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Abstract
Drug-induced gene-expression profiles that invert disease profiles have recently been illustrated to be a

starting point for drug repositioning. In this study, we validate this approach and focus on prediction of novel
drugs for colorectal cancer, for which there is a pressing need to find novel antimetastatic compounds. We
computationally predicted three novel and still unknown compounds against colorectal cancer: citalopram
(an antidepressant), troglitazone (an antidiabetic), and enilconazole (a fungicide). We verified the com-
pounds by in vitro assays of clonogenic survival, proliferation, and migration and in a subcutaneous mouse
model. We found evidence that the mode of action of these compounds may be through inhibition of TGFb
signaling. Furthermore, one compound, citalopram, reduced tumor size as well as the number of circulating
tumor cells and metastases in an orthotopic mouse model of colorectal cancer. This study proposes
citalopram as a potential therapeutic option for patients with colorectal cancer, illustrating the potential
of systems pharmacology. Cancer Res; 74(20); 5690–9. �2014 AACR.

Introduction
Rational drug discovery has gained momentum by the

recently increased availability of large-scale datasets on bio-
logic activities of small molecules. Integration and utilization
of these heterogeneous resources require computational tools,
as well as expert knowledge to guide the drug discovery or
repositioning process. To enable the latter, a pioneering sys-
tems pharmacology study built the Connectivity Map (CMap),
a collection of genome-wide gene-expression readouts of
cell lines treated with more than 1,000 drug-like chemicals
(1). This approach is fundamentally based on the observation

that, in many cases, drugs with similar mechanism of action
in vivo also elicit similar expression responses in this in vitro
model system, thus providing a starting point for drug repo-
sitioning based on expression profile similarity (1, 2). More-
over, it was proposed that a drug-induced gene-expression
profile that (partially) inverts a disease-associated expression
profile could hint at a potential treatment for the respective
disease and indeed, by applying this concept, novel compounds
have been recently proposed for inflammatory bowel disease,
non–small cell lung cancer, and muscle atrophy (3–6). Thus,
the repositioning of drugs based on specifically tailored gene
signatures has been demonstrated for these diseases. However,
although an enrichment of drug–disease relations has been
found among anticorrelated profiles when all diseases are
considered together, it remains to be investigated how well
this approach works for each individual disease where an
expression profile is available.

A systematic analysis requires addressing various biases
that are inherent to the CMap data, such as batch effects, which
can be partially removed with a normalization procedure (7).
Furthermore, to predict new treatment candidates for a disease,
the disease itself needs to be clearly defined and characterized at
the molecular level. Finally, a robust gene-expression profile,
associated with the disease that is also relevant for the disease
etiology, is necessary to make accurate predictions.

Here, we present a global, unbiased approach for using
drug-induced gene-expression profiles to retrieve novel can-
didate drugs with many cancer profiles being inversely
matched. Our analysis shows a particularly strong signal for
colorectal cancer, which is the third most common cancer in
Western countries (8). Patients with colorectal cancer with
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nonmetastatic disease have excellent long-term survival as in
most cases localized primary tumors can be surgically
removed. However, survival rates drop significantly with the
occurrence of distantmetastases. Althoughhepaticmetastases
can be surgically removed in a curative intention, thereby
providing long-term cure in a significant number of patients,
metastatic disease often recurs, and patients succumb to
recurrent metastatic disease or primarily unresectable multi-
focal metastases (9, 10). The fate of patients with colorectal
cancer is therefore closely linked to the occurrence of distant
metastases. Although the clinical significance of metastasis in
colorectal cancer is evident, the process of metastasis is still
poorly understood (11). It is widely accepted that circulating
tumor cells play a pivotal role in distant tumor dissemination
and their detection is closely linked to the prognosis of patients
with colorectal cancer (12–16). To actively leave the tumor,
enter the blood stream, attach to the vessel endothelium in the
target organ, invade, proliferate, and form new lesions, abilities
far beyond those of a bulk tumor cells (e.g., migration and
invasion capacities) are essential for metastatic tumor cells. In
that respect, to reduce the risk of (further) tumor cell dissem-
ination in patients with colorectal cancer, especially in the
neoadjuvant situation (e.g., in locally advanced rectal cancer
requiring neoadjuvant treatment or the "liver first" approach in
synchronously metastasized colorectal cancer; ref. 17), there is
a huge clinical need for (novel) antimetastatic drugs.
We illustrate the power of our approach by experimentally

