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Abstract

Motivation: The rapidly expanding microbiomics field is generating increasingly larger datasets, char-

acterizing the microbiota in diverse environments. Although classical numerical ecology methods pro-

vide a robust statistical framework for their analysis, software currently available is inadequate for large

datasets and some computationally intensive tasks, like rarefaction and associated analysis.

Results: Here we present a software package for rarefaction analysis of large count matrices, as well

as estimation and visualization of diversity, richness and evenness. Our software is designed for

ease of use, operating at least 7x faster than existing solutions, despite requiring 10x less memory.

Availability and Implementation: Cþþ and R source code (GPL v.2) as well as binaries are avail-

able from https://github.com/hildebra/Rarefaction and from CRAN (https://cran.r-project.org/).

Contact: bork@embl.de or falk.hildebrand@embl.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A common task in ecology and microbiomic data analysis is to count

and compare the occurrences of different organisms throughout dif-

ferent samples, resulting in taxa count matrices. Accounting for

biases due to uneven depth of sampling between sites or time points

is a major analytical challenge. Rarefaction is a data normalization

technique designed to cope with such unequal sampling efforts, by

subsampling to the same rarefaction depth for all samples, thus sim-

ulating equal sampling effort. This allows calculation of comparable

diversity estimators and enables collectors curves, to estimate total

expected diversity.

Although several rarefaction implementations in microbiomics exist

(e.g. vegan (Oksanen et al., 2016), QIIME (Caporaso et al., 2010),

mothur (Schloss et al., 2009)), these often work poorly for very large

datasets because of memory requirements, processing limitations and

program design (see Supplementary Material), which requires custom

parsing scripts and the use of special hardware to do rarefactions. Here,

we present the rarefaction toolkit (RTK), which can perform fast rare-

faction on very large datasets comprising millions of features even on a

laptop computer, computes estimates of ecological diversity and pro-

vides appropriate visualizations of the results.

2 Implementation

RTK is implemented in Cþþ11 with an optional R interface, having

two principal run modes: ‘memory’ and ‘swap’, the latter using tempo-

rary files to reduce memory footprint. Using asynchronous thread man-

agement, RTK can make use of modern multi-core processors. The

algorithm works by transforming input counts into a vector of feature

occurrences and shuffles it using the Mersenne Twister (Matsumoto

and Nishimura, 1998) random number generator. A subset of this

shuffled vector of length equal to the desired rarefaction depth is used

to construct the rarefied sample and to estimate diversity. Multiple rar-

efactions are calculated, by reusing unused parts of the shuffled vector,

guaranteeing unique sampling without wasting computational resour-

ces. From the rarefied matrix evenness, three diversity and five richness

estimators are computed (see Supplementary Text). The R-package

‘RTK’ provides an interface and visualizations to the CþþRTK, using

the Rcpp package (Eddelbuettel and François, 2011).

3 Comparison to existing software

We used three tests to compare performance and memory consump-

tion of RTK to vegan 2.4, mothur 1.38.1 and QIIME 1.9.1 on a
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Linux cluster with 1 TB RAM, using a single core. Other rarefaction

programs were considered, but were not suited for high-throughput

analysis (see Supplementary Material).

Four published metagenomic datasets of different size were used:

Two were human gut 16S OTU count tables termed Yatsuneko

(Yatsunenko et al., 2012) and HMP (Huttenhower et al., 2012), both

processed with the LotuS pipeline (Hildebrand et al., 2014). We also

reanalyzed two metagenomic datasets, termed Guinea pig gut

(Hildebrand et al., 2012) and Tara from Tara Oceans (Sunagawa

et al., 2015), using publicly available gene count matrices (see

Supplementary Table S1 for statistics). We first computed the mean

ecosystem richness over 20 rarefactions. For all dataset sizes RTK out-

performed the other programs with regards to speed and memory

requirement (Fig. 1, Supplementary Table S2). To rarefy the Tara

gene matrix, all other programs required prohibitively large amounts

of memory (>256 GB), while RTK required only a fraction of this

(<10 GB), providing also a 5-fold increase in speed (Table 1, Fig. 1).

Second, we tested performance when the number of repeated rarefac-

tions to the same depth varied (Supplementary Fig. S2). vegan, mothur

and QIIME had a linear increase in runtime with increasing repeats,

whereas RTK runtime remained almost constant. Last, we tested mul-

ticore performance (only available in RTK), which reduced RTK run-

time by a factor of three using 8 cores (see Supplementary Fig. S3).

4 Discussion

Rarefaction is a standard data normalization technique in numerical

ecology, also useful to avoid false positive detection of rare features

when comparing unequally sampled data (Supplementary Fig. S4,

Supplementary Text). Rapid expansion in the size of microbiomic

datasets makes rarefaction difficult to employ, due to speed and mem-

ory limitations. Here we present a software solution that is well-suited

for state of the art microbiomics applications. It provides diversity esti-

mators, various visualizations and statistics related to these, is easy

and free to use, and scales better than presently available tools.
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Fig. 1. (A) Speed and memory requirements of different rarefaction programs.

Four datasets were 20 times rarefied at 95% lowest sample count. Time and

memory consumption of our implementation is consistently below that observed

using mothur, vegan or QIIME for the same purpose. vegan failed processing the

Tara table (see Supplementary material). (B) Plotting of collector curves as well

as of rarefaction curves is implemented in the R-package

Table 1. Time and memory consumption when rarefying the Tara

gene abundance matrix five times to 2.3 M counts per sample,

from 139 M counts on average per sample

Software (mode) Runtime Max. memory Success

RTK (memory) 3:50 h 140 Gb successful

RTK (swap) 3:30 h 8.5 Gb successful

R RTK (memory) 3:30 h 140 Gb successful

R RTK (swap) 3:05 h 8.7 Gb successful

QIIME 21:50 h 339 Gb successful

vegan – 387 Gb failed

mothur 17:30 h 262 Gb successful

Note: While RTK could return the rarefied data, mothur only reports diversity.
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