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Abstract

Accurate orthology prediction is crucial for many applications in the post-genomic era. The lack of broadly accepted
benchmark tests precludes a comprehensive analysis of orthology inference. So far, functional annotation between
orthologs serves as a performance proxy. However, this violates the fundamental principle of orthology as an evolutionary
definition, while it is often not applicable due to limited experimental evidence for most species. Therefore, we constructed
high quality "gold standard" orthologous groups that can serve as a benchmark set for orthology inference in bacterial
species. Herein, we used this dataset to demonstrate 1) why a manually curated, phylogeny-based dataset is more
appropriate for benchmarking orthology than other popular practices and 2) how it guides database design and
parameterization through careful error quantification. More specifically, we illustrate how function-based tests often fail to
identify false assignments, misjudging the true performance of orthology inference methods. We also examined how our
dataset can instruct the selection of a ‘‘core’’ species repertoire to improve detection accuracy. We conclude that including
more genomes at the proper evolutionary distances can influence the overall quality of orthology detection. The curated
gene families, called Reference Orthologous Groups, are publicly available at http://eggnog.embl.de/orthobench2.
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Introduction

Currently, more than 6,868 complete bacterial genomes are

available in public repositories (GOLD Database v4.0) [1]. This

wealth of genomic data has increased our understanding of gene

family evolution and how various genomic events (e.g. lineage-

specific gene loss/duplication and gene fusion/fission) shape

genome architecture and organization [2–5]. Such evolutionary

and comparative studies rely on the analysis of orthologous genes

(homologous genes that diverged at a speciation event) [6] and

consequently on their robust identification. Orthology detection

methods have become pivotal in transferring knowledge [7] from

experimentally annotated proteins in model species to other non-

studied species due to the tendency of orthologs to share

equivalent molecular functions [8].

However, the identification of genome-wide sets of orthologs for

a large number of distantly related organisms is an enormous task

due to the complex evolutionary history of gene families shaped by

multiple events, such as horizontal gene transfer (HGT), gene

duplication, gene loss or gene fusion. Often, an additional level of

complexity rises due to protein domain reshuffling hindering the

classification of full-length genes [9]. To systematically represent

homology relationships between genes found in multiple species,

Tatusov et al. [10] launched the concept of orthologous groups

(COGs). Based on the original definition, these groups contain

genes that have evolved from a single ancestral sequence present in

the last common ancestor (LCA) of the species being compared,

through a series of subsequent species divergence and gene

duplication events. In addition to the mostly manually curated,

and thus irregularly updated, COG database [11], there are other

orthology resources that have adapted this definition of ortholo-

gous groups (i.e. eggNOG [12], OrthoDB, [13], OrthoMCL [14]).

Yet, they may use different sequence similarity search tools, graph-

based mining methods (i.e. triangulation vs. Markov clustering) or

extra database features (i.e. eggNOG provides hierarchical

orthologous groups). On the other hand, there are orthology

projects that except of the distinct algorithmic differences define

also alternatively what is an orthologous group (i.e. OMA [15],
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MultiParanoid [16]) or specify orthology after comparing gene

family trees with an evolutionary model, such as a species tree

(TreeFam [17], EnsEMBL Compara [18], PhylomeDB [19],

LOFT [20], Homologene [21]). Kristensen et al [22] recently

reviewed in detail the recent developments in the field and

differences between the graph- and tree-based methodologies.

This plethora of resources often overwhelms the users, who want

to know which the most appropriate database for their research.

However, any direct comparison between different inference

algorithms is daunting due to 1) dissent among researchers

concerning the definition of orthologous groups in multiple species

comparisons and 2) the lack of a consensus set of species (common
proteomes). The latter is particularly important as orthology is

always defined relative to the most recent common ancestor

(speciation event) of the genomes under consideration, i.e. the

same gene can be characterized as an ortholog or paralog to other

genes depending on whether more strictly or more broadly defined

taxonomic groups are considered [5]. By promoting community

standards, the ‘‘Quest for Orthologs’’ (QfO) consortium have

proposed a reference species repertoire and at the same time, tries

to overcome certain practical challenges. For instance, they have

been successful to deal with the lack of a consensus on file formats

supporting a unified orthoxml format [23]. This will definitely

facilitate the comparative evaluation of tools and databases. In any

case, a direct database comparison can only demonstrate the

relative performance of algorithms/methodologies, rather than

quantify the false discovery rate of each database. To achieve an

absolute validation of orthology assignments, we need to

reconstruct the evolutionary history of gene families (phylogenetic

analysis) and manually curate a ‘‘gold standard’’ set of orthologous

groups [23].

