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BACKGROUND & AIMS: To identify gut and oral metagenomic
signatures that accurately predict pancreatic ductal carcinoma
(PDAC) and to validate these signatures in independent co-
horts. METHODS: We conducted a multinational study and
performed shotgun metagenomic analysis of fecal and salivary
samples collected from patients with treatment-naïve PDAC
and non-PDAC controls in Japan, Spain, and Germany. Taxo-
nomic and functional profiles of the microbiomes were
characterized, and metagenomic classifiers to predict PDAC
were constructed and validated in external datasets. RESULTS:
Comparative metagenomics revealed dysbiosis of both the gut
and oral microbiomes and identified 30 gut and 18 oral species
significantly associated with PDAC in the Japanese cohort.
These microbial signatures achieved high area under the curve
values of 0.78 to 0.82. The prediction model trained on the
Japanese gut microbiome also had high predictive ability in

http://crossmark.crossref.org/dialog/?doi=10.1053/j.gastro.2022.03.054&domain=pdf


WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

The human gut and oral microbiome are potentially
associated with pancreatic ductal carcinoma. However,
no previous studies have used shotgun metagenomics
and validated results with external cohorts.

NEW FINDINGS

Metagenomic classifiers trained on the gut and oral
microbiomes predicted pancreatic ductal carcinoma
accurately, and were validated in independent cohorts.
Several microbial species were associated with risk of
pancreatic ductal carcinoma–related mortality.
Bacteriophages infecting pancreatic ductal carcinoma–
associated species were identified.
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Spanish and German cohorts, with respective area under the
curve values of 0.74 and 0.83, validating its high confidence and
versatility for PDAC prediction. Significant enrichments of
Streptococcus and Veillonella spp and a depletion of Faecali-
bacterium prausnitzii were common gut signatures for PDAC in
all the 3 cohorts. Prospective follow-up data revealed that pa-
tients with certain gut and oral microbial species were at higher
risk of PDAC-related mortality. Finally, 58 bacteriophages that
could infect microbial species consistently enriched in patients
with PDAC across the 3 countries were identified. CONCLU-
SIONS: Metagenomics targeting the gut and oral microbiomes
can provide a powerful source of biomarkers for identifying
individuals with PDAC and their prognoses. The identification
of shared gut microbial signatures for PDAC in Asian and Eu-
ropean cohorts indicates the presence of robust and global gut
microbial biomarkers.
LIMITATIONS

In vitro and in vivo models would provide mechanistic
insights behind the association between the microbiome
and the development or progression of pancreatic
ductal carcinoma.

IMPACT

Identification of shared gut microbial signatures across
Keywords: Pancreatic cancer; Microbiome; Shotgun meta-
genomics; Biomarker; Bacteriophage.

ancreatic cancer remains one of the most lethal
independent cohorts from different countries indicates
the presence of a robust and global microbial signature
for pancreatic ductal carcinoma.

* These authors contributed equally.

Abbreviations used in this paper: AUC, area under the curve; CP, chronic
pancreatitis; DE, Germany; ES, Spain; FDR, false discovery rate; IL,
interleukin; IPMN, intraductal papillary mucinous neoplasm; JP, Japan;
KEGG, Kyoto encyclopedia of genes and genomes; KO, KEGG ortholo-
gies; MAG, metagenome-assembled genome; MO, KEGG module; PDAC,
pancreatic ductal carcinoma; PPI, proton pump inhibitor; rRNA, ribosomal
RNA.
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Pmalignant neoplasms, with an overall 5-year sur-
vival rate of <5%.1,2 Unfortunately, most patients present in
the advanced stage of the disease; of the 15% to 20% of
patients who undergo surgical resection, only 20% survive
to 5 years.3,4 Owing to population growth and aging, the
number of cases and deaths from pancreatic cancer have
doubled from 1990 to 2017.1 Prior studies indicated
smoking, alcohol, obesity, periodontal disease, and diabetes
mellitus as risk factors for pancreatic cancer4 and identified
numerous potential markers for pancreatic cancer in blood
and tumors. However, we are still unable to detect early
pancreatic cancer.5

In the past decade, 16S ribosomal RNA (rRNA) gene-based
microbiome studies have explored the association of pancre-
atic cancer with the human oral6–9 and gut microbiomes.10,11

Studies using mouse models have also revealed the involve-
ment of the gut microbiome in pancreatic carcinogenesis.12–16

These studies strongly suggest profound associations of the
gut and oral microbiomes with pancreatic cancer. However,
there still remains a need to identify high-resolution microbial
and functional features by shotgun metagenomics and to
evaluate the reproducibility of signatures across independent
cohorts, which is crucial to establishing a robust and gener-
alizable predictive model for pancreatic cancer.17

In this study, we analyzed and characterized the gut and
oral microbiomes of Japanese (JP) patients with pancreatic
ductal adenocarcinoma (PDAC) through a shotgun meta-
genomic sequencing approach. For case comparisons, we
selected controls who were matched for possible con-
founding factors to identify true associations between PDAC
and the microbiomes.18 We then developed gut and oral
metagenomic classifiers to predict PDAC, which were
further validated in external datasets from Spanish (ES) and
German (DE) cohorts. In addition, we explored microbial
species that could serve as prognostic markers for patients
with PDAC, and bacteriophages that potentially infect PDAC-
associated species.
Material and Methods
Study Design and Sample Collection in the JP
Cohort

We conducted a multinational study in Japan, Spain, and
Germany. The ethics committees and the institutional review
boards approved conducting this study in all participating
institutions, and written informed consent was obtained
from all participants (Supplementary Methods). In Japan, we
recruited participants from the National Center for Global
Health and Medicine (NCGM) Hospital and Tokyo Medical
University Hospital, and the samples were analyzed at
NCGM, Waseda University, the RIKEN Center for Integrative
Medical Sciences, the National Institute of Advanced Indus-
trial Science and Technology, and the European Molecular
Biology Laboratory. Fecal and salivary samples were
collected from 47 JP patients with treatment-naïve PDAC
and 235 controls (1:5 case/control ratio, Table 1). The
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Table 1.Characteristics of Patients With Pancreatic Cancer and Controls in the 3 Cohorts

