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As molecular biology is changing from a
descriptive to a quantitative discipline, data
quality control is becoming increasingly im-
portant. Recent years have brought many new
techniques for large-scale data acquisition, ex-
emplified by genome sequencing methods,
DNA microarrays technology and large-scale
detection of protein–protein interactions.

After a short period of initial excitement
(Table 1), data generation within each of these
three fields was followed by discussions initially
on data quality and subsequently on stan-
dards, annotation and interpretation. Quality
assessments or benchmarks have revealed
that the quality of the raw data was far worse
than initially thought. Consequently, experi-
mental protocols have been improved, for ex-
ample, by performing replicate experiments.
In addition, computational methods have been
developed to identify and correct errors that
exist within the data. However, as larger quan-
tities of data accumulate standardization and
annotation become increasingly important
for interpreting and integrating the datasets.

In this review we briefly summarize recur-
ring patterns for genome and transcriptome
analysis, and discuss in more detail the powers
and pitfalls of protein interaction data, one of
the youngest of the large-scale data sources.

Genome sequencing
When tackling large complex systems it is es-
sential to have at least a good overview of the
parts list. In this respect, genome sequencing
and annotation play a crucial role for biologi-
cal systems, as an entirely sequenced and cor-
rectly annotated genome specifies the parts
list for the entire organism.

Because sequencing technology was estab-
lished long before the first large-scale sequenc-
ing efforts began in the early 1990s {exempli-
fied by the first EST (expressed sequence tag)
sets [1] and Saccharomyces cerevisiae chromo-
some III [2]}, standards and public reposito-
ries were already in place. Although both of
these sequencing efforts [1,2] represented mile-
stones in the era of genomics, the sequence
quality was far from perfect. Learning from
these first lessons, the standards were soon
raised and the sequence quality improved
considerably for shotgun and contig-based
approaches (yeast chromosome III was fortu-
nately completely re-sequenced at a later date
to ensure proper quality).

Despite the yeast genome sequence being
completed in 1996 [3], the parts list remains
heavily debated with predicted gene numbers
ranging from 4500 to 6500, although recent
work has convincingly narrowed the value to
around 5500 genes [4]. In metazoan genomes
in general, and particularly in mammalian
genomes, the current state of gene discovery
is considerably worse as a result of complex
gene structures; in a recent update of the
Drosophila genome annotation, 85% of the
annotated gene structures were changed [5].
This level of uncertainty is particularly worry-
ing given that gene annotations often form
the basis for interpreting other types of large-
scale data.

Consequently, functional annotation remains
the major challenge in genome sequencing,
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with the standards for annotation being far less than those
for sequence quality. Immediately after the sequence of the
first yeast chromosome was published, it was noted that
function prediction could be improved considerably by
using bioinformatics tools [6]. Even after multiple genomes
have been sequenced, the annotation of genes differs con-
siderably depending on the groups involved. For example,
although the two consortia that produced the draft se-
quences of the human genome both made confident pre-
dictions of around 26 500 genes, their protein domain
counts and consequent functional predictions using al-
most identical procedures differed by ~30% [7,8]. Expert-
driven, manual and careful annotation, as it is being done
for several genomes, is therefore crucial. However, compar-
ative and integrative approaches remain hampered by the
fuzziness of the term ‘function’. When comparing ortholo-
gous genes between species it is usually the exception when
respective annotation fields in the species-dependent data-
bases are identical.

Transcriptome profiling
The first genome-wide gene expression experiment was
published in 1997 [9]. In these early days of microarray
analysis, statistical methods were rarely used for analyzing
microarray data. Typically, all genes that were more than
twofold up- or downregulated on an array were taken as
being ‘significantly’ regulated. To our knowledge, Tsien
et al. [10] were the first to point out the serious shortcom-
ings of this early practice. Today, it is common knowledge
that expression ratios are often intensity-dependent. Not
only does noise-affect cause log-ratios for low-expressed
genes to have higher variance than their more highly ex-
pressed counterparts, systematic biases in the log-ratios as
function of intensity are also observed. These effects can
be largely corrected experimentally by making die-swap
replicates, and computationally using non-linear normal-
ization techniques [11]. A vast variety of such methods are