validating three predicted novel drugs that could be reposi-
tioned for colorectal cancer. We specifically test the three
predicted drugs for their potential to inhibit metastasis. We
confirm in vitro that these drugs inhibit cell migration. Second,
we validate that they inhibit tumor growth in vivo in a sub-
cutaneous mouse model. Finally, using an orthotopic mouse
model of colorectal cancer, we confirm the antimetastatic
properties of citalopram in vivo. Taken together, from a broad
and comprehensive bioinformatics approach, via various
computational and experimental filtering and validation pro-
cedures, we arrived at a very specific, clinical relevant indica-
tion in the context of colorectal cancer and propose that the
antidepressant drug citalopram can serve at least as a lead for
treatment of metastatic colorectal cancer.

Materials and Methods
CMap data
The CMap (build 02) is a large-scale microarray resource

cataloguing transcriptomic responses of four human cell
lines (promyelocytic leukemia HL60, breast adenocarcinoma
MCF7, prostate cancer PC3, and skin melanoma SKMEL5
cell lines) to various small-molecule treatments (referred
to as drugs for simplicity). It contains 6,100 treatment
instances for 1,309 unique drugs, of which approximately
650 are FDA approved (1, 18). To eliminate various biases in
CMap (e.g., batch effect, microarray platforms), we filtered
and normalized the raw CMap dataset (downloaded from
http://www.broadinstitute.org/cmap/) as described in detail
previously (7). For this study, we retrieved 4,849 drug-
induced gene-expression profiles from three main cell lines

(HL60, MCF7, and PC3) representing 1,144 distinct drugs (for
a detailed list, refer to Supplementary Table S3).

Disease-associated microarrays
Microarray experiments on specific diseases were identified

in the public microarray repository of NCBI Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/; ref. 19)
using disease medical subject heading (MeSH) terms that were
attributed to each study (20–22). In this study, we restricted
our analysis to disease MeSH terms that are associated with
at least one CMap drug. Moreover, we only analyzed raw
datasets conducted on HG-U133A and HG-U133-Plus2 micro-
array platforms to maximize comparability across resources.
Next, all individual samples were manually annotated as
"disease" or "healthy controls." To obtain reliable disease sig-
natures, microarray samples (disease vs. healthy) were
retained only if derived from disease-relevant primary tissues.
The RMA procedure was employed to normalize each dataset
separately (23). In cases, wheremultiple studies were found for
the same disease, we selected one representative per disease,
such that distinction between disease and healthy samples is
maximized on the basis of interarray Pearson correlation
(highest AUC in receiver operating characteristic analysis),
and discarded the others. Finally, in each disease-related gene-
expression profile, only probe sets present in HT_HG-U133A
(HT Human Genome U133 Array Plate Set, 22277 probe sets)
were kept and ranked according to their fold change. In total,
we obtained here a total of 40 disease-associated gene-expres-
sion profiles from 1,748 individual microarray samples (for
details refer to Supplementary Table S1).

Similarity score of drugs and diseases
To calculate profile similarity of a drug with a disease, we

adapted a profile comparison method initially developed for
drug–drug comparisons (7). First, a disease-related signature
was defined from the top and bottom 250 ranked probe sets of
drug-associated gene-expression profiles. We then computed
disease–drug similarity by querying the up- and downregu-
lated signatures of the disease within drug-induced gene-
expression profiles (HT_HG-U133A, 22277 probe sets without
Present/Absent call filtering) using gene set enrichment anal-
ysis (GSEA, weighted; ref. 24). At last, two enrichments scores
for up/down disease signatures were averaged to derive a final
score for disease–drug similarity. We assessed whether known
drug–disease associations (indications, excluding "antidotes"
from http://www.drugs.com/medical_conditions.html updat-
ed October 7, 2013) are significantly anticorrelated using a
nonparametric Wilcoxon signed rank test. To this end, simi-
larity scores from each cell line were ranked in the range of
(0–1) and pooled together. For each disease, we compared the
similarity scores of known drug associations to all other drugs
present in CMap (Supplementary Fig. S1 and Supplementary
Table S2). Significantly, anticorrelated diseases were defined
as P < 0.05 after FDR correction for multiple testing.