Japanese cohort Pancreatic cancer Matched controls P

Total samples (feces, saliva) 47 (43, 47) 235 (235, 235) NA

Age >70 (y) 27 (57.5) 139 (59.2) .829

Sex, male 26 (55.3) 130 (55.3) 1.000

BMI > 25 (kg/m2) 6 (12.8) 51 (21.7) .231

Smoking index >400 12 (25.5) 72 (30.6) .485

Alcohol 22 (46.8) 136 (57.9) .163

Rice 5.28±0.95 5.45±0.96 .451

Bread 4.09±1.35 4.20±1.30 .605

Noodles 3.28±1.12 3.29±1.12 .977

Vegetables 4.70±1.49 4.80±1.38 .635

Fruit 4.02±1.50 3.99±1.48 .886

Seafood 3.77±1.16 3.79±0.88 .865

Meat 3.98±1.01 3.81±0.82 .473

Eggs 3.64±1.22 3.77±1.13 .641

Milk 3.79±1.67 3.39±1.82 .233

Coffee 4.13±1.88 4.36±1.88 .274

Periodontal disease 4 (8.5) 33 (14.0) .476

Wearing dental crowns 30 (63.8) 177 (75.3) .104

Implant or tooth bridge 17 (36.2) 101 (43.0) .388

Denture wearing 17 (36.2) 85 (36.2) 1.000

Gingival bleeding 7 (14.9) 41 (17.5) .832

Tooth root exposure 10 (21.3) 73 (31.1) .179

Tooth wobbling 19 (40.4) 108 (46.0) .487

Diabetes mellitus 14 (29.8) 47 (20.0) .137

Dyslipidemia 14 (29.8) 86 (36.6) .373

Hypertension 24 (51.1) 124 (52.8) .831

Inflammatory bowel disease 0 0 NA

Irritable bowel syndrome 6 (12.8) 27 (11.5) .804

Bristol Stool Scale, type 1 or 2 9 (19.2) 48 (20.4) .842

Bristol Stool Scale, type 3, 4 or 5 42 (89.4) 221 (94.0) .243

Bristol Stool Scale, type 6 or 7 10 (21.3) 36 (15.3) .313

Antidiarrheal agent 0 0 NA

Laxatives 12 (25.5) 41 (17.5) .195

Probiotics 9 (19.2) 44 (18.7) 1.000

PPIs 18 (38.3) 72 (30.6) .304

NSAIDs 6 (12.8) 14 (6.0) .117

Low-dose aspirin 5 (10.6) 23 (9.8) .793
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Table 1.Continued

Japanese cohort Pancreatic cancer Matched controls P

Cancer stage, early/late 20 (42.6)/ 27 (57.5) NA NA

Death during follow-up 32 (68.1) NA NA

Median months of follow-up (IQR) 15.3 (6.2-27.8) NA NA

Spanish cohort (Kartal et al)22 Pancreatic cancer Controls P

Total samples (feces, saliva) 57 (57, 43) 50 (50, 45)

Age mean 71.5 71.3 NA

Sex, male 36 31 .902

Obesity 16 13 .81

Smoking 28 26 .766

Alcohol 40 39 .358

Diabetes 17 5 .016

Cholesterol 25 13 .054

Periodontal disease 17 11 .358

Receding gums 23 13 .117

Antibiotics 32 27 .824

Probiotics 2 3 .663

PPIs 17 10 .243

Jaundice 32 2 <.001

Cancer stage, early/late 26/32 NA NA

German cohort (Kartal et al) Pancreatic cancer Controls P

Total samples (feces) 44 32

Age mean 68.7 48 NA

Sex, male 19 15M .749

Smoking 13 2 .018

Alcohol 18 5 .023

Diabetes 12 2 .033

Antibiotics 12 1 .006

PPIs 22 3 <.001

Cancer stage early/late 17/26 NA NA

NOTE. Numbers in parentheses show percentages. Values presented with a plus/minus sign are means ± SD. Categorical data
were compared using the c2 test or Fisher’s exact test as appropriate. Continuous data were compared using the Mann–
Whitney U test. For dietary habits, patients were specifically asked about typical eating patterns in the previous month,
rated on a 7-point Likert scale (1, never or rarely; 2, 1–3 times/month; 3, 1–3 times/week; 4, 4–6 times/week; 5, once/day; 6,
twice/day; and 7, 3 or more times/day).
BMI, body mass index; NA, not applicable; NSAIDs, nonsteroidal anti-inflammatory drugs; IQR, interquartile range.
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controls were selected from noncancer JP subjects by
matching for possible confounders and risk factors4 such as
age, sex, body mass index, lifestyle-related factors, dietary
habits, dental/oral problems, comorbidities, bowel diseases,
Bristol stool scale, and medications (Supplementary
Methods). Because most of the subjects were elderly, we
collected stimulated saliva samples at the hospital in the
morning after overnight fasting.19 For fecal samples, the
participants defecated at home and placed the feces in a
dedicated tube containing Cary–Blair medium, which is
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Figure 1. Comparison of the fecal and saliva microbiomes between controls and PDACs. (A) Violin plots showing the Shannon
index of the gut and oral microbiomes at the species level in the controls and patients with PDAC. Numbers in the plots show P
values obtained from the Wilcoxon rank-sum test. (B) MDS plots showing the similarity of the samples. Red and blue circles
represent PDAC and controls, respectively. P values were obtained from permutational analysis of variance. (C) Bar plots
showing the association of each metadata to the microbiome. Green color indicates a significant association (FDR < 0.05,
permutational analysis of variance). (D) Bar plots showing the species significantly associated with PDAC (FDR < 0.1,
generalized regression model, Supplementary Methods). Red and blue colors represent enriched and depleted species in
PDAC, respectively. Line plots and heat maps show effect sizes (b-coefficients) of PDAC for the species obtained from the
generalized regression models. Numbers in parentheses beside the species names indicate mOTU ID. (E) Associations be-
tween KEGG pathways and PDAC assessed by pathway-enrichment analysis. Red and blue colors represent significant
enrichment and depletion of KOs in patients with PDAC, respectively (FDR < 0.1, Fisher’s exact test, Supplementary
Methods). Top 10 pathways with FDR < 0.1 are shown in the figure. (F) Volcano plots showing the associations between
MOs and PDAC. Red and blue colors represent a significant enrichment and depletion of the MOs in patients with PDAC,
respectively (FDR < 0.1, generalized regression model). MDS, multidimensional scaling.
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relatively stable at 4�C and 25�C.20 As bowel-cleansing
agents for colonoscopy can have a profound effect on the
gut microbiome,21 we avoided collecting samples within 1
month after bowel cleansing. Both salivary and fecal samples
were stored at �80�C until DNA extraction.
Sample Collection in the ES and DE Cohorts
In the ES cohort, participants were recruited from the

Hospital Ramón y Cajal in Madrid and Hospital Vall d’Hebron in
Barcelona, Spain.22 Fecal samples were collected from 57 can-
cer-treatment–naïve PDAC cases and 50 controls, whereas
saliva samples were collected from 43 PDAC cases and 45
controls. In the DE cohort, fecal samples from 44 PDAC cases
and 32 controls were collected from the Department of Surgery,
University Hospital of Erlangen, and the Section for Trans-
lational Hepatology, Department of Internal Medicine I, Goethe
University Clinic, Frankfurt.22 Stool and saliva (mouthwash)
samples were preserved in RNALater and stored at 4�C
immediately for 12 hours, then transferred to �20�C for
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another 24 hours, then stored at –80�C until DNA extraction.
Saliva samples were collected in the morning of the recruitment
day, before breakfast was taken and dental hygiene was done.