So far, the majority of benchmarks are either based on the

functional conservation of detected orthologs - e.g. experimentally

verified functional annotations, gene expression, enzymatic activity

or other genomic features, such as gene order conservation [24–

27]. However, these approaches neglect two important factors: 1)

orthology is strictly defined in terms of the evolutionary history of a

gene, and therefore is at best indirectly linked to the conservation

of function [5], [8] and 2) the majority of sequenced species lack

experimentally validated functional annotation, making them

ineligible for such a benchmark [29]. Alternatively, there are

statistical approaches, such as metaPhors [28] or latent class

analysis [25], which use multiple projects to achieve statistical

power and model the error for orthology inference. Still, they rely

and recycle data from very different projects as we describe above

and do not address the validation problem directly. Taking all

above into account, a manually curated phylogeny-based bench-

mark test (‘‘gold standard’’) is more appropriate and can, in

principle, be applied to any species. Initially, Altenhoff and

Dessimoz [26] used manually curated trees from literature to

validate 12 different orthology projects. While, recently, two

independent studies tried to elaborate the concept of phylogeny-

based benchmarking by manually curating the evolutionary

histories of 70 metazoan- and 3 eukaryotic-specific families,

respectively, and demonstrated a comparison between select

databases and the benchmark set [30], [31].

Here, we present the first phylogeny-based benchmark for 238

bacterial species. We constructed a high quality ‘‘reference’’

orthologous groups (RefOGs) through intensive manual curation:

inspecting multiple sequence alignments, evaluating the quality of

phylogenetic trees and removing false assignment of orthologs.

The main objective of our study is not the systematic analysis of

orthology databases, as there is a poor overlap between the species

repertoires of existing databases, as well as the dataset presented.

Instead, we aim to demonstrate the benefits of phylogeny-based

benchmark sets: 1) to disconnect orthology validation from gene

function, which can have a great impact for functional genomics

and 2) to explore the impact of various technical parameters (i.e.

species selection) on the robustness of inference.

Results

A ‘‘gold standard’’ set of orthologs for bacterial species
by phylogenetic analysis and manual curation

As mentioned above, identification of genome-wide sets of

orthologous groups for a large number of distantly related

organisms is an arduous task due to the complexity of the

genomic events that shape the evolution of gene families. We chose

to delineate the evolutionary history of 49 bacterial gene families

(19 universal families that are also found in eukaryotes [32] and 30

bacterial-specific families) that can exemplify complex phyloge-

netic scenarios resulting from HGT, lineage-specific gene loss and

other such events (Table S1 in Data S1). All 49 families correspond

to a COG (Clusters of Orthologous Groups) that is a high-quality

material given that the COG assignments are further checked and

curated by hand to eliminate potential false-positives. The

eggNOG algorithm uses COGs as starting material and builds

up-to-date versions that include newly sequenced genomes. We

used the eggNOG version of COGs as ‘‘homology seeds’’ for this

study. We had to focus in a defined taxonomic clade to avoid

technical challenges due to the large number of bacterial

sequences in every COG (i.e. computationally expensive phyloge-

netic trees, or increased sensitive to noise and biases i.e. sequences

may evolve at very fast rates in some clades of the Tree of Life or

even within bacteria phyla leading to misalignments [33–35]). We

decided to generate phylogenetic trees that describe the orthology

relationships of the 49 aforementioned families in the gamma-

Proteobacteria clade (238 genomes) for several reasons: 1) they

represent one third of all bacterial genomes sequenced [1,32], 2)

there is an extensive research about their contribution in

ecosystems and human health, and 3) there are well-established

species relationships within the Proteobacteria clade, which

facilitate the use of alpha- and beta-species as outgroups

[32,48,49]. This is crucial for our analysis. As we mention above,

orthology is defined relative to the common ancestor of the

compared species. The phylogenetic information in the Proteo-

bacteria clade allows us to define the boundaries of the

orthologous groups and to place the last common ancestor of

the gamma-proteobacteria in the family trees (Figure 1). We

performed a three-step curating protocol (Figure 1) for all families,

certifying that the curated orthologous groups (termed reference

orthologous groups –RefOGs): 1) are not biased towards our initial

collection of proteins (COG members based on eggNOG version

3) and 2) depict the evolutionary history of these gene families as

accurately as possible. The final dataset consists of 4,698 reference

orthologs in 49 RefOGs for hundreds of bacterial species.

