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GEAR: A database of Genomic 
Elements Associated with drug 
Resistance
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Drug resistance is becoming a serious problem that leads to the failure of standard treatments, which 
is generally developed because of genetic mutations of certain molecules. Here, we present GEAR (A 
database of Genomic Elements Associated with drug Resistance) that aims to provide comprehensive 
information about genomic elements (including genes, single-nucleotide polymorphisms and 
microRNAs) that are responsible for drug resistance. Right now, GEAR contains 1631 associations 
between 201 human drugs and 758 genes, 106 associations between 29 human drugs and 66 miRNAs, 
and 44 associations between 17 human drugs and 22 SNPs. These relationships are firstly extracted 
from primary literature with text mining and then manually curated. The drug resistome deposited in 
GEAR provides insights into the genetic factors underlying drug resistance. In addition, new indications 
and potential drug combinations can be identified based on the resistome. The GEAR database can be 
freely accessed through http://gear.comp-sysbio.org.

The emergence of drug resistance in clinic leads to the failure of standard treatments, thereby making the treat-
ments of diseases more complex and costly. Specifically, drug resistance is commonly found during anti-infective 
treatments, such as tuberculosis (TB), Human immunodeficiency virus (HIV), and malaria. For example, drug 
resistant TB is prevalent in patients around the world, and multi-drug resistant TB is reported to occur in about 
18% of TB patients in 2010 according to World Health Organization (WHO). Recently, acquired resistance was 
also emerged in cancer cell which not only become resistance to the drugs originally used to treat them, but 
also cross-resistant to the other drugs1. Therefore, understanding the mechanism of drug resistance may help to 
improve the drug therapy.

In general, the resistance to targeted therapy is developed due to certain genetic mutations or alteration of 
expression. Recently, a large number of mutations have been identified that are responsible for drug resistance 
with the utilization of high-throughput sequencing2. For example, the expression of P-glycoprotein (P-gp), a 
MDR1 protein product and ABC transporter, is responsible for multidrug resistance to anti-cancer drugs3. 
Moreover, numerous pre-clinical studies have demonstrated that the mutation of topo-I is a key determinant of 
CPT-11 sensitivity4. Nowadays, a number of such genes have been identified, which are unfortunately scattered 
in literature. In literature, large efforts have been made to collect drug resistance related genes, and some valuable 
resources have been constructed. For example, the HIV drug resistance database5,6, tuberculosis drug resist-
ance mutation database7, antibiotic resistance database8,9, and cancer drug resistance database10, among others. 
Despite the great usefulness of those databases, most of them focus on specific drugs. For instance, the antibiotic 
resistance database (ARDB) mainly reports the mutations of bacteria genes that lead to resistance to antibiotics. 
The cancer drug resistance database (CancerDR) provides information on gene mutations that lead to resistance, 
where the associations were inferred based drug responses in cell lines without explicit evidence. Furthermore, 
most of existing databases provide gene mutations that are responsible for drug resistance. However, except for 
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genes, those mutations outside of coding genes and within noncoding RNAs (e.g. miRNAs) may also cause drug 
resistance, which should be further considered11. Therefore, it is highly demanded to develop a comprehensive 
database about genetic factors conferring human drug resistances.

In this work, we present GEAR (A database of Genomic Elements Associated with drug Resistance) that 
aims to provide comprehensive information about genes, single-nucleotide polymorphisms (SNPs) and microR-
NAs (miRNAs) that are responsible for resistance to drugs. These associations between human drug resistance 
and genetic factors are firstly extracted from primary literature with text mining and are subsequently manu-
ally curated. Figure 1 presents the schematic content of GEAR. The GEAR database provides a user-friendly 
interactive interface, where cross-links and external links for drugs, genes, miRNAs and SNPs are also provided. 
Furthermore, the network visualization of the human drug resistome is also provided. The drug resistome depos-
ited in GEAR provides insights into the genetic factors underlying drug resistance. In addition, new indications 
and potential drug combinations can be identified based on the resistome. The GEAR database can be freely 
accessed through http://gear.comp-sysbio.org.