Metastatic colon cancer gene signature
To identify novel therapeutics against metastatic colorectal

cancer, we utilized a consensus gene signature defined by

New Drug Candidates for Metastatic Colorectal Cancer

www.aacrjournals.org Cancer Res; 74(20) October 15, 2014 5691



Jorissen and colleagues (25). From two independent sets of
colorectal cancers, a metastatic signature was derived that
showed consistent expression changes between early-stage
(A) and metastatic stage (D) tumors. In total, there were
86 stage A tumors, 91 stage D primary tumors, and 30 stage
D metastases. The signature was derived from consistent
changes between three comparisons: (i) early-stage (A; n ¼
44) and metastatic stage (D; n ¼ 61) primary tumors from the
first independent set; (ii) early-stage (A; n¼ 42) andmetastatic
stage (D; n ¼ 32) primary tumors from the second set; and
(iii) early-stage (A; n ¼ 42) primary tumors and metastatic
stage (D; n¼ 30)metastases from the second set. The signature
consists of 163 probe sets representing in total 127 unique
genes (73 up- and 54 downregulated; Supplementary Table S3).
Probe sets not present in the CMap dataset (HT_HG-U133A
platform) were removed from the signature. After filtering, the
metastasis signature was compared against the CMap refer-
ence collection that contains 4,849 gene-expression profiles
from three cell lines treated with 1,144 distinct drugs. We used
the scoring approach described above to quantify profile
similarity between drugs and the metastasis signature. For
each drug, a final score was obtained by averaging the enrich-
ment scores across all replicates from three cell lines (Sup-
plementary Table S4). We further examined the top 20 drugs
with lowest scores (anticorrelated) and manually searched in
the literature whether these drugs were previously associated
with colon cancer or metastasis.

Cell lines and reagents
The colorectal cancer cell lines, HCT 116 and HT-29, were

obtained from ATCC and maintained in DMEM (PAA) þ 10%
FCS (PAA), 100 U/mL penicillin (PAA), and 100 mg/mL strep-
tomycin (PAA) in a humidified atmosphere of 5% CO2 at 37�C.
The cell lineswere tested for authenticity byDSMZon a regular
basis. Enilconazole (Imazalil) and troglitazone were obtained
from Sigma-Aldrich and Neochema, citalopram was obtained
from Lundbeck.

MTT proliferation assay
The WST-1 reagent (Roche) is reduced by metabolically

active cells to formazan, an insoluble purple dye that can be
measured in a spectrophotometer, and was used according to
the manufacturer's instructions. Cells were seeded in quad-
ruplicates in increasing cell numbers in 96-well plates (125, 250,
500, 1,000 per well). After 12-hour adhesion time, the cells were
treated with the compounds as indicated. One hundred and
twenty hours later, 10 mL ofWST-1 reagent were added to each
well and the cells were again incubated for 4 hours at 37�C and
5%CO2. After incubation and 1minute shaking, the absorbance
was measured on a Genios Microplate Reader (Tecan).

Clonogenic survival assay
Clonogenic survival assay was done as previously described

(26, 27). In brief, tumor cells were plated in triplicates to yield
50 to 100 colonies per culture flask, treated with the com-
pounds in various concentrations, and incubated for 14 to
21 days. Colonies of more than 50 cells, as assessed by micro-
scopic inspection, were scored as survivors and counted.

Migration assay
The migration of tumor cells under treatment was mea-

sured via Transwell assays as described previously (26, 27).
Briefly, cells were incubated with the compounds in various
concentrations for 2 hours. Then 200 mL of cell suspension
(3 � 105 cells/mL) were added in triplicate Transwells
(Matrigel-coated Transwell inserts; 8 mmol/L pore size;
Becton Dickinson). After 18 hours of incubation, migratory
tumor cells had invaded the underside of the membrane,
were fixed, stained in thiazine and eosin solution, and
sealed on slides. Quantification was done by microscopic
counting.