Function-based tests mask false assignments that can be
revealed through phylogenetic-analysis

To demonstrate how our benchmark dataset can be used to

validate orthology inference and to compare its performance with

function-based tests, we use eggNOG, the in-house orthology

database [12]. To allow meaningful evaluation of an orthology

database, the orthologs (or orthologous groups) should be inferred

at the same phylogenetic level as the RefOGs. Accordingly, we

mapped the members of each RefOG to the eggNOG orthologous

groups for gamma-proteobacteria (gproNOGs) and classified the

predicted orthologs into three different categories: 1) true

Comparison of Orthology Evaluation Tests
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assignments (orthologs have been grouped correctly), 2) false

assignments (proteins included in the eggNOG orthologous group,

which are not reference orthologs) and 3) missing assignments

(reference orthologs which were left out in eggNOG) (Figure 2A).

In total, we identified 4359, 1374, and 429 proteins in each of

these categories, respectively. eggNOG correctly clusters 91% of

the reference orthologs, but also accumulates a considerable

number of false assignments. A closer look at our comparison

reveals that almost half of the total false assignments (,600 out of

the 1374 proteins) are accumulated mainly in 5 of the 49

Figure 1. Flowchart for generating reference orthologous groups. The initial material (INPUT) is the homologs in 385 bacterial species for 50
error-prone families (Table S1 in Data S1). The homologs were chosen from the Clusters of Orthologous Groups (COGs), as these are inferred in the
eggNOG database [10]. Depending on the complexity of the gene family, we performed two (ancient, well-conserved families) up to five (genus-
specific, highly versatile families) rounds of curation. We followed four distinct steps at every round. The homologous (or later orthologous)
sequences were aligned (Step 1) and the multiple sequence alignments (MSA) were used to build phylogenetic trees (Step 2). Each family tree was
compared to a well-accepted species tree [32]. At the first round, species topology was used to define the boundaries of gene sub-families (sub-tress
that include sequences from all three clades: a-, b- and c- Proteobacteria), while at the following rounds, bona-fide orthologous groups related to the
LCA of c- Proteobacteria. The protein sequences of the members of each orthologous groups were re-aligned (Step 3). The new alignments were
used to build Hidden Markov Models (HMMs), search the 385 bacterial genomes and define new homologs (Step 4). At the final round, we finalized
the reference orthologous groups (OUTPUT) and identified and annotated through manual inspection HGT events and outgroups.
doi:10.1371/journal.pone.0111122.g001
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orthologous groups (Figure 2B, Table S2 in Data S1) In all cases,

the true and false assignments share common protein domains,

e.g. gproNOG00600 (corresponds to RefOG075) shows how the

Glt symporter domain (Pfam: PF0316 [36]) supports the grouping

of 158 proteins that we can clearly separate in our phylogenetic

analysis. In other words, the protein domain content of orthologs

that serves commonly as a validation test of prediction [25], [26]

and as a function proxy [9,37], would classify all five orthologous

groups as correct. However, this phylogeny-based test exposes

functionally related, false-positive assignments and therefore

enables a more accurate database evaluation. To quantify the

frequency of such cases, where function-based tests fail to correctly

validate the automated orthology predictions compared to our

novel phylogeny-based test, we investigated if false- and missing-

assignments can be differentiated based on three functional/

genomic features: 1) gene order, 2) protein domain content, and 3)

Enzyme Commission (EC) numbers. We limited our comparison

to these three attributes, as not all proposed tests [24–27] are

applicable in the case of gamma-proteobacteria. We retrieved each

of these features (Tables S3–S5 in Data S1) for every protein

classified as true, false or missing orthologs (Material and

Methods). Each function-based test works well for capturing

missing assignments, but the phylogeny-based test outperforms

function-based tests in identifying false assignments (Figure 3;