Results
Database contents and implications.  GEAR provides a user-friendly and powerful interface to query 
and visualize the data deposited in the database. The drugs can be easily queried with their PubChem IDs or Drug 
Names/Synonyms, whereas genes can be queried with their gene IDs or Gene Symbols/Synonyms. For each drug, 
its chemical structure, target proteins and therapeutic information can be found if available. For each gene, its 
functional annotations, pathway information and interaction partners can be easily retrieved. Similarly, detailed 
information about miRNAs and SNPs are also available in GEAR. Furthermore, the crosslinks between different 
molecules and external links to popular databases, e.g. PubChem and NCBI Gene12, are provided in GEAR. In 
addition, GEAR provides a very powerful and interactive visualization interface to the drug resistome consists of 
drug-gene/miRNA/SNP associations, which is visualized with Cytoscape plugins13. These networks can help to 
understand the molecular underpinnings of drug resistance in a systematic way.

Distributions of drugs and resistant genes.  By looking into the drug resistance events deposited in 
GEAR, we investigated the 201 drugs with known resistant genes. Based on the first level of the Anatomical 
Therapeutic Chemical (ATC) classification system14, these drugs can be grouped into 14 categories (as shown 
in Table 1). Among those drugs, we can see that anti-cancer and anti-infective agents are more likely to develop 
resistance as expected.

In addition, we investigated the functions of those genes that confer drug resistance by performing func-
tional enrichment analysis on the resistant genes associated with drugs belonging to the same ATC category. The 
results on both pathway and Gene Ontology enrichment analysis imply that for each drug category, the resistant 
genes associated with those drugs tend to be enriched in biological processes related to drug effects (As shown 
in Supplementary Table I, where each sheet was represented by the first level of ATC codes). For example, it is 

Figure 1.  Schematic content of GEAR. 
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known that the insensitivity to drug-induced apoptosis and the ejection of drugs by transporters are the com-
mon reasons for the resistance to anti-cancer drugs3. The functional enrichment analysis on the 635 resistant 
genes associated with cancer drugs indicate that these genes are enriched in the above mentioned resistant path-
ways and those related to drug therapies, e.g. ABC transporter, apoptosis, cell proliferation and P53 pathways. 
Furthermore, it is shown that the resistant genes associated with the same drug tend to interact with each other 
(p-value =​ 4.21e-161, Fisher’s exact test as shown in Supplementary Table II (F1)).

Mechanisms of drug resistance unveiled by the resistome.  In general, the drug actions were accom-
plished by the interactions between drugs and their target proteins. Therefore, the target proteins are vital to 
understanding the mechanisms of drug actions. By investigating the targets of drugs (170 drugs have target infor-
mation in GEAR), we found that almost half of the drugs (percentage =​ 46%) were single-target drugs and most 
of them targeted no more than 3 proteins as shown in Fig. 2A, implying that drugs with less targets are more 
likely to develop resistance. Indeed, we noticed that many of the targets of those drugs were also resistant genes. 
Therefore, it is not surprising that resistance tends to happen to drugs with less targets considering that diseases 
will bypass drug actions by mutating the drug targets when treated with single-target agents.

Recently, it has been found that except for the mutations to drug targets, the dysfunction of certain 
protein-protein interactions and pathways may also leads to the emergence of drug resistance15. According to the 
relationships between drug targets and their resistant genes, as shown in Fig. 2B, the drugs can be grouped into 

Drug category
Number of 

drugs
Number of 

resistant genes

Antineoplastic and immunomodulating agents (L) 60 635

Antiinfectives for systemic use (J) 41 73

Dermatologicals (D) 22 78

Sensory organs (S) 19 60

Alimentary tract and metabolism (A) 15 51

Cardiovascular systems (C) 11 39

Genito-urinary system an sex hormones (G) 10 24

Musculo-skeletal system (M) 10 23

Antiparasitic products, insecticides and repellents (P) 8 16

Nervous system (N) 7 11

Various (V) 7 27

Respiratory system (R) 6 31

Systemic hormonal preparations, excluding sex 
hormones and insulins (H) 4 25

Blood and blood forming organs (B) 3 6

Not available (NA) 48 63

Table 1.   The distribution of drugs according to their therapeutic categories. The dominant drug category 
was adopted for each drug, where the first level of the Anatomical Therapeutic Chemical (ATC) classification 
system was used as the therapeutic category.

