmod/533R). This pair covered 78.9% of
the references and was well distributed across main
phyla, ranging between 60% and 100% coverage (Sup-
porting Information Fig. S6). A few phyla were poorly rep-
resented in terms of coverage, probably because of the
low number of sequences available in datasets (Support-
ing Information Fig. S6). Secondly, two χ2-tests of inde-
pendence were performed between these two datasets
(OTUs detected by 454tags/mitags and primer detection
with match/mismatch). Strong and significant depend-
ence was found for OTUs detected only by 454tags and the
presences of mismatches with respect the OTUs detected
with mitags (χ2 = 53.04, df = 1, P < 0.0001) (Supporting
Information Table S9). Conversely, when we selected only
the OTUs detected with 454tags, OTU detection with mitags
and the presence of mismatches appeared as independ-
ent factors (χ2 = 1.45, df = 1, P = 0.2284) (Supporting
Information Table S9). This primer bias effect resulted in
an underrepresentation of those OTUs having mis-
matches with the primer pair and an overrepresentation of
those OTUs with a perfect match with the primer pair.
However, this primer bias effect cannot be associated with
any phyla in particular, although differences exist in the
coverage within the main phylum.

Further comparative analyses focused on the evenness
patterns retrieved by mitags and 454tags (Supporting Infor-
mation Fig. S7). First, similar rank–abundance curves
were observed when samples were subsampled (Sup-
porting Information Fig. S7, right panel); however, some
differences emerged when using data that were not
subsampled. Interestingly, mitags tended to recover a
higher number of very low-abundance taxa (< 0.1%) from
the rare biosphere (Pedrós-Alió, 2012) (Supporting Infor-
mation Fig. S7, left panel). Despite the overall similarity
in rank–abundance curves, different platforms (454 vs
Illumina) and approaches (amplicon-derived tags vs
mitags) indicated, in several cases, different abundances
for the same OTUs (Supporting Information Fig. S7, left
panel; Fig. 3). When OTU abundances derived using
mitags, 454tags and m454tags were compared, a better
agreement was found between approaches not involving
PCR (m454tag and mitag), resulting in a higher correlation
and a fit closer to the 1:1 line (Fig. 3; Supporting Informa-
tion Table S10). Interestingly, both comparisons involving
PCR (i.e. involving 454tag) resulted in smaller slopes and
positive intercepts, indicating that the abundance of rare
OTUs was underestimated and that the abundance of
abundant OTUs was overestimated with 454tags compared
with mtags (Supporting Information Table S10). Finally,
to examine the performance of mitags for quantitative
assessment of OTUs, we compared the relative abun-
dance of several prokaryotic taxa obtained with mitags with
those obtained by two well established quantitative

approaches: catalysed reporter deposition fluorescence
in situ hybridization (CARD-FISH) counts (Fig. 4) and flow
cytometry (Supporting Information Fig. S8). First, we
measured four bacterial groups, SAR11, Gammaprote-
obacteria, Bacteroidetes and Roseobacter, which exhib-
ited distinct abundance in environmental samples. Our
findings revealed a good agreement between CARD-
FISH and 454tags/mitags (Fig. 4; CARD-FISH vs mitags:
Pearson’s r = 0.866, P < 0.001; CARD-FISH vs 454tags:
Pearson’s r = 0.948, P < 0.001). Similarly, a positive
correlation was observed between cyanobacterial
abundance (Prochlorococcus and Synechococcus)
measured by flow cytometry and mitag-derived abundance
(Prochlorococcus: Pearson’s r = 0.782, P < 0.001; Syne-
chococcus: Pearson’s r = 0.603, P < 0.001; Supporting
Information Fig. S8).