Shotgun Metagenomic Sequencing and Data
Analysis in the JP Cohort

Bacterial DNA was isolated according to methods described
in previous studies.23,24 Sequencing libraries were generated
using a NEBNext Ultra II DNA Library Prep Kit for Illumina, and
151-base pair paired-end reads were sequenced on a HiSeq X.
Quality control of the metagenomic data was performed, and
contamination with human and 4X reads was excluded by
mapping the metagenomic reads to the human (hg38) and 4X
genomes using bowtie2.25 MEGAHIT26 was used to assemble the
quality-controlled reads, and Prodigal27 was used to predict
genes from the contigs (>1 kb). The genes were clustered using
Linclust28 with a �95% similarity threshold, and a nonredun-
dant gene set was constructed. Functional annotation for the
genes was performed using eggNOG-mapper.29 Taxonomic pro-
files of themetagenomic sampleswere obtainedwithmOTUs2,30

and functional profiles were obtained by mapping the meta-
genomic reads to the nonredundant genes using bowtie2.

Identification of Bacteriophages in the
Metagenomic Data

Bacteriophage genomes were explored in the gut and oral
metagenomic datasets of the JP cohort. Host prediction of the
detected phages was performed by matching CRISPR spacers
identified in the reference microbial genomes in the RefSeq.

Statistical Analysis and Model Construction
Differentially abundant microbial features between patients

with PDAC and controls were detected by generalized linear
regression analysis. The regression model was constructed on
log10-transformed abundances of each feature while adjusting
for age, sex, and body mass index. Multiple testing was adjusted
for by the Benjamini-Hochberg method. A random forest clas-
sifier was used to predict PDAC based on the taxonomic and
functional profiles of the microbiomes. The classifier was
trained by 5-times repeated 10-fold cross-validation using the
train function in the caret package. Relative abundances of each
feature were log10-transformed and standardized by z-score
transformation before the training.

We also conducted a prospective follow-up study of pa-
tients with PDAC to estimate the risk of mortality in the JP
cohort. Survival analysis was performed using the Cox regres-
sion model with LASSO feature selection. The model was con-
structed with the glmnet function, and the top 10 most
important microbial species predicting prognosis were
selected.

Additional detailed methods are provided in the online
Supplementary Methods.

Results
Species and Functional Characterization of the
PDAC Microbiome

Fecal and salivary samples were collected from 47 JP
patients with treatment-naïve PDAC and 235 controls
(Table 1). The baseline characteristics were well balanced
between PDAC cases and controls. PDAC included early (I
[n ¼ 4] and II [n ¼ 13]) and advanced (III [n ¼ 7] and IV
[n ¼ 20]) stages. Shotgun metagenomic analysis of these
fecal and salivary samples (Supplementary Tables 1 and 2)
identified 1151 and 517 species (Supplementary Figure 1),
respectively, based on the marker-gene-based profiling
method using mOTUs2,30 and 6846 and 6457 Kyoto ency-
clopedia of genes and genomes (KEGG) orthologies (KOs)
from the assembled contigs, respectively.

We found that the Shannon index was decreased (P ¼
.087) in the gut microbiome, whereas it was increased in the
oral microbiome (P ¼ .0069) in patients with PDAC
compared with controls (Figure 1A). Similar results were
also observed for the inverse Simpson index and Pielou’s
evenness of the gut and oral microbiomes (Supplementary
Figure 2A). Multidimensional scaling analysis revealed dif-
ferences in b-diversity for both the gut and oral micro-
biomes between the patients with PDAC and controls (P ¼
.0001, Figure 1B). Although various metadata, such as age,
alcohol consumption, medication, and other diseases, were
significantly associated with the microbiomes (false dis-
covery rate [FDR] < 0.05), PDAC had the largest explanatory
power for the variation in both the gut and oral micro-
biomes (Figure 1C). The deviation of the microbiomes of
patients with PDAC from controls was slightly more pro-
nounced for individuals in advanced stages than those in
early stages (Supplementary Figure 3).

A comparison of species abundance between patients
with PDAC and controls identified 30 and 18 species with
significant changes in the gut and oral microbiomes,
respectively (FDR < 0.1, Figure 1D, Supplementary Tables 3
and 4, Supplementary Figure 2B). Species increased in the
gut microbiomes of patients with PDAC included some oral
species, such as Streptococcus spp (Streptococcus oralis,
Streptococcus vestibularis, and Streptococcus anginosus),
Veillonella spp (Veillonella atypica and Veillonella parvula),
and Actinomyces spp, whereas species depleted included
several from the order Clostridiales, such as unknown
Lachnospiraceae, Eubacterium ventriosum, and Faecali-
bacterium prausnitzii. Of these species with significant
changes, 16 already showed differences at the early stage of
the disease as compared with controls (FDR < 0.1,
Figure 1D, Supplementary Table 3). We also found that the
total abundance of typical oral species in the gut micro-
biome was significantly greater in patients with PDAC than
in controls (P ¼ .00018, Supplementary Figure 2C).

In the oral microbiomes of patients with PDAC, several
unknown species in the phylum Firmicutes (unknown Fir-
micutes, Dialister, and Solobacterium spp) and Prevotella spp
(Prevotella pallens and Prevotella sp C561) were significantly
enriched, whereas some Streptococcus spp, such as Strepto-
coccus salivarius, Streptococcus thermophilus, and Strepto-
coccus australis were depleted (FDR < 0.1, Figure 1D,
Supplementary Table 4). Of these significant species, 15 were
also significantly different between patients with early-stage
PDAC and controls (FDR < 0.1, Supplementary Table 4).