TGFb signaling assay
To demonstrate the effects of the three compounds on the

TGFb signaling pathway, we used a cell line stably expressing a
secreted alkaline phosphatase reporter inducible by SMAD3/4-
inducible elements (SBE), called HEK-Blue TGFb sensor cell
line (Invivogen). This way, downstream activation of the TGFb
signaling pathway can be measured spectrophotometrically in
the cell culture supernatants. The effects of the three com-
pounds on TGFb signaling pathway were analyzed using the
HEK-Blue TGFb Kit (Invivogen) according to the manufac-
turer's instructions.

Animal experiments
All animal experiments strictly adhered to local and federal

regulations as well as FELASA guidelines, and were approved
by the local authorities before initiation.

For the subcutaneous experiments, 107 tumor cells in 100mL
of PBS were injected bilaterally into the flanks of NOD.Cg-
Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. When tumors reached a
size of 10 to 12 mm in largest diameter, the mice were
euthanized, the tumors excised, and cut into tumor fragments
of 1 � 1 mm size. The tumor fragments were implanted
subcutaneously into recipient NSG mice and monitored thrice
weekly for tumor growth. Once tumors were established,
growing, and had a size of 7 to 8 mm in largest diameter, the
treatment was initiated.

For orthotopic tumor cell injection, the mice were anesthe-
tized by isoflurane inhalation. A midline laparotomy was
performed and the cecum was exteriorized and 105 HCT
116 tumor cells in 20 mL Matrigel (BD) were injected subsero-
sally by help of a microinjection pump (WPI) under micro-
scopic visual control. After injection, the abdomen was closed
with PDS II 6-0 (J&J Ethicon) and wound clips.

The treatment regimens were as follows:

Citalopram: 60 mg/kg body weight (BW) i.p. daily, dissolved in
100 mL NaCl 0.9% in the subcutaneous experiment. Because
of low tolerability (significant weight loss due to loss of
appetite), the dose was reduced to 20 mg/kg i.p. daily for the
orthotopic experiment.

Enilconazole: 20 mg/kg BW i.p. daily, dissolved in 20 mL
DMSO

Troglitazone: 30 mg/kg BW i.p. every third day, dissolved in
100 mL 9% Solutol HS 15
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Quantification of circulating tumor cells
Thirty-five days after orthotopic tumor cell injection, the

mice in the control group were moribund and the experiment
was terminated. The mice were anesthesized by isoflurane
inhalation, blood samples were taken via intracardiac punc-
ture, and themicewere euthanized. The bloodwas layered over
LSM 1077 lymphocyte gradient medium (PAA) and the periph-
eral blood mononuclear cell (PBMC) fraction was enriched
according to the manufacturer's instructions. The resulting
PBMCs were stained with Alexa-Fluor488-anti-human EpCAM
antibody (Biolegend), EpCAM-positive cells were identified
and counted under a fluorescence microscope (Leica). The
number of circulating tumor cells (CTC) per mL of blood was
calculated according to the total blood volume obtained by
cardiac puncture.

Histologic work-up
Upon euthanasia, the livers and lungs of the animals were

removed and immediately fixed in 4% paraformaldehyde.
After paraffin embedding, the FFPE tissue was cut in 10 mm
(liver) or 2 mm (lung) sections using a Leica microtome.
Lungs were cut in a representative layer in the coronal plane;
livers were cut in three representative layers (cranial third,
middle third, and caudal third) in the transversal plane to be
able to detect the majority of metastatic lesions. The tissue
sections were stained with a standard hematoxylin and eosin
protocol and metastases were counted.

Statistical analysis
Datasets were screened for outliers with the ROUT method

(Q¼ 10%; ref. 28), a total of four statistically significant outliers
were identified (all in the orthotopic citalopram experiment:
1 among the tumor weight values, 2 among the tumor volume
values, 1 among the CTC number values). The findings were
checked for biologic validity and the values were excluded
when the cause of the deviation was considered artificial (e.g.,
faulty measurements). Three out of 4 outliers were found to be
biologically invalid values and excluded from further analysis;
the outlier among the CTC values was considered biologically
possible and was therefore not excluded. Student t test was
used to compare means. In case of time series, only the last
time-point was tested. All analyses were two tailed, and P< 0.05
was considered statistically significant (�, P < 0.05; ��, P < 0.01;
���, P < 0.001).