Figure 2.  (A) The distribution of drugs according to the number of their targets, where the fraction of resistant 
genes in drug targets are also shown. (B) The distribution of drugs based on the relationships between their 
targets and associated resistant genes.
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three categories: (a) drug targets are resistant genes; (b) drug targets interact with resistant genes; (c) drug targets 
and resistant genes belong to the same pathway(s). Figure 2B shows the distribution of the drugs with both target 
and resistant gene information. We found that among the 170 drugs with target information, there were 48 drugs 
whose target proteins were also resistant genes. For example, the patients who initially responded to Gefitinib 
eventually become resistant due to the somatic mutations in the EGFR gene that was targeted by Gefitinib16. A 
small part of drugs were found to develop resistance due to the interactions between their targets and resistant 
genes. The interactions between resistant genes and drug targets indicated that protein-protein interactions are 
promising drug targets as reported in literature17. For example, NFKB1 is one target of Dexamethasone while 
STAT3 was reported as a resistant gene of the drug in GEAR, where the drug was used to treat many inflamma-
tory and autoimmune disorders. It has been reported that the interaction between NFKB1 and STAT3 plays a key 
role in the interaction between the malignant cell and its microenvironment, and promotes the development and 
progression of colon, gastric and liver cancers18. Therefore, it is reasonable to see the interaction between these 
two genes is associated with drug resistance.

Considering that drugs may develop resistance by blocking or rewiring the molecular contexts of drug targets, 
the pathway information about both drug targets and resistant genes can help to understand the molecular mech-
anisms underlying drug resistance. Among the drugs with both target and resistant gene information available, 
more than 10% of them have their targets and resistant genes in the same pathway(s). For instance, the resistant 
genes TP53, JUN and DLD of Etoposide participated in the JNK signaling pathway together with its target gene 
MAP2K7. The activation of the JNK pathway has been reported to promote the acquired resistance of T-cell acute 
lymphoblastic leukemia to Etoposide, implying the potential of JNK signaling pathway as a target in treating 
cancers19. Although the three types of relationships between drug targets and resistant genes can only explain 
half of resistant drugs, these findings can help better understand drug resistance and design more efficient drugs 
in the future.

Drugs with same resistant genes tend to have similar therapies.  It has been found that drugs with 
same targets tend to have similar mechanism and therapies. Here, we also investigated whether the drugs shar-
ing resisted genes have similar therapies. By investigating the drugs that share resistant genes, we found that 
those drugs significantly tend to share the same ATC code (p-value =​ 9.48e-92, Fisher’s exact test as shown in 
Supplementary Table II (F2)) and therefore have similar therapeutic effects, where the first level of ATC codes 
was considered. In addition, we also found that the drug pairs sharing same resistant genes tend to have similar 
chemical structures (p-value =​ 3.36e-32, Fisher’s exact test as shown in Supplementary Table II (F2)), which fur-
ther confirms that the drugs sharing resistant genes have similar therapies.

Figure 3 shows the clustering of those drugs whose resistant genes are also their targets. From the clustering 
results, we can see that drugs sharing resistant genes tend to have similar therapies. Furthermore, it can be seen 
that some genes are associated with multidrug resistance, especially the ATP-binding cassette (ABC) transporters 
that are responsible for decreased drug accumulation and the development of resistance to anticancer drugs. For 
example, the genes ABCB1, ABCG2 and ABCC1 were associated with multiple drugs and have been reported to 
be implicated in the efflux of anticancer drugs, such as Gefitinib, Docetaxel and Doxorubicin20. The results also 
showed that anticancer drugs (annotated with ATC code L01) may develop resistance with similar mechanisms, 
e.g. ABC transporters. Moreover, it was found that the resistance of drugs with endocrine therapy (annotated 
with ATC code L02) was associated with genes ESR1, ESR2 and ERBB2 that play important roles in hormone 
treatment. These findings indicated that similar drugs may have similar mechanisms when develop resistance.