Figures S1–S3 in File S1). It is clear that many false assignments

will be considered ‘‘true’’ orthologs if evaluated only on the basis of

these functional features, reflecting the limitations of function-

based tests. A closer (manual) inspection of the false assignments

(i.e. analyzing alignment quality and the phylogenetic trees built

for the families) further justifies the phylogeny-based validation

(data not shown). Among these three validation factors, gene order

can identify more accurately the false assignments, illustrating

again the need to combine orthology predictions with synteny

information where available [27], [38–40].

A phylogeny-based benchmark test can point out false
assignments resulting from HGT events

Gene families usually expand through duplication and hori-

zontal gene transfer (HGT), resulting in paralogs (duplication-

derived homologs) and xenologs (HGT-derived homologs), and

can contract through gene loss or pseudogenization [5]. HGT, a

prominent mechanism of genome evolution mainly in unicellular

species, can be identified only through phylogenetic analysis [41],

[42]. To the best of our knowledge, no existing orthology

identification approach explicitly removes xenologs from the

predicted orthologous groups. Previous studies using simulated

data [43], [44] have demonstrated that HGT disrupts all orthology

inference methods, while analysis of the latest version of the

arCOG database, based on 120 archeal genomes, revealed that

single-gene gain patterns through HGT are prominent and not

completely random [45]. This evidence highlights the importance

of identifying the xenologs and flagging them as false assignments

derived from HGT events.

Although our benchmark set is restricted to only 49 families, it

has the potential to identify xenologs, flag them as false

assignments and occasionally cluster them separately. After

manual inspection of the phylogenetic trees for the selected

families, we identified 110 proteins (Table S6 in Data S1), which

are nested within the close and distant outgroups and represent

HGT events. After benchmarking, we counted 79 out of these 110

xenologs (,5% of the false assignments) affect, in total, 19

eggNOG orthologous groups. This may be a conservative

estimate, as we ignored putative HGT events located in the

boundary between beta- and gamma-proteobacteria where it is

hard to distinguish phylogenetic signal from random noise. Yet, it

also shows that HGT occurs as well-delineated events that are in

principle traceable and there is considerably more vertical than

horizontal signal in all families studied.

To test if this particular type of error can be detected by

function-based tests, we compared the protein domain content and

gene order of the 105 xenologs to the true orthologs (true

assignments). Only in 3 out of these 19 cases do the xenologs have

different domain content compared to the rest of the members

(Table S6 in Data S1). In all other cases, the domain content is

well conserved even for xenologs (7 orthologous groups). In other

words, 16 eggNOG orthologous groups would have been falsely

considered accurate if evaluated using only this functional feature.

On the other hand, since xenologs tend to be re-located in the

genome, gene order can serve as an excellent detection tool.

Indeed, the xenologs in 9 out these 16 eggNOG groups showed

low conservation in their gene neighbors.

Impact of species coverage on orthology calling
Our previous analyses using the animal-specific RefOGs

revealed the importance of the species selection in orthology

prediction and database performance [12], [30]. We observed that

1) expanding the number of animal species in consecutive

eggNOG releases has improved our database and 2) species with

long phylogenetic branches (i.e. C.elegans) tend to accumulate

more errors. A careful inspection of the false assignments in this

study revealed a similar pattern. Therefore, to investigate further

this observation, especially since a substantial species collection

(hundreds of bacterial species vs. tens of animal species) is

available, we repeated a similar analysis using the bacterial-specific

RefOGs and exemplifying how to select a species repertoire that

most improves overall performance of an orthology inference

method. Using the eggNOG pipeline, we generated two separate

orthology datasets. The new datasets contain a smaller number of

species; 104 and 152 species respectively, which overlap with the

238 proteomes of gamma-proteobacteria in the public eggNOG

database. We refer to these two new datasets ToL-Species (Figure

S2 in File S1) and ToL-Genus (Figure S3 in File S1), respectively,

as they map at the species and genus level with the gamma-

Proteobacteria that are present in the available Tree of Life (ToL)

[32]. All three datasets have the same phylogenetic range,

meaning that the LCA of the set of the included species is the

same phylogenetic node, but they have different species coverage.