Propidium iodide/Annexin V apoptosis assay
A total of 5 � 104 (HT-29) or 3 � 104 (HCT116) colorectal

cancer cells per well were seeded in 24-well plates, allowed to
adhere for 12 hours, and then treated with the compounds,
negative or positive controls as indicated. Seventy-two hours
after incubation, the cells were harvested with trypsin and
washed twice with FACS-binding buffer (10mmol/L Hepes, pH
7.4, 2.5 mmol/L CaCl2, 140 mmol/L NaCl). Then the cells were
stained with propidium iodide (PI) and Annexin V–FITC
(Becton Dickinson) and 10,000 cells were analyzed and quan-
tified by flow cytometry on a FACS Calibur (BectonDickinson).
Annexin-positive cells were considered apoptotic and the ratio
of apoptotic cells/total cells was calculated.

Results
Reverse profile searches for retrieval of drug–disease
associations

To evaluate the general validity of the inverse signature
approach, we assessed how well the known disease–drug
indications were recapitulated by the expression-based
inverse correlation of disease–drug relations for individual
diseases. To this end, we first normalized the CMap dataset
to obtain 4,849 drug-induced gene-expression profiles from
three main cell lines (HL60, MCF7, and PC3) treated with
1,144 distinct drugs (7). In addition, we extracted disease-
associated microarray experiments from publicly available
NCBI GEO microarray repository using MeSH descriptors
(19). For this analysis, we next generated disease-associated
gene-expression profiles for 40 distinct diseases (details in
Materials and Methods).

Indeed, in the normalized CMap data, significant antic-
orrelations were found between drug and disease gene-expres-
sion profiles for knowndrug–disease associations for seven out
of 40 diseases (Supplementary Fig. S1). Anticorrelations were
most successful in the retrieval of disease–drug relations
involving anticancer agents that were additionally linked to
multiple cancers (six out of seven significant diseases), includ-
ing colorectal cancer (Supplementary Fig. S1). On the basis of
this result, we focused on colorectal cancer to predict novel
drug compounds aiming specifically at an inhibition of metas-
tasis as the latter is of considerable clinical relevance.

Prediction of novel drug compounds for metastatic
colorectal cancer

As colorectal cancer scored very prominently among the
general disease–drug relations and because there are insuffi-
cient treatment options, particularly for inhibiting metastasis,
we chose to illustrate the power of the inverse-signature
method by predicting and validating drugs used in other
indications as candidates for colorectal cancer treatment.
Several gene-expression signatures for colorectal cancer are
available, but the most pressing need is for drugs that inhibit
metastasis, which could also be used as an adjuvant therapy. As
opposed to previous studies that have used healthy versus
diseased states (29), we rather chose to compare nonmeta-
static tumors versus metastatic primary tumors and metas-
tases, to define a gene signature of metastatic potential rather
than a general cancer signature. Several groups have studied
the gene-expression differences between primary and meta-
static colon cancers to explain the molecular basis of the
metastatic process and predict clinical outcomes (25, 30–
32). In this study, we decided to employ the reproducible
gene-expression signature from (25) that emerged as a con-
sensus from two independent comparisons of Dukes' stage D
versus stage A colorectal cancers (Supplementary Table S3; for
details see Materials and Methods). This signature is based on
primary and metastatic tumors from patients in different
stages of colorectal cancer and includes genes that have been
implicated in the development of metastasis before. We pre-
dict novel antimetastatic drugs by finding anticorrelated drug-
induced gene-expression profiles, that is, we are looking
for genes that are upregulated in the metastasis profile, but
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downregulated by adding a drug to one of the three CMap
cell lines (Fig. 1).