Comparative community structure using mitags
and 454tags

UPGMA (unweighted pair-group method with arithmetic
mean) clustering analysis based on Bray–Curtis dis-
tances was performed for the four analysed datasets
(TARA-ALL, TARA-TRIMMED, TARA-V1–V3, TARA-V1–
V3-TRIMMED; see methods and Supporting Information
Fig. S1) after subsampling them to 2000 reads per
sample (Supporting Information Fig. S9A–D). In three out
of the four datasets, the 454tag samples clustered together
instead of with their corresponding mitag samples (Sup-
porting Information Fig. S9A–C). Only in the dataset con-
sidering trimmed 454tags and the V1–V3 region (TARA-
V1–V3-TRIMMED) did one sample analysed with 454tags
cluster with the same sample analysed with mitags (Sup-
porting Information Fig. S9D). Furthermore, in this latter
dataset, samples from the prokaryote size fraction (0.2–
1.6μm) analysed with 454tags and mitags clustered
together, forming a tight group (Supporting Information
Fig. S9D). The absence of clustering of the same samples
analysed with mitags and 454tags reflects the unequal esti-
mation of richness and evenness by the different tech-
niques and platforms. Nevertheless, we observed a
relatively strong correlation using binary (i.e. presence–
absence) Bray–Curtis dissimilarity values (Mantel test:
Pearson’s r = 0.75, P = 0.002) between the same set of
samples analysed with mitags and 454tags (prokaryote frac-
tion from dataset TARA-ALL subsampled). This means
that samples that were more dissimilar in composition
according to mitags were also more dissimilar according to
454tags and vice versa. However, a weaker correlation was
observed for the same set of samples when using the
regular Bray–Curtis index, which considers relative abun-
dances (Mantel test: Pearson’s r = 0.44, P = 0.023). This
discrepancy could be associated with PCR biases affect-
ing the relative abundance of taxa measured by 454tags.
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Discussion

In our metagenomic samples, mitags accounted for about
0.01–0.1% of the total reads, which is within the expected
range. The 0.1% 16S rDNA recovery rate reported here
and in previous studies (Rusch et al., 2007) seems to be
independent of the sequencing technology (Sanger
shotgun, Roche-454 or Illumina), providing a good plau-
sibility check for metagenome-sequencing projects. Due
to the high throughput of Illumina platforms, the number of
mitags recovered per sample (79 000 mitags on average for
bacterial size fraction) can be considered more than suf-
ficient for capturing community composition patterns
(Caporaso et al., 2011). As expected, the yield of mitags for
the typical bacterial size fraction was higher (about
0.09%) than for size fractions > 5μm (0.01%). Most mitags
(94%) could be mapped to reference OTUs present in the
SILVA reference database. Although the latter results
come from three Mediterranean stations, these findings
can be extrapolated to other marine photic samples. In
fact, in another work, we have extracted all mitags for 72
globally distributed samples of 35 Tara Oceans stations

that represented surface, deep chlorophyll maximum,
oxygen minimum zone and mesopelagic water samples,
which showed similar mitag mapping percentages to the
three previous marine stations (Salazar et al., unpub-
lished). Similarly, using RDP, most mitags (99%) could be
confidently classified, and in all cases, as expected, clas-
sification confidence decreased at lower taxonomic levels
(Claesson et al., 2010).

In this work, we assigned mitags to the reference OTUs
derived from clustering the SILVA 108 reference database
at 97% similarity. This approach may have at least two
drawbacks. First, if a sample contains OTUs that are not
present in the reference database, then they will not be
counted. Nevertheless, we found that most (> 94%) 16S
mitags from marine samples were assigned to reference
OTUs, indicating that SILVA 108 is appropriate for typical
marine surface studies. The second possible drawback is
that mitags are shorter than 454tags, and they contain less
information for taxonomic assignment; this may be further
complicated if a specific mitag covers a conserved 16S
rDNA region. Thus, mitags may produce some diversity
inflation, as different segments of the same 16S rDNA