Functional analysis identified 996 and 1787 KOs with
significant changes in the gut and oral microbiomes of
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patients with PDAC compared with controls, respectively
(FDR < 0.1, Supplementary Tables 5 and 6). Pathway-
enrichment analysis showed that a large number of
increased KOs were involved in phospho-transferase sys-
tems, ABC transporters, and terpenoid backbone biosyn-
thesis, whereas KOs involved in amino acid and secondary
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with PDAC, whereas polyamine biosynthesis, dissimilatory
sulfate reduction, and the sulfate transport system were
significantly depleted (Figure 1F, Supplementary Table 7).

The oral microbiomes of patients with PDAC were char-
acterized by a significant enrichment of KOs involved in car-
bohydrate metabolism, such as galactose metabolism and the
citrate cycle, and a depletion of those involved in metabolism
of secondary metabolites and amino acids (Figure 1E,
Supplementary Table 6). At the MO level, D-glucuronate
degradation, thiamine biosynthesis, and the phosphonate
transport system were significantly enriched in the oral
microbiomes of patients with PDAC, whereas the urea trans-
port system, the manganese/iron transport system, phospho-
transferase system for trehalose, and pyruvate oxidation were
significantly depleted (Figure 1F, Supplementary Table 8).

To further explore additional PDAC-associated microbial
species, we constructed a total of 7546 metagenome-
assembled genomes (MAGs) and dereplicated them into
720 species-level MAGs (average nucleotide identity <
95%) (Supplementary Figure 4, Supplementary Table 9,
Supplementary Methods). Comparative analysis revealed
246 and 93 MAGs differentially abundant in the gut and oral
samples between patients with PDAC and controls, respec-
tively (FDR < 0.1, Supplementary Tables 10 and 11). Of the
significant MAGs, 55 (22.3%) in the gut and 17 (18.3%) in
the oral microbiomes had no species-level assignment in the
Genome Taxonomy Database and were considered to be
novel MAGs of uncultured species. Most of these MAGs in
the gut were classified into Streptococcus (n ¼ 20), Gran-
ulicatella (n ¼ 9), or Pauljensenia (n ¼ 6) at the genus level
in the Genome Taxonomy Database, and those in the oral
microbiome were classified into Streptococcus (n ¼ 7) and
Bulleidia (n ¼ 5). These data suggest that as-yet uncultured
and uncharacterized species in the gut and oral micro-
biomes are associated with PDAC.
Metagenomic Classifiers for PDAC in the JP
Cohort

To construct prediction models for PDAC, we used a
random forest classifier and trained the model on the
=
Figure 2. Prediction of PDAC using the gut and oral microbio
trained on the species-level taxonomic profiles of the gut and o
confidence interval of the AUC. (B) Comparison of the prediction
patients. (C) Prediction accuracies of the models trained on vari
the 95% confidence interval of the AUC. (D) Comparison of the
The models were trained on the species-level taxonomic profil
ciation between the number of species used for the prediction m
using all species (n ¼ 218 and 266 for the gut and oral models, r
feature elimination; and model performance was evaluated at e
Comparisons of prediction accuracy among tumor markers, m
show P values for the increase in the AUC for the combination us
that of only tumor markers. Red and blue colors represent P va
represent a significant increase in the AUC (P < .05). The numbe
were collected was 47 and 127 for CA 19-9, 47 and 155 for
respectively. (G) False positive rates by the prediction models i
represent the percentage of cases predicted as PDAC by the p
enriched species, respectively. The dotted line represents the f
number of samples in each dataset.
species-level taxonomic profiles of the microbiomes
(Supplementary Methods). The area under the curve (AUC)
values were 0.78 and 0.82 for the gut and oral microbiomes,
respectively (Figure 2A). The species that greatly contrib-
uted to the prediction (Supplementary Table 12) were
consistent with those having significant changes in abun-
dance between patients with PDAC and controls, such as
unknown Lachnospiraceae, unknown Mogibacterium and S
vestibularis for the fecal model, and Prevotella salivae, S
salivarius, and unknown Bacteroidales for the saliva model
(Figure 1D). These models accurately predicted patients
with PDAC in both the early and advanced stages
(Figure 2B). Also, models based on the genus, KO, and MAG
profiles of the gut and oral microbiomes showed high pre-
dictive accuracy for the classification (Figure 2C). The ac-
curacy of the gut species model was slightly higher for
diabetic patients, with an AUC of 0.78, than for nondiabetic
individuals, with an AUC of 0.60 (P ¼ .05, FDR ¼ 0.38),
whereas other metadata, such as age, sex, smoking, alcohol,
proton pump inhibitors (PPIs), and periodontal disease, did
not substantially affect the performance of the gut and oral
species models (Figure 2D). To further validate the accurate
prediction of PDAC with the microbiome data, we per-
formed 16S rRNA gene analysis of the same fecal and sali-
vary samples, and found that the models yielded high AUCs,
of 0.79 and 0.80, for the gut and oral microbiomes,
respectively (Figure 2C, Supplementary Figure 5).

To evaluate the relationship between the number of
species used in the model and prediction accuracy, we
performed recursive feature elimination analysis
(Supplementary Methods). The AUC decreased from 0.78 to
0.57 and from 0.82 to 0.71 in the gut and oral microbiomes,
respectively, as the number of species used in the model
decreased (Figure 2E). Nevertheless, AUCs of 0.71 and 0.83
were achieved for the gut and oral samples, respectively,
with 16 species in the model (Figure 2E), indicating candi-
date microbial markers for screening PDAC.

As serological tumor markers have been used for PDAC
screening in clinical practice,31,32 we evaluated the predic-
tive accuracy of known tumor markers and the combined
use of the markers and microbiomes. The AUCs of tumor
mes. (A) Prediction of PDAC using random forest classifiers
ral microbiomes. Numbers in parentheses represent the 95%
accuracies of the models between early- and advanced-stage
ous profiles of the gut and oral microbiomes. Error bars show
prediction accuracy of the models across various metadata.
es of the gut (top) and oral (bottom) microbiomes. (E) Asso-
odels and AUCs. The prediction models were initially trained
espectively); the number of species was reduced by recursive
ach number (n ¼ 2, 4, 8, 16, 32, 64, 128, and all species). (F)
icrobiomes, and their combinations. Numbers above the plot
e of the microbiomes and the tumor marker as compared with
lues for the gut and oral microbiomes, respectively. Asterisks
r of patients with PDAC and controls for whom tumor markers
CEA, 40 and 29 for Dupan-2, and 39 and 29 for Span-1,
n various datasets from previous studies. Red and blue bars
rediction model trained on all the species and that trained on
alse positive rate of 10%. Numbers in parentheses show the
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markers such as CA19-9, CEA, Dupan-2, and Span-1 ranged
from 0.70 to 0.90 (Figure 2F), similar to those of the fecal
and salivary microbiomes. The combination of tumor
markers and microbiomes improved the AUCs to a range of
0.81 to 0.97 (Figure 2F).