The validity of the procedure is illustrated by the fact that
among the top chemicals with inverse drug-induced gene-
expression profiles, compared with the metastatic colon can-
cer gene signature (Fig. 1 and Supplementary Table S4), were
verteporfin (33), resveratrol (34), and novobiocin (35), all
of which have already been shown to inhibit migration

and/or the metastatic development of cancer cells (Table 1;
refs. 33–35). Upon drug treatment by any of these three drugs
(Fig. 2), fibronectin 1, collagen type V, notch homolog 3,
platelet-derived growth factor C, versican, integrin-b5, and
secreted phosphoprotein 1 are downregulated. Four of the
proteins encoded by these genes are involved in interactions
between the extracellular matrix (ECM) and ECM-receptors
(Supplementary Fig. S2). The proteins fibronectin 1 and its

Metastatic
disease signature

Nonmetastatic

Metastatic

colon tumor

Average difference

Drug-induced expression
profile clustering

Candidate drugsCandidate drugs
with similar profiles

colon tumor

Upregulated
71 genes

Downregulated
57 genes

Reverse profile

GSEA

search

Connectivity map
Drug-induced expression profiles

Rank Chemical name Drug indication
1 Verteporfin

3 Novobiocin
4 Mycophenolic acid Immunosuppressive
5 N-acetyl-L-Leucine

Hydrocortisone
Feldipine Antihypertensive

Antidepressant

Antidiabetic

Immunosuppressive

Vertigo treatment
6
7
8

Enilconazole

9

19
...

Citalopram

Troglitazone

Antifungal

Antibiotic
2 Resveratrol

Photosensitizer for
photodynamic therapy
Natural phenol

Figure 1. Using anticorrelated
profiles to find candidate
therapeutic chemicals. First, a
metastatic disease signature was
created by comparing metastatic
colorectal cancers with
nonmetastatic cancers. The
disease signature was then used to
search for reverse signatures in the
CMap data by Gene Set
Enrichment Analysis. The resulting
candidate drugs do not necessarily
have similar gene-expression
profiles; for example, different
subsets of upregulated genes from
the disease signature can be
downregulated in the drug-
induced expression profile.
Therefore, an extra refinement step
was added by clustering the
expression profiles of candidate
drugs and selecting from the
candidates those that have similar
gene profiles for further validation.

Table 1. Per cell line best inverse signature GSEA scores (�1 to 1) for candidate and proposed drugs

Small molecule PUBCHEM ID CMap cell line CMap batch CMap experiment ID GSEA score

Verteporfin 5362420 MCF7 678 5500024028849050407172.F09 �0.58
Enilconazole 37175 HL60 661 5500024030700072107987.B09 �0.57
N-acetyl-L-leucine 1995 HL60 660 5500024030700072107987.E06 �0.53
Troglitazone 5591 PC3 727 5500024031723100807773.C04 �0.47
Resveratrol 5056 HL60 640 640641112706.G01 �0.46
Felodipine 3333 HL60 634 5500024024214122006604.F03 �0.45
Mycophenolic acid 4272 MCF7 690 5500024030403071907257.B06 �0.40
Citalopram 2771 MCF7 720 5500024031723100807770.B03 �0.39
Novobiocin 4545 HL60 658 5500024030760072207028.G04 �0.38
Hydrocortisone 3640 PC3 714 5500024031723100807776.H03 �0.37

NOTE: Proposed drugs are in bold.
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receptor integrin-b5 together are vital for cell migration (36).
This confirms the metastatic colorectal cancer gene signature
to be appropriate for our purpose. The candidate drugs found
by inverse profile search do not fully overlap in the set of genes
whose expression is inverted relative to the disease profile.
Thus, to find themost relevant drug candidates, we refined our
list of top 20 candidate compounds by hierarchical clustering
of the drug-induced gene-expression data from individual
experiments in different cell lines and batches (Fig. 1) and
continue with those that cluster together (Fig. 2). The cluster-
ing shows that some marketed drugs such as enilconazole
(antifungal), citalopram (antidepressant), and troglitazone
(antidiabetic) induce regulatory responses similar to vertepor-
fin and resveratrol (Fig. 2).
The best scoring candidate drugs, namely enilconazole,