Fig. 2. Phylogeny of the OTUs recovered with mitags (V1–V3) and 454tags where all samples were subsampled to 2000 reads per sample
(TARA-V1–V3 OT with subsampling). mitags are indicated in green and 454tags in salmon color. The inner rings indicate OTU relative
abundances (variable-length columns) and the outer rings (fixed-length columns) presence/absence of given OTUs in the 454tags and/or mitags.
Zooms of two selected areas of the tree are presented in A and B. Examples similar to the ones presented in Boxes A and B were observed
throughout the entire phylogeny. Unique clusters of OTUs from different phylogenetic taxa retrieved only by mitags and not by 454tags are
represented by numbers from 1 to 5. Main taxonomic groups are indicated by the tree leaves’ colors and correspond to the legend at the
bottom of the figure.
A. Relative abundance estimated by mitags and 454tags can be either very similar or different for evolutionarily related OTUs.
B. Some evolutionarily related OTUs (probably groups) may be recovered by mitags and not by 454tags (and vice versa).
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sequence (e.g. one conserved and another one variable)
may be assigned to different OTUs. Nevertheless, the
rarefaction analyses suggested that the potential inflation
of diversity, if it exists, is not too large (Fig. 1). In addition,
statistical analyses based on OTUs from hypervariable
regions (V1–V3) detected by mitags and 454tags indicated
that the extra diversity recovered by mitags is at least
partially associated with lineages not recovered with
454tags (Fig. 2) due to primer mismatches (Supporting
Information Table S9). A potential advantage of mitags is
that specific 16S rDNA V regions could be selectively
extracted to conduct de novo clustering with longer
Illumina reads. This option is of particular importance
when significant prokaryote novelty is expected that may
not be represented in reference databases.

Using all mitags, the OTU numbers per sample (alpha
richness) detected in different marine samples and size
fractions were in the range of other marine studies
(Pommier et al., 2010; Crespo et al., 2013; Sul et al.,
2013), supporting their use in microbial diversity analy-
sis. Beta diversity analyses reflected the somewhat dif-
ferent community compositions indicated by mitags and
454tags for the same samples of the prokaryote fraction,
which formed different clusters (Fig. S9). Thus, it
appears that the most reasonable approach is to avoid
mixing data from different platforms (Illumina and 454 in
this case) and approaches (PCR and non-PCR data).
Our results indicated that both approaches (i.e. mitags

and 454tags) tend to provide a similar view of community
differentiation if abundance data are omitted, which could
be associated with potential PCR biases in amplicon-
derived approaches.

miTags as an alternative for probing microbial diversity

The generation of mitags does not require prolonged
PCR, a process well known to introduce biases. Gen-
eration of chimeric sequences and unequal amplification
of targets during PCR may substantially distort microbial
diversity estimations (Acinas et al., 2005; Haas et al.,
2011). Furthermore, the primers used during PCR may
not detect certain taxa (Hong et al., 2009) and may have
variable specificity to other taxa. Our analyses indicated
that mitags recovered more taxa at different taxonomic
levels and OTUs than 454tags. The recovery of more
OTUs using mitags could be related, to a certain extent,
to errors during the OTU mapping step; limitations in the
mapping algorithm could assign different fragments of
the same 16S to different OTUs. However, the recovery
of unique phyla and classes as well as other lower taxo-
nomic levels indicates that mitags recover OTUs that
are probably missed during the PCR step before 454tag
generation. These results were also supported by
phylogenetic analyses, which showed that several
clades (composed of more than a few reference OTUs)
from different phylogenetic groups were only recovered
by mitags (Fig. 2). Furthermore, the lack of detection of
several OTUs with 454tags was statistically proved to be
related to primer mismatches, while there was no primer
bias when testing the mitag approach (Supporting Infor-
mation Table S9).