When mapping each dataset against the reference orthologs for

the overlapping 104 species, we observe a 1.4-fold increase in false

assignments for the smaller datasets over eggNOG version 3

(Figure 4A, Table S7 in Data S1). Although we observed the

opposite result in the category of missing orthologs (smaller

datasets perform better) (Figure S4 in File S1), the cumulative

error distribution (false and missing orthologs) differs significantly

(p-value ,,0.05, Kolmogorov–Smirnov test) and favors the more

inclusive dataset (eggNOG v3) (Table S7 in Data S1). This

suggests that the additional species enable the correct identification

of orthology clusters by increasing the amount of available

phylogenetic signal. After scrutinizing the data, we concluded

that there is one frequent source of error: the in-paralogs calling.

The latter is an important step in many graph-based methodol-

ogies, including eggNOG. For closely related species/genera

(‘‘short phylogenetic distance’’), i.e. Escherichia and Salmonella
(Figure 4B, Table S8 in Data S1), we tend to detect bona-fide in-

paralogous groups (paralogs derived via duplication after the

Escherichia-Salmonella speciation event). Often, missing orthologs

represent such bona-fide groups that fail to cluster together during

the graph-mining step to define a gamma-Proteobacteria (deeper

Comparison of Orthology Evaluation Tests
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ancestor) orthologous groups, instead they cluster as a species/

genus-specific cluster (Figure S5 in File S1). Alternatively, missing

paralogs are strain-specific duplications followed by increased

evolution rates that affects the sequence similarity between

paralogs. This is an excellent example how this phylogeny-based

benchmark dataset helped us to recognize a limitation of the

current eggNOG algorithm and try to design a safety net in the

next release. On the other hand, remote species (e.g. Methylo-
coccus) accumulate a large number of false assignments (Figure 4B,

Table S8 in Data S1). This stems from the opposite problem: the

sequence similarity between remote species is low and thus, it is

difficult to separate the out-paralogs (duplicated homologs

preceding the speciation event).

Discussion

The rapid accumulation of genomic data presents a challenge

for accurate large-scale, genome-wide orthology inference and

annotation projects. As orthology is essential for comparative and

functional genomics, it is crucial to define and introduce well-

accepted standards for evaluating the results of orthology

annotation. We have thus generated a phylogeny-based bench-

mark set for assessing orthology predictions in bacteria, which

neither relies on any functional information of the genes involved,

nor is subject to the shortcomings of using conserved function as a

proxy for common descent from a speciation event. It is essential

to disassociate the technical validation of orthology inference from

function in order to be able to leverage our knowledge in the field

of functional genomics, as circularity otherwise hampers any

conclusions that are drawn. The ‘‘ortholog conjecture’’ (orthologs

with a similar degree of sequence divergence, are generally more

conserved in function than paralogs) is a nice example. Although,

this has been primarily supported by theory, available empirical

studies are controversial. Systematic error quantification based on

a ‘‘gold-standard’’ will allow the improvement of orthology

inference and the study of functional evolution of proteins.

We used the latest version of gamma-proteobacteria-specific

orthologous groups from the eggNOG database to demonstrate

the advantages of RefOGs against previously used tests to 1)

identify errors concealed to functional benchmarks, 2) deal with

xenologs (falsely assigned orthologs stemming from HGT events)

and 3) determine how species selection effects orthology recon-

struction. This bacterial-specific benchmark set can be combined

with our previously published animal-specific benchmark set.

Currently, there are 119 publically available RefOGs (70 in

eukaryotic and 49 in prokaryotic species with 19 spanning both

domains of life). Similar to our previous findings –based on the

animal-specific dataset [12], [30]- the bacterial-specific RefOGs

demonstrate the importance of the species repertoire in orthology

prediction. In both cases, the evolutionary-distant species (i.e. C.
elegans or A. baumannii) accumulate the larger number of errors.