citalopram, and troglitazone, were selected for further exper-
imental validations. Among these, only troglitazone (an anti-
diabetic and anti-inflammatory drug) has been previously
associated with decreased migratory behavior of various cell
types (37–39) but not with colorectal cancer. For example,
troglitazone has been screened in breast cancer metastasis. It
has been reported that troglitazone reduces the migration,
adhesion, and spreading of human breast cancer cells on

fibronectin (FN)-coated plates independent of its PPARg
action (37, 39) and inhibits pulmonary metastasis of osteosar-
coma (38). Second, citalopram, an antidepressant drug of the
selective serotonin reuptake inhibitor class is approved to be
used in humans but not an obvious candidate for screening
against metastatic colorectal cancer. The third candidate
enilconazole is a fungicide that has only been approved for
topical use in veterinarymedicine. Hence, the three candidates
to be validated experimentally for their efficacy against met-
astatic colorectal cancer are not only chemically diverse, but
also come with different levels of expectation.

Mode of action
To better understand the underlying basis of our predic-

tions, we set out to find the main mode of action of the three
selected compounds. There are various signaling pathways
that could play a role. One of them, TGFb exerts its effects on
cell proliferation, differentiation, and migration in part
through its modulation of extracellular matrix components,
such as fibronectin and plasminogen activator inhibitor-1
(40), which we find downregulated by the candidate drugs. It
has recently been shown that resveratrol inhibits the TGFb1-
induced increase in cell adhesion, migration, and invasion
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of A549 lung cancer cells (41). Troglitazone has also been
shown to have antimigratory properties in glioma cells, asso-
ciated with transcriptional repression of TGFb (1–3) and their
receptors I and II and with reduced TGFb release (42) and to
inhibit the TGFb-induced epithelial–mesenchymal transition
of primary alveolar epithelial cells (43). On the basis of sim-
ilarity in downregulated genes (Fig. 2), in particular the strong
inhibition of the fibronectin 1 gene and integrin-b5, our
expectation is that our other candidate drugs would also exert
their antimigratory effect through inhibition of TGFb signal-
ing. To demonstrate the effects of the three compounds on

the TGFb signaling pathway, we utilized a cell line stably
expressing a reporter of TGFb signaling (see Materials and
Methods). The three compounds demonstrated significant
inhibition of TGFb signaling and are likely to inhibit cell
migration and invasion with the same mode of action as
resveratrol (Fig. 3), thus strengthening our predictions based
on a global computational screen.

Experimental validationof citalopram, troglitazone, and
enilconazole against metastatic colorectal cancer

We verified the predictions by in vitro tests showing that
the three compounds troglitazone, citalopram, and enilco-
nazole significantly inhibited cell migration and clonogenic
survival of HCT 116 and HT-29 human colorectal cancer
cells, both important hallmarks of metastasis (Fig. 4).
Although we were specifically searching for antimetastatic
compounds, we additionally sought to avoid growth stim-
ulatory effects on primary tumors. For this purpose, the
three compounds were tested for effects on proliferation.
They did in fact inhibit this process albeit to a different
extent (Fig. 4).

On the basis of the promising results of the in vitro assays,
next we tested the three compounds in a subcutaneous tumor
model in mice (Fig. 5A; ref. 44). We anticipated inhibition of
tumor growth as all three compounds had demonstrated
antiproliferative effects. Immunodeficient mice (NOD scid-g)
were subcutaneously implanted with tumor fragments and
monitored for tumor growth. All three compounds significant-
ly inhibited the growth of subcutaneous tumors, but enilco-
nazole and citalopram showed the most profound effects
(Fig. 5A). Of these two, citalopram was tolerated best by the
mice and was investigated further. PI/Annexin-based FACS
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assays evaluating the fraction of apoptotic cells confirmed that
the compounds were indeed inhibiting metastasis and not
generally cytotoxic on tumors (Supplementary Fig. S3).
As subcutaneous tumor models primarily simulate growth

of the primary tumor and can reproduce the metastatic
cascade only to a limited extent, we next investigated citalo-
pram in an orthotopic mouse model of colorectal cancer,
which is able to reproduce the metastatic cascade and mimic
the clinical course of colorectal cancer (44). We established an
orthotopicmodel of colorectal cancer by surgical implantation