Not only did mitags and 454tags differ in the number of
recovered taxa, but also, and probably more markedly, in
the registered relative abundances for the same OTUs.
We have compared the effects of PCR using m454tags and
454tags. Some OTUs were abundant among 454tags and
rare with, for example, m454tags or mitags, and vice versa.
These differences are most likely related to PCR biases
and agree with results indicating that PCR underesti-
mates rare taxa and favors the detection of abundant
ones (Gonzalez et al., 2012). Probably for this reason, we
observed that mitags captured more members of the rare
biosphere than 454tags. Using a different dataset from
deep-ocean marine microbial communities, we performed
a comparison between mitags and itags, retrieving a
picture similar to that for mitags vs 454tags (Salazar et al.,
unpublished).

Finally, we have analysed the sequencing platform
effect by comparing mitags and m454tags and the approach
effect (amplicon PCR 454tags vs mtags). Despite the
observed deviations from a linear relationship, the non-
PCR scenarios provided the most compatible results, thus

Fig. 4. Quantitative comparison of relative abundances of mitags
(empty circles) with CARD-FISH counts or 454tags (full triangles)
versus CARD-FISH. Relative abundances (%) of four different
prokaryote groups (Bacteroidetes, Gammaproteobacteria,
Roseobacter and SAR11) estimated with CARD-FISH are
compared to mitag and 454tag estimates. A linear model was
adjusted, and 95% confidence intervals were computed for the
slope.
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supporting the use of mtags for community profiling
(Fig. 3C). Lastly, quantitative techniques other than rDNA
sequencing (i.e. FISH and flow cytometry) showed com-
parable results, suggesting that mitags exhibited an
equally good quantitative performance, at least for the
taxa compared (Fig. 4). Using data from controlled syn-
thetic microbial communities where differences between
them could be adequately quantified, it was found that
metagenomics (both 454 and Illumina) outperformed
amplicon 16S tag sequencing in quantitatively recon-
structing community composition (Shakya et al., 2013).

In summary, mitags are a feasible alternative for diver-
sity analysis and prokaryote community profiling that
avoids PCR biases. We summarize the characteristics of
the analysed approaches and platforms in Table 1.
Depending on research goals, different possibilities
emerge. The longer sequences provided by Roche-454
platforms (up to 800–1000 bp) are still highly valuable to
facilitate accurate assembly for metagenomes or for
designing new primers or probes for unknown microor-
ganisms. Similarly, itags would be of interest for those
studies focusing on diversity saturation or involving a very
large number of samples. Illumina metagenomes can be
done with as a little as 100 ng of DNA, and it is important
to note that Illumina sequencers are rapidly increasing
their throughput and sequence length. For example,
mitags are already longer in newer platforms (e.g. Illumina
MiSeq generates 2 × 250 bp paired-end reads), improving
OTU assignment and taxonomic classifications. Thus, the
mitag approach will become more powerful and accessible
in cost terms with the advance of high-throughput
sequencing technologies.

Experimental procedures

Detailed experimental procedures can be found in the online
version of this article under Supporting Information.

Building the mitag, m454tag, and 454tag datasets

From the 29 analysed metagenomes, a total of 5.03 × 109

and 1.79 × 109 raw and merged paired-end metagenomic
reads respectively were produced for Illumina (> 100 bp,
GAIIx and HiSeq2000; Supporting Information Table S2).
This represents about 700 Gb of metagenomic sequence
data. From these libraries, 6.05 × 105 16S mitags > 100 bp
were extracted (Supporting Information Table S2). Using
the 454 GS FLX Titanium platform, a total of 8.1 × 106 reads
from 13 metagenomes were produced (about 2.4 Gb), and
3.30 × 103

m454tags > 100 bp were extracted (Table S3).
miTags (> 100 bp) represented a small fraction of all merged
paired-end reads (0.09% on average for the prokaryote size
fraction; Supporting Information Table S2). Similar values
were obtained using m454tags (mean 0.11%; Supporting
Information Table S3). Because of the greater sequencing
depth allowed by the Illumina platform (about 15 Gb per

metagenome in our samples), we were able to extract
5–9 × 104 16S reads (> 100 bp) (mitags) per metagenome
from the prokaryote size fraction (Supporting Information
Table S2). A much smaller number of m454tags was recovered
with the 454 GS FLX Titanium platform because of the more
limited throughput (Table S3).