Because dysbiotic signatures of the gut microbiomes are
partially overlapped among different diseases (eg, depletion
of beneficial microbes),33 we investigated specificity of the
models by applying them to publicly available disease
microbiome datasets (as true negatives) in 5 previous studies
(Supplementary Methods, Supplementary Table 13).34–38

Also, we collected and sequenced additional fecal and sali-
vary samples from individuals with diabetes mellitus (n ¼
163, n ¼ 61, respectively) and inflammatory bowel disease
(n ¼ 107, n ¼ 13, respectively), in those treated with PPIs
(n ¼ 174 and n ¼ 105, respectively), and healthy controls
(n ¼ 394, n ¼ 96, respectively) and used them for the anal-
ysis. When we used cutoff values that had a 10% false posi-
tive rate in our own dataset, the rates in the other disease
datasets were 23.1% and 53.8%, on average, for the gut and
oral models with all species, respectively (Figure 2G), sug-
gesting a high proportion of the patients were mistakenly
predicted as PDAC. To improve the specificity, we next
focused on only species enriched in patients with PDAC, as
enriched species could be more specific to each disease than
depleted ones.33 The AUCs of the new gut and oral models
with only enriched species were found to be similar to those
trained on all the species (0.78 and 0.84, respectively). The
false positive rate of the new gutmodel was 4.5% in the other
datasets, whereas that of the new oral model was still 35.7%
on average (Figure 2G), suggesting that the gut model could
be specific to PDAC, although the oral model had relatively
low specificity to PDAC. In addition, we found that the dataset
of PPI users still had a somewhat high false positive rate of
20% in the new gut model. This may be because of the partial
overlap of the gut microbial signature between PDAC and PPI
treatment, such as increases in Streptococcus spp and Veil-
lonella spp (Supplementary Figure 6).

Analysis of the Gut Microbiomes of Patients With
Intraductal Papillary Mucinous Neoplasm and
Chronic Pancreatitis

Intraductal papillary mucinous neoplasm (IPMN) and
chronic pancreatitis (CP), a premalignant condition and a
strong risk factor of PDAC, respectively, are sometimes
difficult to distinguish from PDAC with conventional bio-
markers.5 To characterize the microbiomes of these patients
and compare the microbial signatures with that of PDAC, we
collected additional fecal samples from patients with branch
duct IPMN (n ¼ 150) and CP (n ¼ 65) and performed
shotgun metagenomic analysis (Supplementary Methods).
Multidimensional scaling analysis revealed that the gut mi-
crobial communities of patients with IPMN and CP had more
similarities to those of PDAC than to the controls
(Figure 3A). Comparison of relative abundances of each
microbial species revealed that some PDAC-associated spe-
cies, such as S anginosus, Clostridium clostridioforme, and V
atypica, were also significantly enriched in IPMN or CP as
compared with controls (Figure 3B). In addition, the effect
sizes of the diseases on each microbial species showed
significant positive correlations between PDAC and IPMN
(rho ¼ 0.54, P < .01) and between PDAC and CP (rho ¼
0.63, P < .01, Figure 3C). By contrast, the other PDAC-
associated species, such as Clostridium symbiosum, S oralis,
and unknown Mogibacterium, were still significantly
enriched in PDAC as compared with IPMN and CP as disease
controls. Next, we examined whether CP/IPMN and PDAC
can be discerned using prediction models based on the gut
microbiome. The AUCs obtained from random forest models
were 0.70 and 0.68 for IPMN and CP, respectively, slightly
lower than the values between PDAC and controls
(Figure 3D). Almost the same values were obtained when
we analyzed patients with early- and advanced-stage PDAC
separately (0.67–0.72). Moreover, when we combined the
gut microbiome and CA19-9, the AUC for IPMN slightly
increased compared with that based on only CA19-9 (P ¼
.06, Supplementary Figure 7). Collectively, these results
suggested that the microbiomes of CP/IPMN are more
similar to that of PDAC than to controls, but combining the
microbiomes with tumor markers can potentially discrimi-
nate between PDAC and IPMN.
Validation of the Metagenomic Classifiers in the
ES and DE Cohorts

To evaluate the robustness of the metagenomic classi-
fiers trained on the JP dataset, we used external datasets
from ES and DE cohorts (Table 1). These metagenomic
datasets were analyzed with the same analytical pipeline as
the JP dataset, and taxonomic and functional profiles were
obtained (Supplementary Methods). Comparative analysis
of whole community structures showed that both the gut
and oral microbiomes differed significantly among the co-
horts (Supplementary Figure 8), probably due to different
lifestyles, geographic factors, or methodologies for sample
processing.39,40 Nevertheless, we found a high predictive
accuracy when applying the JP-trained gut species model to
the ES and DE datasets (AUC ¼ 0.74 and 0.83, respectively,
Figure 4A). Consistent with this result, the JP models based on
the genus, KO, and MAG profiles also showed high AUCs,
ranging from 0.64 to 0.79, in the ES and DE datasets
(Figure 4A). Similarly, a high value was obtained when we
applied the model trained on the ES and DE gut species to the
JP datasets (AUC ¼ 0.77 and 0.73, respectively, Figure 4A).
When we focused on early- and advanced-stage patients
separately, high AUC values were also obtained
(Supplementary Figure 9A). In contrast, the oral models
trained on the JP oral microbial profiles showed low AUCs, of
0.52–0.53, in the ES dataset (Figure 4A). Similarly, the ES oral
models showed AUCs of 0.48–0.64 in the JP dataset
(Figure 4A). The ES oral models showed AUCs of 0.54–0.60,
even with internal cross-validation and no significant differ-
ences in a- and b-diversity between patients with PDAC and
controls (Supplementary Figure 8C).