known today, the more successful of
which rely on either loess regression or
quantile normalization. This, together
with a community acceptance of the
need for doing replicate experiments,
means that quality control of raw data
is generally in place. Although numer-
ous clustering and other analysis tools
have also been developed, interpreta-
tion of microarray expression data is
currently hampered by the lack of sys-
tematic annotation of most of the al-
ready published microarray data. It was
only from the latter half of 2002 that

the first journals required the use of a minimalist annota-
tion standard (MIAME, minimum information about a 
microarray experiment) [12], which has been available for
some time.

Protein–protein interaction screening
Large-scale interaction datasets are even younger than the
other two types of data mentioned so far. The first gen-
omics scale set was presented in 2000 by Uetz et al. [13],
and was soon followed by several others [14–16]. Although
methods for detecting protein interactions had been used
at a smaller scale much earlier, standards and public repos-
itories for such data had not been developed before the 
arrival of large-scale datasets and are currently still under
development. Based on the surprisingly low overlap be-
tween the two first datasets, concern about the data qual-
ity had already been raised in 2001 by Ito et al. [14]. In par-
allel with the development of high-throughput assays,
in silico interaction prediction methods progressed towards
comparable quality, as was revealed in 2002 by a compre-
hensive quality assessment against known protein com-
plexes from the MIPS (Munich information center for 
protein sequences) database [17,18]. We are currently still
in the phase of establishing quality control methods to
correct for shortcomings of high-throughput interactions
screens, although significant progress has recently been
made in distinguishing true interactions from false posi-
tives [19]. Analysis procedures for interpreting the raw data
and identifying protein complexes are also currently
emerging [20,21].

What is an interaction?
The interactome is less well defined than the genome and
the transcriptome, as different communities use the term
protein interaction to refer to anything from physical in-
teractions to broadly defined functional interactions, such
as neighbors in metabolic networks. Even if restricted to
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Table 1. Timeline for transcriptome and interactome analysisa

Year of advances in
large-scale data types

Refs

First large-scale data set 1997, 2000 [9,13]
Concern over data quality 2001 [10,14]
Quantitative assessment of error rates 2001, 2002 [11,17]
Normalization and error detection 2001, 2003 [11,19]
Standards for reporting experiments 2001 [12]
a
The general trends for new large-scale data types are indicated. Equivalent advances were made in the same order
for both gene expression data and protein interaction data. In both cases, it took around three years from the first
data sets were published until the first methods for correcting biases and errors had been developed.
Furthermore, standards for reporting measurements and experimental conditions are typically developed at a very
late stage. There is currently no standard for protein interaction data.
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physical interactions, it is important to discriminate be-
tween stable interactions and transient interactions: some
proteins form stable complexes, whereas others only inter-
act weakly or for short moments of time. An example of
the latter is a protein kinase and its substrates. Although
not intended, yeast two-hybrid (Y2H) assays have been
shown to detect at least some transient interactions,
whereas most of the interactions found by complex pull-
down methods are, as the name suggests, stable complexes
[22,23].

Comparison of different interaction sets is further com-
plicated by the different nature of the datasets: Y2H exper-
iments are inherently binary, whereas pull-down experi-
ments and the MIPS database report larger complexes. To
allow for comparisons, complexes are typically represented
by several binary interactions, even when comparing dif-
ferent sets of complexes. However, it is important to realize
that there is not a single, clear definition of a ‘binary inter-
action’. In case of the MIPS protein complexes, the matrix
representation, in which each complex is represented by
the set of binary interactions corresponding to all pairs of
proteins from the complex, is almost exclusively used. For
complex pull-down experiments, two different representa-
tions have been proposed: the matrix representation and
the spoke representation in which only bait–prey interac-
tions are included (Figure 1) [17,24]. The binary interac-
tions obtained using either of these representations are
somewhat artificial as some interacting proteins might in
reality never touch each other and others might have too
low an affinity to interact except in the context of the en-
tire complex bringing them together. Even in the case of
Y2H assays, which inherently report binary interactions,
not all interactions correspond to direct physical interac-
tions. This is especially true for interactions reported be-
tween nuclear proteins in yeast, where indirect interactions
involving other nuclear proteins can easily occur.