At the same time, introducing more species improves the overall

performance of the database; i.e. benchmarking the two more

recent releases of eggNOG database against the animal RefOGs

[12] or herein (Figure 4). Analyzing hundreds of bacterial species

gave us the proper resolution to quantify the errors based on the

density of selected species on the tree (short vs. long branches). To

facilitate access to the curated benchmark families, we have

created a web interface through which details on all RefOGs can

be retrieved. Alignments, protein sequences, phylogenetic trees

and sequence profile Hidden Markov Models (HMMs) for each

Figure 2. Benchmarking eggNOG database. A) To evaluate the performance of the database, we map the members (p1-p6) of every reference
orthologous group (i.e. RefOG100) to the predicted orthologous groups and use the orthologous group with the highest coverage (i.e. OG1). Three
classes of assignments are defined using OG1 orthology predictions: True assignments (TA) are the orthologs that have been grouped correctly in the
database (black box). Missing assignments (MA) are the reference orthologs that were incorrectly excluded by the method (white stripped box). False
assignments (FA) are those predictions that have been grouped in OG1, but are not reference orthologs (light red box). B) The number of true, false
and missing assignments for eggNOG gamma-proteobacteria-specific orthologous groups (gproNOGs) applying the aforementioned scoring scheme.
C) Distribution of FA per orthologous group. Half of the orthologous groups have less than 10 false assigned proteins (, = 9), contributing in less
than 10% of this error category. The red box highlights five families that contribute to the ,50% of the FA.
doi:10.1371/journal.pone.0111122.g002
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RefOG can be downloaded and used for future analyses. These

data are available under the Creative Commons Attribution 3.0

License at: http://eggnog.embl.de/orthobench2.

Finally, we need to stress the limitations of manually curated,

phylogeny-based benchmarking tests. Despite all our effort to

provide accurate RefOGs, a reference tree still remains a tentative

model of the evolutionary history of the studied species. This

implies that 1) update and maintenance are essential when novel

related sequences/genomes and improved tree-building approach-

es become available and 2) the dataset is limited to the orthology

Figure 3. Function-based benchmark tests do not separate between false- and true- assignments. Consensus functional annotations
were determined based on (i) gene order (number of neighbor gene families that are conserved across RefOG members), (ii) protein domain content
(number of protein domains that are conserved across RefOG members) and (iii) enzymatic activity (number of EC digits that are conserved across RefOG
members) for every RefOG (Material and Methods). A) The distribution of conserved features across true-, missing- and false assignments for each
family are illustrated with boxplots. The upper and lower boxplot panels exemplify families where the functional feature does or does not
discriminate, respectively, false and true assignment. B) Bar plots show the number of orthologous groups that would be classified as ‘‘accurately
inferred’’ using function-based tests. C) Density plots illustrate the probability to discriminate the true-, missing- and false-assignments for every
function-based test (density of mean number of the conserved features for every assignment category/RefOG). The data for all 49 RefOGs is shown in
the Figures S1-S3 in File S1 and Tables S2-S4 in Data S1.
doi:10.1371/journal.pone.0111122.g003
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relationships of the reference species. Regarding the former

conclusion, we are committed to supporting this effort; for

instance, we recently updated the metazoan dataset and investi-

gated errors that were pointed out from users. Still, we welcome

any community effort for this project: sequences derived from

incomplete or erroneous gene models or questionable robustness

of tree topologies after adding or removing species are challenges

for a long-lasting dataset that should be tackled on a collaborative

manner. The Quest for Orthologs (QfO) consortium has shown

that the orthology community cares for standardization and

quality control [23]. We anticipate that fostering this dataset and

internalizing our insights on species selection can instruct how to

best construct reference proteome collections to facilitate a fair and

accurate comparison of the performance of different orthology

inference methods. Right now, QfO consortium has decided on 66

Reference Proteomes spanning all three major domains of life,

which implies that a phylogeny-based benchmarking dataset

should be curated at the level of last universal common ancestor.

This brings us to the second remark: a phylogeny-based test is only

appropriate for the examined species. In principle, since we

provide a phylogenetic tree for every RefOG, the users can

benchmark orthologous groups for any subset of the reference

species and delineate the orthology/paralogy (pairwise) relation-

ships referred to every speciation event that is supported by the

tree (i.e. LCA of Enterobacteriales). On the other hand, if a

database provides orthologous groups for a more ancient

speciation event (LCA of Proteobacteria), then our dataset is not

appropriate anymore (i.e. all gamma-Proteobacteria in Figure 1

(yellow lines) should be clustered together, not only the selected

RefOG).