To further explore the consistent microbial signatures
for PDAC across different cohorts, we compared PDAC-
species associations among the 3 cohorts. The effect sizes
of PDAC for each gut species showed significant positive
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correlations between the JP and ES datasets and between
the JP and DE datasets (P < .05), whereas there was no
correlation for the salivary species between the JP and ES
datasets (P > .05, Supplementary Figure 10A). We identified
32 gut species that were consistently enriched or depleted
in patients with PDAC in at least 2 of the 3 cohorts (FDR <
0.1, Figure 4B, Supplementary Figure 9B, Supplementary
Table 14). Among the 32 species, V atypica, V parvula, S
anginosus, and S oralis were consistently enriched, whereas
F prausnitzii was consistently decreased in the gut micro-
biome of patients with PDAC in all the 3 cohorts. In contrast,
the JP and ES oral microbiome datasets showed no shared
species with significant changes in abundance between pa-
tients with PDAC and controls (Supplementary Table 15).

At the functional level, we identified 670 KOs that were
consistently associated with the gut microbiomes of patients
with PDAC in at least 2 of the 3 cohorts (FDR < 0.1,
Supplementary Table 16). Pathway-enrichment analysis of
these KOs revealed that terpenoid backbone biosynthesis,
ABC transporters, and pyruvate metabolism were enriched,
whereas biosynthesis of amino acids, biosynthesis of sec-
ondary metabolites, and histidine metabolism were
depleted in patients with PDAC among the cohorts (FDR <
0.1, Supplementary Figure 10B). At the MO level, 42 MOs in
the gut microbiome were shared between at least 2 of the 3
cohorts with significant changes in abundance (FDR < 0.1),
which included consistent enrichments of C5 isoprenoid
biosynthesis (the mevalonate pathway) and the osmopro-
tectant transport system and depletions of dissimilatory
sulfate reduction (Figure 4C, Supplementary Table 17).
There were no shared KOs or MOs that were significantly
changed in abundance between the JP and ES oral micro-
biomes (Supplementary Tables 18 and 19).
Gut and Oral Microbiomes Are Associated With
the Risk of PDAC-related Death

A recent study suggests an association between the tu-
mor microbiome and the prognosis of patients with PDAC.41

To test whether the gut and oral microbial species were
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Figure 4. External validation of the prediction models in the JP cohort using the ES and DE cohorts. (A) Evaluation of the
metagenomic classifiers constructed in each cohort. Y-axes show the dataset used for training, and X-axes represent the
dataset used for validation. Values in the cells represent the AUC. The cells in which the training and prediction values are the
same (on the diagonal line) indicate AUCs evaluated by internal cross-validation. (B and C) Species and MOs that were
consistently associated with PDAC among the 3 cohorts. Heat map depicts the effect sizes of PDAC for each species and MO
obtained from a generalized regression model in each cohort. Asterisks represent significant associations between PDAC and
the feature (FDR < 0.1). Bar plots show the effect sizes of PDAC for each feature obtained from a generalized regression model
using all datasets from the 3 cohorts (cases:controls¼ 144:317). Results for 32 species (B) and 42MOs (C) that were consistently
significant in at least 2 of the 3 cohorts are shown. Numbers in parentheses beside the species names indicate mOTU ID.
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associated with PDAC-related mortality risk, we conducted a
time-to-event analysis with prospective follow-up of the
patients in the JP cohort. During a median follow-up of 15.3
months, 68.1% (32 of 47) of the patients with PDAC died
(Table 1), and the cumulative death rates were 21% and
40% at 6 months and 1 year, respectively (Figure 5A). Using
the Cox regression model with LASSO feature selection, we
identified the top 10 microbial species strongly associated
with patient prognosis in both the gut and oral micro-
biomes, respectively (Figure 5D, Supplementary Table 20).
C-indexes for these models were 0.62 and 0.45 for the gut
and salivary microbiomes, respectively. Microbial species
whose higher abundances were significantly associated with
favorable prognosis included unknown Alistipes, F praus-
nitzii, and Enterobacteriaceae species in the gut, and un-
known Capnocytophaga and Capnocytophaga sp in the saliva
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Figure 5. Survival analysis of patients with PDAC in the JP cohort. (A and B) Overall survival probability of patients with PDAC
in the JP cohort (n ¼ 47) (A), and that with (n ¼ 37) and without chemotherapy (n ¼ 10) (B). (C) Survival probability of patients
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(P < .05, Supplementary Table 21). These significant asso-
ciations were unchanged after adjustment with age and sex.
In contrast, species associated with poor prognosis were
Ruminococcus torques in the gut and S vestibularis and
Neisseria bacilliformis in the saliva (P ¼ .05, .05, and .02,
respectively). In addition, we performed time-to-event
analysis for progressive disease as an outcome for the pa-
tients with PDAC, and found that higher abundances of
several species, such as Phascolactobacterium sp in the gut
and Streptococcus pneumoniae in the saliva, were negatively
correlated with the probability of developing progressive
disease (Supplementary Figure 11A).

Because gut microbes may play a significant role in cancer
therapy by modulating the host response to chemotherapeutic
drugs,42 we focused on survival in patients with PDAC who
underwent cancer therapy (n ¼ 37, Figure 5B). C-indexes from
the constructed models for these patients were 0.72 and 0.49,
for the gut and oral microbiomes, respectively. When we
divided the patients into high- and low-risk groups according to
scores obtained from the prediction models, we found a sig-
nificant difference in survival probability between the 2 groups
determined by the gut model (P ¼ .0057, Figure 5C). Higher
abundances of several microbial species in the gut, such as F
prausnitzii, unknown Alistipes, and Enterobacteriaceae species,
were associated with better survival; most of these species
corresponded to those identified in the analysis including all
patients with PDAC (Figure 5D, Supplementary Table 21).
Although the prediction accuracy of the oral model was lower
than that of the gut model (Figure 5C), the model identified
several species significantly associated with patient survival,
such as unknown Capnocytophaga (Figure 5D).

Because various factors potentially affect the prognosis
of patients with PDAC, we conducted a subgroup analysis:
early- and advanced-stage patients, patients treated with
adjuvant and nonadjuvant chemotherapy, and patients
treated with and without FOLFIRINOX/nab-paclitaxel. Of the
10 microbial species detected in the analysis using all pa-
tients with PDAC, 7 gut and oral species were also associ-
ated with survival in at least one group (P < .1, univariate
Cox regression analysis, Supplementary Figure 11A and B).
In particular, F prausnitzii and Blautia wexlerae in the gut
and N bacilliformis in the saliva, detected in the 5 and 4
groups, respectively, may be robust markers.
Bacteriophages Infecting Species Associated
With PDAC and PDAC-related Mortality