Expanded applications
Resistome based drug repositioning.  From the findings observed above, we supposed that drugs shar-
ing resistant genes may have similar therapies. Therefore, new indications are expected to be predicted based on 
drug resistant genes. With the drug resistome deposited in GEAR, a drug association network can be constructed 
where an edge will be laid between a pair of drugs if they share at least one resistant gene. In this way, a module 
extracted from the drug association network consists of drugs that share same resistant gene(s). Figure 4 shows 
the association network of drugs whose resistant genes are also target genes, where some modules can be clearly 
observed. By looking at the modules, we noticed that the drugs from the same module tend to share the same 
ATC codes (p-value =​ 2.24e-3 by Fisher’s exact test as shown in Supplementary Table II (F3)), where only the first 
level of the ATC code was considered here. In addition, we found that the drug pairs from the same module tend 
to have similar chemical structures (p-value =​ 2.23e-6 by Fisher’s exact test as shown in Supplementary Table 
II (F3)), whereas the similar chemical structure means similar therapy. Thus, by investigating the modules in 
the network, we can draw the conclusion that the drugs from the same module tend to have similar therapies, 
which can be used to predict new indications for old drugs. For example, the drugs Floxuridine and Lapatinib 
share resistant genes with anti-cancer agents while these two drugs have not been used for treating cancers. 
Based on the assumption that the drugs sharing resisted genes have similar therapeutic effects, we suggested these 
two drugs can be used for treating cancers. In fact, it has been reported that Floxuridine was recommended for 
patients suffering from cancer21, and the drug Lapatinib has been used in combination with Capecitabine for 
women with HER2-positive breast cancer22. In summary, the drug resistome from GEAR can help predict new 
indications for old drugs.

Resistome based drug combinations.  In clinic, the combinatorial therapies have been widely used to 
prevent the emergence of drug resistance23, where one agent may be used for inhibiting the resistant genes that 
confer resistance to the main drugs so that drug effects can be achieved. Therefore, it is possible to predict can-
didate drug combinations based on drug resistome. For example, in GEAR, BCL2 was recorded to be associated 
with resistance to Cisplatin, a drug widely used for cancer, where the cancer cells with expression of BCL2 were 
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reported to be more significantly resistant to Cisplatin24. On the other hand, BCL2 is also a target protein of 
Paclitaxel, where BCL2 will be down-regulated and induced to be phosphorylated by Paclitaxel25. The combina-
torial chemotherapy of Cisplain and Paclitaxel has been proved effective for Cisplatin-resistant human epider-
moid carcinoma cell line by inducing apoptosis with the phosphorylation of BCL226. In GEAR, ERBB2 has been 
annotated to enhance cell proliferation and prompt resistance of breast cancer to Letrozole, a drug is used for the 
treatment of hormonally-responsive breast cancer after surgery. As a tyrosine kinase inhibitor, Lapatibinb is able 
to suppress the expression of ERBB2. In fact, the combination between Letrozole and Lapatinib has been reported 
to increase the survival of patients with metastatic breast cancer27. Beyond recovering known drug combinations, 
the resistome from GEAR can help identify potential drug combinations for further investigation. For instance, in 
GEAR, the gene ABCB1 was annotated to be the resistant gene of Doxorubicin, which was a candidate transporter 
that efflux Doxorubicin and the upregulation of ABCB1 will acquire resistance to Doxorubicin. Recently, it has 
been found that the drug Imatinib can prevent acquired resistance of cancer cells to Doxorubicin by inhibiting 
the expression of ABCB128. Thus, these two drugs may be used together to enhance the efficacy of Doxorubicin.