Quality assessment of protein interaction networks
To make the best possible use of the various large-scale
datasets, particularly the interaction datasets, it is impor-
tant to quantify the accuracy of the different techniques.
Ideally, such benchmarks should be performed by compar-
ing the pairwise interactions or complexes that are sug-
gested by each method with a reference dataset, which
should be highly accurate and unbiased. Although accu-
rate datasets do exist, such as the complexes in the MIPS
[18] or PDB [25] databases, these are often redundant and
strongly biased towards the types of proteins and protein
complexes that are studied the most. In addition, internal
comparisons of the different datasets with each other 
can also be quite informative. Several quality evaluations 

based on both types of comparisons have been published
[17,22,24,26].

Poor agreement between the different protein interac-
tion datasets is generally observed. However, given the lack
of agreement on what constitutes an ‘interaction’, this is
less of a surprise. Therefore, the small overlap of the datasets
might be due to the different methods complementing
each other by identifying different subsets of the interac-
tome. In this context it is worth noting that the best agree-
ment between the methods mentioned above compared
with random expectation has been obtained for the two
Y2H datasets [13,14], although this could alternatively be
explained by common systematic errors of Y2H assays.

A more indirect approach for evaluating the quality of
protein–protein interaction sets is to compare the sug-
gested interactions with known subcellular localizations or
protein functional classes, such as Gene Ontology [17,24,27].
The underlying assumption of such analysis is that interac-
tion partners should belong to the same category, the va-
lidity of which depends strongly on the choice of classes.
Co-expression of the corresponding genes has also been
used as an evaluation criterion [17,23,28]. Although these
methods can certainly give an idea of the relative accuracy
of the different datasets, obtaining quantitative performance
estimates this way is difficult to impossible, as they do not
directly relate to physical protein interactions but rather to
functional relationships in general.

There are therefore many reasons why slightly different
conclusions are obtained regarding the relative accuracy of

Figure 1. Spoke versus matrix representation.The two different
binary representations of complex pull-down experiments each has its
own pros and cons.The spoke representation will miss many true
interactions unless every protein has been used as bait; in the example
where A is used as bait, the interactions B–C and B’–C are missed.
The matrix representation will capture more true interactions from
sparse data sets, however, it is also prone to inferring some incorrect
interactions such as B–B’.
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the different assays depending on the type of benchmark
used. For instance, using a reference set of stable com-
plexes will tend to favor complex pull-down experiments,
for which the estimated accuracy and coverage further 
depends on the choice of binary representation, as the 
matrix representation gives better coverage but lower accu-
racy than the spoke representation [17,24]. Similarly, one
would expect in silico predictions to be favored by bench-
marks that compare functional classes [17]. Despite these
many complications, the general conclusion remains the
same: the error rate on large-scale experiments is high (in
the order of 50%) [17,27,28], which is also a major reason
for the poor agreement between individual datasets.

Integration of genome, transcriptome and
interactome data
Integration of the various types of large-scale data is cur-
rently receiving much attention. There appears, however,
to be little agreement on what exactly is meant by ‘integra-
tion’, not to mention how to achieve it. The word ‘integra-
tion’ is being attached to almost any analysis that involves
the combined use of two or more large datasets.

A very down-to-earth problem when combining datasets
is the lack of standardization of gene identifiers. The differ-
ent types of data (or even different datasets of the same

type) do not usually refer to the same gene using the same
identifier. Furthermore, the various gene identifiers often
originate from different databases that do not refer to each
other. As a result, even apparently simple operations, such
as pooling or comparing datasets, often involve a lot of
work. This might partly explain why most of the data inte-
gration papers published to date make use of only a small
subset of the datasets available. In an attempt to alleviate
these problems, we have recently compiled lists of synony-
mous gene identifiers for the most prominent eukaryotic
model organisms; these can be downloaded from http://
www.bork.embl.de/synonyms.