Additionally, 16S 454tags (derived from amplicon sequenc-
ing of the V1–V3 region) were obtained from six samples
from the prokaryote size fraction (0.2–1.6 μm), totalling
2.63 x 105 reads. After stringent quality filtering, this dataset
was reduced to 1.53 x 105

454tags (Supporting Information
Table S4). Using 454tags, we obtained 2.88–7.00 × 104 reads
(> 100 bp) per sample (Supporting Information Table S4).
The sequence data of 16S mitags, m454tags and 454tags used
for this study were deposited in the European Nucleotide
Archive as follows: (i) shotgun sequencing of Tara Oceans
DNA samples corresponding to size fractions for prokaryotes
(0.22–1.6 μm) done by Illumina technology (mitags)
(ERA242033, ERA242034) and by 454 Titanium pyrose-
quencing technology (m454tags) (ERA155563, ERA155562);
(ii) shotgun sequencing of Tara Oceans DNA samples corre-
sponding to size fractions for plankton and larger size frac-
tions (0.8–5, 5–20, 20–180 and 180–2000 μm) performed by
Illumina technology (mitags) (ERA242028) and 454 Titanium
pyrosequencing technology (m454tags) (ERA241291); and (iii)
16S rDNA gene sequencing (454tags) of Tara Oceans DNA
samples corresponding to size fractions for prokaryotes
(0.22–1.6 μm) done by 454 Titanium pyrosequencing tech-
nology (ERA242032).

Analysed datasets (OTU tables)

A total of four main OTU tables (OTs) were constructed: (i) the
TARA-ALL OT contained all mitags, m454tags and 454tags; (ii)
the TARA-TRIMMED OT contained the same data as in (i),
but here the 454tags were trimmed to 100–150 bp; (iii) the
TARA-V1–V3 OT included only tags that fell within the V1–V3
region; and (iv) the TARA-V1–V3-TRIMMED OT comprised
mitags within the V1–V3 region and trimmed 454tags (100–
150 bp). Finally, all four OTs were subsampled (in QIIME) to
2000 reads per sample to correct for potential biases intro-
duced by unequal sequencing effort. Supporting Information
Fig. S1 displays a simplified pipeline diagram of the datasets.
From all OTU tables, we removed Archaea, chloroplasts and
Eukarya. Singletons as well as OTUs present in only one
sample were included, as the reference-based OTU assign-
ment approach reduces the chances of generating false
OTUs (i.e. mitags/m454tags/454tags are mapped to Sanger ref-
erence sequences, thus validating automatically the quality of
the read).
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Supporting information