In conclusion, we wholeheartedly support phylogeny-based

benchmarking sets for orthology. As we demonstrated herein, they

can provide guidance on inferring robust orthology predictions

and disassociating function from the technical validation of

orthology. Nevertheless, they have limitations that can be

overcome through the collective efforts of this community.

Materials and Methods

Building the Reference Orthologous Groups (RefOGs)
Starting with orthologous groups at the level of last universal

ancestor (COGs) in the eggNOG database (Table S1 in Data S1),

we manually recovered orthologous groups for 238 gamma-

proteobacterial species, which we refer to as Reference Ortholo-

gous Groups (RefOGs). To define the boundaries of each RefOG

based on the last common ancestor (LCA) of gamma-proteobac-

teria, we used 147 genomes as outgroups (including species from

beta- and alpha-proteobacteria as well as more distant species).

Initially, the homologous sequences were aligned using MUSCLE

[46] and the alignments were used to build aLTR-supported

phylogenetic trees using PhyML version 3.0 [47]. For trees (i.e.

groups) that represent multiple gamma-proteobacteria-specific

families, we curated the family that was best resolved by the

presence of the outgroup(s) taking into account well-accepted

species trees [32,48,49]. However, in several cases no clear

outgroup could be defined, hampering the resolution at the desired

level. For these families, RefOGs were defined based on i) manual

Figure 4. Species selection is the most influential factor for robust orthology inference. The in-house pipeline eggNOG was used to
generate orthologous groups based on 104 gamma-Proteobacteria species that belong to the Tree of Life (ToL) –so called ToL-Species OGs. A) For
each of the 104 species, we count the number of false assignments in the ToL-Species OGs and eggNOG database (v3). The distribution of errors
between the two datasets is significantly different (p-value ,,0.05, Kolmogorov–Smirnov test). B) Bar plots illustrate the species-specific
contribution in the false assignments pool. Species with ‘‘dense’’ (taxonomical clades with a large number of closely related bacteria) and ‘‘sparse’’
(taxonomical clades with small representation) phylogenetic information show a different accumulation pattern (false assignments across all 49
RefOGs). Species in black letters exist both in ToL-Species OGs and public eggNOG (overlapping species), while species in orange letters indicate
eggNOG-specific species (not present in the Tree of Life).
doi:10.1371/journal.pone.0111122.g004

Comparison of Orthology Evaluation Tests

PLOS ONE | www.plosone.org 7 November 2014 | Volume 9 | Issue 11 | e111122



inspection of the alignments and ii) previously published descrip-

tions of the families.

After the initial curation of the families, all sequences

determined to be members of a particular gamma-proteobacteria

orthologous group, as well as the corresponding outgroup

sequences, were aligned using MUSCLE [46]. Alignments were

cut based on the first and last well-aligned columns as estimated

using GBLOCKS [50] with the following parameters: (Minimum

Length Of A Block: 10, Allowed Gap Positions: With Half, Use

Similarity Matrices: Yes). This was done in order to remove highly

divergent N- and C-terminal parts of each alignment where

misalignment is assumed to be common. Alignments were further

manually cleaned to remove large parts where all sequences but

one had gaps or short sequences that did not align within a

conserved ‘‘block’’. Based on the refined alignments, Hidden

Markov Models (HMMs) were built using the HMMER3 package

[51]. At a second refinement step, the HMM models were used to

identify related sequences that were previously unidentified from

the 385 aforementioned genomes. We did not define a global cut-

off for sequence recruitment, but instead treated each family

uniquely by adding all sequences with a bit score within the range

of bit scores of already known members. After the addition of those

sequences, phylogenetic trees were calculated using PhyML

version 3.0 [47] with the following settings: 100 bootstrap

replicates, optimization of tree topology, branch lengths and rate

parameters, four substitution rate categories and the NNI topology

search option. RefOG identifiers, alignments, HMM models and

trees are available at http://eggnog.embl.de/orthobench2.