The cases shown above clearly demonstrated that the drug resistome in GEAR is really useful for narrowing 
down candidate drug combinations, and can be used with other information for identifying potential combina-
torial therapies29.

Conclusion
We introduce GEAR (A database of Genomic Elements Associated with drug Resistance), which provides com-
prehensive information about genetic factors causing human drug resistance, including variants in genes and 
miRNAs. We believe this valuable resource can help researchers to investigate the genetics underlying drug resist-
ance, and help understand the molecular mechanisms underlying drug resistance. In addition, the drug resistome 
can help predict new indications of old drugs and potential drug combinations.

Materials and Methods
Data resource.  We considered 121,870 published papers from MEDLINE until January 2014, where each 
paper has the MeSH Heading of ‘drug resistance’. All human approved drugs were retrieved from DrugBank 
(version 4.0)30, and human genes and miRNAs were respectively extracted from Entrez gene31 and miRBase32. 
Moreover, single-nucleotide polymorphisms (SNPs) from dbSNP database33 were also taken into account here. 
For each drug, all possible synonyms from PubChem34 Compound were adopted as its drug names. For genes, 
gene symbols as well as all their possible synonyms from HUGO Gene Nomenclature Committee (HGNC)35, 

Figure 3.  The clustering of drugs based on their resistant genes, where only resistant genes that are also 
targets of corresponding drugs are considered. Each row represents a drug denoted by the second level of 
ATC codes associated with the drug while each column denotes the resistant genes, and the red block means the 
association between a pair of drug and resistant gene while white ones mean no associations.
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Entrez and Uniprot36 were searched against MEDLINE. The miRNAs from miRBase and the SNPs from dbSNP 
were also used to query the MEDLINE.

Paper parsing.  For each paper, only the title and abstract were considered in this work. The associations 
between drugs and genes were derived based on their co-occurrence. If a drug and a gene co-occur in the same 
sentence in the abstract or title of one published paper, they are possibly related to each other. Furthermore, if 
the key word resistance/resistant/chemoresistance occurs around the drug name in the same sentence in which 
the gene also occurs, we supposed this gene is possibly responsible for the resistance to the drug. It is the same 
for miRNAs and SNPs. During paper parsing, common and stop word dictionary from STRING37 group were 
excluded from consideration in the name recognition.

Considering possible false positives in text mining, all associations between drug resistance and genomic 
elements (i.e. genes/miRNAs/SNPs) were further manually curated. As a result, 1631 associations between 201 
drugs and 758 genes, 106 associations between 29 drugs and 66 miRNAs, and 44 associations between 17 drugs 
and 22 SNPs were kept and deposited into GEAR.

Event ranking.  The initial associations between drug resistance and genomic elements were extracted from 
MEDLINE with text mining, which results in 2387 associations. Then each drug and resistant genomic ele-
ment association was manually checked by reading the sentences and references describing the resistance event. 
Consequently, 1781 associations were kept for further analysis. With the drug resistance events extracted above, 
it is possible that multiple drugs are associated with the same gene or a set of genes are reported to be related to 
the resistance of the same drug. Therefore, it is necessary to rank those events so that more potential events can 
be picked. To facilitate investigating associations between drugs and genes/miRNAs/SNPs, all associations were 
ranked based on the probability of their co-occurrence in MEDLINE with mutual information. For example, for 
drug d and gene g, the mutual information MI(d, g) between them can be calculated as follows.

=
⁎

MI d g p d g
p d p g

( , ) log ( , )
( ) ( ) (1)

where p(d, g) is the probability of d and g co-occurring in the same paper, p(d) is the probability of d occurring 
in one paper, and the same for p(g). With the mutual information available, the associations with higher mutual 
information will be ranked top and therefore considered more confident. Note that the mutual information was 
only used as a proximity to confidence since we cannot say those resistant events with few publication support 
are false.
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