If the PDAC-associated species identified in this study
are responsible for the development or progression of
PDAC, phage therapy may be a promising approach.43 We
therefore explored bacteriophages in the metagenomic data
and found 58 phages that potentially infect microbial spe-
cies consistently enriched in patients with PDAC among the
3 cohorts (S oralis, Streptococcus parasanguinis, V atypica, V
parvula) (Supplementary Methods, Supplementary
Table 22). None of these phage genomes showed sequence
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similarity to those in the RefSeq (average nucleotide identity
<95%), suggesting they are novel phages. Cluster analysis
based on the proteome profiles of the phages identified 2
major clusters of phages that were predicted to infect S
oralis and S parasanguinis (Figure 6A, with black squares).
The Streptococcus phages in the first cluster (14 genomes
included) had a genome size of 55 to 61 kb and were pre-
dicted to be lytic phages because they did not encode any
integrases and showed no sequence similarity to the host
genomes (Figure 6B). The Streptococcus phages in the sec-
ond cluster (30 genomes included) had a genome size of 35
to 46 kb and were predicted to be lysogenic phages based
on the presence of integrases and sequence similarity to
some genomic regions of the host (Figure 6C). The phages
predicted to infect V atypica and V parvula showed 2 small
clusters as well as individual clusters distinct from each
other (Figure 6D), in which 1 jumbo lytic phage with a
genome size of 201 kb was included (Figure 6E). In addition
to the phages, we also identified 15 new phages possibly
infecting S vestibularis, which was associated with poor
prognosis for the patients with PDAC (Supplementary
Table 23). Collectively, these results demonstrated that
there are diverse phages in the gut and oral environments
that could infect the PDAC-associated species.
Discussion
In this study, we characterized the gut and oral micro-

biomes of patients with PDAC by shotgun metagenomic
sequencing analysis and demonstrated reproducible gut
microbial and functional signatures across 3 different
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cohorts. Our analysis first revealed dysbiosis of the gut and
oral microbiomes of the JP patients with PDAC (Figures 1
and 2) and then validated the results in the external ES
and DE cohorts (Figure 3). Particularly, the metagenomic
classifiers trained on the JP gut microbiome showed high
AUCs, of 0.74 to 0.83, in the ES and DE cohorts, even though
the microbiomes differed significantly among the cohorts
(Supplementary Figure 6D). The large overlaps of the PDAC-
associated gut signatures among the cohorts indicate the
robustness of the association, which is mostly independent
of the lifestyle, geography, and genetic backgrounds of the
populations and technical batch effects, as seen in recent
studies of colorectal-cancer–associated gut microbes.17,44

Although our study does not provide evidence of a causal
relationship between the changes in the microbiome and
PDAC, the results suggest the feasibility of constructing a
global, specific, and reproducible predictive model to screen
for PDAC based on noninvasive gut microbiome profiling.

Comparison of the JP gut microbiome between patients
with PDAC and matched controls revealed a decrease in a-
diversity and a difference in b-diversity between them
(Figure 1), conditions that were also observed in the ES and
DE cohorts (Supplementary Figure 6A and B), consistent
with previous 16S rRNA gene-based studies.10,11 Among the
gut species significantly associated with PDAC in the JP
cohort, Veillonella spp (V parvula, and V atypica) and
Streptococcus spp (S anginosus and S oralis) were consis-
tently enriched in the guts of patients with PDAC in both the
ES and DE cohorts. Veillonella and Streptococcus spp can
potentially interact metabolically and frequently co-occur in
gut ecosystems,45,46 and they have been shown to induce
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interleukin (IL)-6, IL-8, IL-10, and tumor necrosis factor-a
reactions in dendritic cells.47 This induction is consistent
with the increase in these cytokines in patients with PDAC.48

We also observed the consistent depletion of short-chain
fatty acid producers (eg, F prausnitzii, Eubacterium rectale,
and Ruminoccus bicirculans) in the guts of patients with
PDAC among the cohorts (Figure 1D), which partially
overlapped with the signatures of the gut microbiome in
various diseases.34,35 Short-chain fatty acids regulate intes-
tinal immune functions through cell surface G protein-
coupled receptors, and their depletion results in inflamma-
tion,49 which might promote the development of PDAC.50

Functional analysis of the gut microbiome across the 3
cohorts revealed the significant enrichment of C5 isoprenoid
biosynthesis (the mevalonate pathway) in the patients with
PDAC of the JP and DE cohorts. This pathway generates iso-
prenoids, such as farnesyl pyrophosphate and geranylgeranyl
pyrophosphate, which are indispensable for activity of
GTPases through protein prenylation.51 One of the key
GTPases for initiation andmaintenance of PDAC is the human
Ras gene family, which is often mutated and upregulated in
the tumor tissue of the pancreas.52 The upregulated meta-
bolic changes in the gut microbiome and cancer tissue may
suggest the possibility of bacterial carcinogenesis in the
pancreas. Also, we found significant enrichment of microbial
genes for biosynthesis of ADP-L-glycero-D-manno-heptose,
which generates a precursor of lipopolysaccharide, in the
guts of patients with PDAC in the ES and DE cohorts. Lipo-
polysaccharide induces inflammation through the nuclear
factor-kappa-B pathway in the host, which could support the
development of pancreatic cancer.53

We used public and additional metagenomic datasets
to show the specificity of the metagenomic classifier with
the enriched species (Figure 2G). However, we identified
some overlaps between PDAC- and PPI-associated spe-
cies, resulting in a somewhat high false positive rate for
PPI users (w20%). Given epidemiological evidence of
positive associations of PPI use and the risk of PDAC,54

the overlap of the microbial signatures (eg, increase in
Streptococcus spp and Veillonella spp) implies that the
gut microbiome altered by PPIs is responsible for the
development or progression of PDAC.

Consistent with 16S rRNA-based studies,6,7,9,55 we also
observed dysbiosis of the oral microbiomes of patients with
PDAC in the JP cohort (Figure 1A and B). The significant
depletion of S salivarius, which has been reported to have anti-
inflammatory effects,56 was the most prominent signature in
the PDAC oral microbiome (Figure 1D). The lowered abun-
dance of Streptococcus spp in the oral microbiomes of patients
with PDAC was concordant with the results of several
studies,6,55 although increases in Porphyromonas gingivalis57

and decreases in Neisseria spp6,7 reported previously were
not replicated in the JP cohort. Moreover, no oral species or
geneswere significantly different between patientswith PDAC
and controls in the ES cohort, resulting in no overlap between
the results in the JP and ES cohorts. Various technical and
biological factors, such as storage conditions, DNA extraction,
oral hygiene, and diurnal oscillations, could affect the structure
of the oral microbiome58,59 and confound PDAC-oral
microbiome associations. Compared with methodologies for
fecal samples that have been intensively evaluated and
improved,40 those for saliva samples have been less investi-
gated and could be immature. Standardization of salivary
sample collection, storage, and processing will be necessary.