Identifying the functional annotations for the reference
orthologs and eggNOG orthologous group members

eggNOG [12] generates OGs for different taxonomic levels;

thus, in the current comparison we used OGs generated for

gamma-proteobacteria species only (i.e. gproNOGs). The predic-

tions are publicly available at: http://eggnog.embl.de/version_3.

0/downloads.html. We mapped the reference orthologs to the

gproNOG orthologous groups (Figure 2). For the following

analysis, each RefOG was associated with the gproNOG for

which it would maximize the number of true orthology

assignments. For every protein in the dataset, three distinct

functional features were retrieved, using the following approach:

1) Domain content conservation analysis: Protein domain were

assigned to the proteins by scanning them against the Pfam

database (Pfam 26.0) [36] using HMMER3 [51] with curated

family-specific score thresholds taken from Pfam. We then

defined ‘‘family-specific conserved domains’’ for each RefOG

by identifying protein domains that are present in more than

75% of its members. This cutoff was chosen conservatively to

reflect the variability of domain content as found within gene

families where most of the sequence is orthologous but where

potentially a few domains can have different histories as a

result of domain shuffling. Content conservation of a protein

relative to its RefOG was then defined as the number of these

‘‘family-specific conserved domains’’ that it was found to

contain. Since the analysis considers domain content rather

than domain architecture (the set of unique domains rather

than the vector of ordered domains), no special handling of

short repeat-type domains was considered necessary.

2) Gene order conservation analysis: For each gene in the

RefOGs, we inspected 10 adjacent genes (five before, five

after, approximately matching the size of many bacterial

operons). Although this number is significantly larger from the

average operon size (3 genes) [52], it is more appropriate for

larger phylogenetic distances that important genomic rear-

rangements may have taken place. This is also in agreement

with previous studies that have identified important regulatory

and functional genomic structures, named as gene clusters

[53] or uber-operons [54], which are composed from larger

genomic regions. Gene families were defined among the

resulting total set of genes by linking together (through single

linkage) all genes that are identified as homologs by NCBI

BLAST [55] at an E-value threshold of 10e-5 and additionally

required the aligned region to be at least 90% of the length of

the shorter gene. The resulting clusters define (operationally)

gene families in the immediate neighborhood of each RefOG

member. These gene families were considered conserved

(‘‘family-specific conserved neighbors’’) for a RefOG if they

were present in the genomic neighborhoods of at least 75% of

the genes in each RefOG. Gene order conservation for a

particular protein was then defined as the number of these

conserved families also found in its 10-gene genomic

neighborhood.

3) Enzymatic activity conservation analysis: For each protein, its

closest BLAST hit in version 66.0 of the KEGG database [56]

was determined, in 99% of all cases this was to an identical

sequence. Based on the KEGG pathway membership of these

matches, and parsing the descriptions of the corresponding

KEGG pathways for Enzyme Commission (EC) numbers,

proteins were assigned EC number functional annotations.

Given the hierarchical nature of EC numbers, annotations

were expanded to include both more and less specific

descriptions (e.g. EC:1.2.3.4 expanded to EC:1.2.3.4,

EC:1.2.3.-, EC:1.2.-.-). We considered each of these descrip-

tions to be conserved for a RefOG (‘‘family-specific conserved

enzymatic activity’’) if assigned to more than 75% of its

members. The functional conservation score for each protein

was then defined as the number of these conserved functional

terms assigned.

Evaluating the effect of species selection on orthology
inference

To investigate the impact of species selection, we used the

eggNOG pipeline to generate two new datasets (available upon

request). The new datasets, referred to as ToL-Species and ToL-

Genus, are gamma-proteobacterial orthologous groups generated

using only a subset of species included in version 3 of the eggNOG

database. The Ref.Species dataset provides predictions for 104

gamma-proteobacterial proteomes found in the Tree of Life (ToL)

resource [32] – a restricted species catalog compared to the

publicly available eggNOG version 3. The ToL-Genus dataset

provides orthologs for 152 gamma-proteobacteria that map at the

genus level to the ToL species (e.g. Xylella fastidiosa is a ToL

species and belongs both at the ToL-Species and ToL-Genus

dataset, but Xylella oryzae exists only in the ToL-Genus dataset).

Both the ToL-Species and ToL-Genus proteome are subsets of the

set of 238 eggNOG gamma-proteobacterial species.
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