Once standardization-related problems have been over-
come, one of the major challenges in combining datasets
is to develop analysis methods that are sufficiently robust
to handle the typically high error rates, for example, the
large numbers of falsely reported protein–protein interac-
tions. Fortunately, as many people have pointed out, the
confidence of binary interactions can be much improved
by only considering those interactions that are supported
by two or more data sources (i.e. study the overlap between
networks) [17,23,26,27,29–32]. There are, however, several
problems with such simplistic approaches; most impor-
tantly, a very considerable fraction of true interactions will
probably be lost as very little overlap is generally observed
between networks. Also, as the number of datasets in-
creases and those that are larger in size are considered, the
number of false-positive interactions that are supported by
multiple datasets will increase dramatically. This has al-
ready become an issue for certain types of in silico interac-
tions [33].

In addition to the integration of different types of large-
scale datasets within species, integration across species
through genome-wide assignment of orthologous genes
can potentially increase the signal-to-noise ratio. Recent
studies comparing microarray expression data for S. cerevisiae
and Caenorhabditis elegans have revealed that evolutionary
conservation of co-expression provides much stronger evi-
dence for a functional relationship than co-expression in
just one species [34,35]. Also, computationally predicted
interactions based on conserved gene neighborhood, co-
occurrence and protein fusion are by nature cross-species
comparisons [33].

One problem that arises when using different data sources
as independent lines of evidence is that different experi-
ments often do not detect the same kind of interactions
(Figure 2). There might be perfectly good reasons why net-
works derived from Y2H interaction screens show poor
overlap with networks based on co-expression; one could
easily imagine both clusters of co-expressed genes that do
not encode physically interacting proteins or proteins that
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Figure 2. Overview of the interaction classes covered by different
types of large-scale data sets.The colored regions show the classes of
interactions on which information can be obtained from each data
type.As a consequence of the partial overlap of the data types, both
agreement and disagreement can provide information of the class of
interaction.
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interact if both are present but not co-expressed. As men-
tioned above, there are also differences in the types of
physical interactions that can be captured by different assays.

It might therefore be fruitful to consider support, or lack
of it, from the various datasets as informative when inter-
preting interactions. Figure 3 shows the complete set of 12
binary interactions supported by both Y2H [13,14] and mi-
croarray expression data, but which are not found by com-
plex purification methods [15,16]. Interestingly, all inter-
actions involve at least one kinase, and current literature
indicates that five of the interactions also involve either a
substrate or an activator of the kinase in question, which
demonstrates that Y2H data are capable of identifying
transient interactions not found by complex purification.
Of the remaining seven interactions, that occurring be-
tween Ste20p and Bud7p is probably also a true transient
interaction, as both proteins have been shown to be 
involved in bud formation.

In addition to using combined evidence to resolve the
type of individual binary interactions, integration can also

provide insight into complex networks where all interac-
tions cannot be discovered by any single experimental
method. An early example of this is the reverse engineering
of galactose metabolism in S. cerevisiae from Y2H, chro-
matin-IP and microarray expression data [36].

Concluding remarks
The availability of a variety of genomics-scale data raises
hope that a combination approach might lead to many
biological discoveries. However, to facilitate integration of
data it is important that all data of a particular type can be
obtained from a single curated repository. Standards for
how to report experimental conditions and measurements
are a prerequisite for the success of such databases.
Preferably, standards should be agreed upon at an early
stage, before large amounts of data have accumulated. To
successfully integrate the often highly error-prone large-
scale datasets, comparable quality assessments (benchmarks)
are equally important, as knowing the error rates permits
proper statistical frameworks to be applied. So far, how-
ever, most approaches to data integration have merely
looked for agreement between datasets to lower the error
rate. However, it is important to keep in mind that the 
different methods do not all measure the same type of 
interactions, and that agreement cannot always be ex-
pected. There is consequently a need for more intelligent
integration methods to be developed.
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