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Fig. S1. Pipeline flowchart showing all steps performed for
quality filtration, classification and OTU assignation of mitags.
Fig. S2. Coverage analysis of mitags against one reference
16S rDNA sequence from Escherichia coli (Brosius et al.,
1978). The upper part of the figure shows the distribution of
mitags (horizontal lines) along the 16S rRNA gene, taking into
consideration the nucleotide coordinates and the percentage
of identity (left scale) with regard to the reference gene as
well as their density (grey scale; clear grey indicates low
density). The lower part of the figure shows the coverage as
the number of times that a nucleotide position in the refer-
ence gene is covered by a mitag (right scale). Horizontal red
lines were plotted in accordance with the nucleotide coordi-
nates of the hypervariable regions (V1 to V9).
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Fig. S3. RDP classification. Mean classification confidence
values across taxonomic levels calculated with RDP classifier
for mitags, m454tags and 454tags. The dashed lines indicate the
standard deviation (±). Only confidence values > 0.5 were
considered.
Fig. S4. Rarefaction analysis of 16S mitags for the size frac-
tions 0.2–1.6 and 0.8–5 μm. All mitags were used, covering all
possible V regions of the 16S rRNA gene.
Fig. S5. Venn diagrams. miTags are indicated in salmon and
454tags in green.
A. Shared and unique taxonomic ranks (phylum, class, order,
family and genus) recovered with mitags and 454tags using the
entire dataset (i.e. mitags spanning the entire 16S rDNA and
nontrimmed 454tags; no subsampling has been carried out).
Classifications were done using the RDP classifier (see
Methods).
B. Shared and unique OTUs recovered with mitags and
454tags; dataset restricted to the V1–V3 region, with (right
side) and without (left side) subsampling.
Fig. S6. Phylum coverage of the pair set primers (27Fmod/
533R) used for 16S rDNA amplicon tags (454tags).
Fig. S7. Rank–abundance curves using different datasets
from six samples retrieved from the bacterial fraction (see
Table 1).
A. All miTags are contrasted with 454tags considering full
datasets as well as those with subsampling (2000 reads per
sample) and trimmed 454tags (100–150 bp), i.e. using TARA-
ALL and TARA-TRIMMED OTs with and without subsampling.
B. Here, results are presented for mitags falling into the V1–V3
region, while the rest of the comparisons are the same as in
A, i.e. using TARA-V1–V3 and TARA-V1–V3-TRIMMED OTs
with and without subsampling.
Fig. S8. Comparison between mitags, 454tags and flow
cytometry (FC). A best linear fit was adjusted and Pearson’s
correlation coefficient was calculated for each plot.
A. Quantitative comparison of relative abundances of
mitags and FC Prochlorococcus counts. Pearson’s r = 0.782;
P < 0.001.
B. miTags vs FC Synechococcus counts. Pearson’s r = 0.603;
P < 0.001.
Fig. S9. Dendrogram based on UPGMA clustering of Bray–
Curtis distances between samples analysed with mitags and
454tags. All the analysed samples belong to four size frac-
tions (0.2–1.6, 0.8–5, 5–20 and 20–180 μm), and all were

subsampled to 2000 reads per sample to correct for
unequal sampling efforts (a number of samples, in particular
all those analysed with m454tags, did not reach that number,
and for that reason they were excluded from this analysis).
The four analysed datasets are shown in panels A–D. In all
datasets, singletons and OTUs present in only one sample
were included. Jackknife support (subsampling = 2000) is
indicated with an asterisk (50–75% support) or double
asterisk (> 75% support). In each panel, the position for the
454tags and mitags is indicated with a box. The size fraction
from which each sample originated is indicated with colored
dots.
A. miTags spanning the entire 16S rDNA.
B. Same dataset as in A but including trimmed 454tags.
C. miTags belonging to the V1–V3 rDNA region only.
D. miTags belonging to the V1–V3 region plus trimmed 454tags.
The two branches in blue indicate the only two samples that
clustered together despite having been analysed with differ-
ent approaches and platforms.
Table S1. General description of the investigated Tara
Oceans samples.
Table S2. List of the Tara Oceans metagenomes sequenced
by Illumina used for this study.
Table S3. List of the Tara Oceans metagenomes sequenced
by 454 Titanium pyrosequencing used for this study.
Table S4. List of the Tara Oceans samples sequenced by
454 Titanium pyrosequencing using 16S amplicons (454tags).
For comparative analysis, clustering analyses were done
using two approaches: (i) using an OTU reference database
(SILVA 108 release); and (ii) de novo clustering for two inde-
pendent V regions (V1 and V3).
Table S5. OTU comparison of the six samples sequenced
with both the 454 and Illumina sequencing platforms.
Table S6. Estimation of several diversity indexes for different
Tara Oceans datasets.
Table S7. Unique phylums, classes, orders, families and
genera detected by 16S mitags that were not detected by 16S
454tags.
Table S8. Unique genera detected by tags (454tags) that
were not detected by mitags.
Table S9. Contingency table of OTU detection versus pres-
ence of primer mismatches.
Table S10. Correlation and linear fit of OTU abundances
estimated by mitag, 454tag and m454tag.
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