of a tumor in the cecal wall (see Materials and Methods). Mice
were treated with citalopram or vehicle. After 35 days, all mice
in the control group were moribund due to extensive tumor
burden, whereas the mice in the treatment group were in
significantly better condition. The mice were sacrificed and
tumor volume and tumor weight were measured, which were
both significantly reduced in the citalopram group as com-
pared with the controls (Fig. 5B). As a direct correlate of the
metastatic activity of a tumor, we also quantified the CTC in
the blood of the animals (Supplementary Fig. S4). CTC
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numbers were significantly reduced in the citalopram-treated
mice, indicating a reduced metastatic activity of the tumors
after citalopram treatment. Finally, the number of metastases
in the livers and lungs were quantified and revealed a signif-
icantly reduced number of metastatic deposits in the livers of
the animals (Fig. 5C; P < 0.01). The number of metastatic
nodules in the lungswas also reduced by citalopram treatment,
however, failed to reach statistical significance (P ¼ 0.27).
These results show that citalopram can inhibit both tumor
growth as well as metastasis of colorectal cancer.

Discussion
Using a system pharmacology approach based on the inte-

gration of publicly available drug-induced gene-expression
data, we inferred that the antidiabetic drug troglitazone, the
antifungal drug enilconazole, and the antidepressant citalo-
pram could potentially lead to novel therapeutics for the
prevention ofmetastasis in colorectal cancer, thereby reducing
the leading cause of death in patients with colorectal cancer.
On the basis of the knownmode of action of the top correlated
drugs and functional analysis of inhibited genes, we propose
that the main mode of action of these compounds is via the
inhibition of TGFb signaling. We performed experimental
validations for the anticancer activities of all three compounds
using in vitro and subcutaneous tumor models in mice and we
showed the efficacy of citalopram in an orthotopic mouse
model of colorectal cancer, which is the clinicallymost relevant
model to examine the effects of a compound on the process of
metastasis.

In an orthotopic model, we demonstrated that citalopram
had effects on both CTC numbers, the gold-standard surrogate
marker for metastatic activity (45) as well as on the number of
hepaticmetastases, which is the clinically apparent outcome of
a tumor's metastatic activity.

Because of low tolerability in the subcutaneous model, we
could not test enilconazole and troglitazone in the orthotopic
colorectal cancermodel. Still, the in vitro experiments show the
desired effect so that they represent promising leads to arrive
at similar compounds, which are tolerated better and can be
tested against metastatic colorectal cancer in the future.

Although the number of hepatic metastases was significant-
ly reduced in the citalopram-treated orthotopic colorectal
cancer mice, the number of pulmonary foci was reduced as
well, although this effect failed to reach statistical significance.
This can most likely be explained by the filter effect of the
hepatic capillary bed. As previously shown, the number of
circulating tumor cells is significantly reduced in the blood
after having passed the liver (i.e., the hepatic veins) as com-
pared with before passing the liver (i.e., in the portal vein;

ref. 46). This filter effect may have weakened the impact of the
treatment on pulmonary metastasis.

The heterogeneity of cancers and especially colorectal can-
cer makes us hypothesize that even better novel therapies
could be developed through systems pharmacology. There are
many different subtypes, both genetically, such as microsat-
ellite-stable versus unstable or BRAF-driven versus KRAS-
driven and histologically, such as serrated versus classical
colorectal cancer (47). In the future, the subclassification and
molecular characterization of these colorectal cancer subtypes
into more specific diseases as well as the development of
corresponding murine disease models that mimic the specific
disease subtypes will allow for the discovery of better targeted,
stratified therapies.

We conclude that our implementation of the reverse gene-
expression profiling concept shows very promising results for
the retrieval of novel candidate drugs; in particular, for the
treatment of cancer-like disease as we have shown in our
general analysis. Indeed, CMap employs cancer cell lines to
establish drug-induced gene-expression profiles where many
genes involved in cancer-relevant pathways are expressed.
In the LINCS consortium, more data are being generated
for various types of human primary cells and cell lines that
will even improve the power of this approach (http://www.
lincsproject.org). More relevant cell line or tissue models will
make this approach more broadly applicable to other types of
diseases in addition to cancer.
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