Consistent with past reports,4,60 fewer than 40% of pa-
tients with PDAC survived for 1 year or more after diagnosis
in the JP cohort (Figure 4A), emphasizing the need for prog-
nostic biomarkers for the disease. Survival analysis revealed
associations of favorable prognosis with higher abundances
of short-chain fatty acid producers in the gut, such as F
prausnitzii and Clostridiales species that have been consid-
ered to be health-promoting species.61 In contrast, species
relevant to poor prognosis included those previously linked
with diseases; for example, R torques with inflammatory
bowel disease,62 Haemophilus parainfluenzae with respira-
tory disease, andN bacilliformiswith endocarditis.63,64 These
signatures had no overlaps with those identified in the tumor
microbiome identified in a previous study,41 suggesting that
the gut and oral microbiomes could provide unique signa-
tures to predict prognosis of patients with PDAC.

Furthermore, we successfully identified 58 new phages
that could infect the 4 microbial species consistently
enriched in the gut of patients with PDAC (S anginosus, S
oralis, V parvula, and V atypica) (Figure 6). In contrast to
antibiotic treatment that has disruptive effects on the entire
structure of the microbiome, select for antibiotic resistance
genes, or produce multiple side effects, phage therapy may
be a promising approach to modulate the microbiome by
eliminating only certain species.43 The genomic information
of the phages could be the basis for establishing future
phage therapy to treat or prevent PDAC.

One of the limitations of this study is that we could not
perform experimental models confirming a causal relation-
ship between the microbiome and the development and
progression of PDAC. The PDAC-associated microbial species
identified in this study could be targets for further investi-
gating the role of microbial species in PDAC. Another limita-
tion is that the sample size for prognostic analysis of patients
with PDAC was small, so a larger sample size is needed for
validating the robustness of the prognostic marker. More-
over, the antibiotics users in the European cohorts could not
be excluded, which might result in the underestimation of
consistent microbial signatures among the cohorts.

In conclusion, our results have shown highly consistent
and reproducible associations between the gut microbiome
and PDAC across cohorts, which strongly support the
presence of global gut microbial signatures for pancreatic
cancer. These signatures could be a basis for establishing a
robust and accurate screening tool for PDAC in clinical
practice and for understanding the roles of the microbiome
in the etiology of PDAC.
Supplementary Material
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Data Availability
All the metagenomic and 16S rRNA gene sequences of the fecal (n ¼ 278) and
salivary (n ¼ 282) samples used in this study were deposited in the National
Center for Biotechnology Information (NCBI) sequence read archive (SRA)
under the accession number PRJNA832909. Metagenome-assembled
genomes and bacteriophage genomes constructed in this study are available
at https://zenodo.org/record/6500469/ and https://zenodo.org/record/
6525335, respectively.

CRediT Authorship Contributions
Naoyoshi Nagata, MD, PhD (Conceptualization: Equal; Data curation: Equal;
Funding acquisition: Lead; Investigation: Equal; Methodology: Equal; Writing
– original draft: Equal; Writing – review & editing: Equal).
Suguru Nishijima, PhD (Conceptualization: Equal; Data curation: Equal; Formal

analysis: Equal; Investigation: Equal; Methodology: Equal; Visualization: Equal;
Writing – original draft: Equal; Writing – review & editing: Equal).
Yasushi Kojima, MD, PhD (Writing – original draft: Equal).
Yuya Hisada, MD (Data curation: Equal; Writing – original draft: Equal).
Koh Imbe, MD, PhD (Data curation: Equal; Writing – original draft: Equal).
Tohru Miyoshi-Akiyama, PhD (Writing – original draft: Equal).
Wataru Suda, PhD (Methodology: Equal; Writing – original draft: Equal).
Moto Kimura, PhD (Writing – original draft: Equal).
Ryo Aoki, PhD (Writing – original draft: Equal).
Katsunori Sekine, MD (Writing – original draft: Equal).
Mitsuru Ohsugi, MD, PhD (Writing – original draft: Equal).
Kuniko Miki, PhD (Writing – original draft: Equal).
Tsuyoshi Osawa, PhD (Writing – original draft: Equal).
Kohjiro Ueki, MD, PhD (Writing – original draft: Equal).
Shinichi Oka, MD, PhD (Writing – original draft: Equal).
Masashi Mizokami, MD, PhD (Writing – original draft: Equal).
Ece Kartal, PhD (Writing – original draft: Equal).
Thomas S. B. Schmidt, PhD (Methodology: Equal; Writing – original draft:

Equal).
Esther Molina-Montes, PhD (Writing – original draft: Equal).
Lidia Estudillo, PhD (Writing – original draft: Equal).
Nuria Malats, MD, PhD (Writing – original draft: Equal).
Jonel Trebicka, PhD (Writing – original draft: Equal).
Stephan Kersting, PhD (Writing – original draft: Equal).
Melanie Langheinrich, PhD (Writing – original draft: Equal).
Peer Bork, PhD (Writing – original draft: Equal).
Naomi Uemura, MD, PhD (Writing – original draft: Equal).
Takao Itoi, MD, PhD (Writing – original draft: Equal).
Takashi Kawai, MD, PhD (Writing – original draft: Equal)

Conflicts of interest
The authors disclose no conflicts.

Funding
This work was partially supported by grants from the Ministry of Health,
Labour, and Welfare, Japan (grant numbers: 19HB1003), JSPS KAKENHI
Grant (JP17K09365 and 20K08366), The Uehara Memorial Foundation,
Smoking Research Foundation, DANONE RESEARCH GRANT, Pancreas
Research Foundation of Japan, Research funding of Japan Dairy
Association (J-Milk), Tokyo Medical University Cancer Research
Foundation, Tokyo Medical University Research Foundation, and Takeda
Science Foundation, and Grants-in-Aid for Research from the National
Center for Global Health and Medicine (28-2401, 29-2001, 29-2004,
19A1011, 19A1022, 19A-2015, 29-1025, and 30-1020). The funders played
no role in the study design, data collection or analysis, decision to publish,
or preparation of the manuscript.

https://zenodo.org/record/6500469/
https://zenodo.org/record/6525335
https://zenodo.org/record/6525335

	Metagenomic Identification of Microbial Signatures Predicting Pancreatic Cancer From a Multinational Study
	Material and Methods
	Study Design and Sample Collection in the JP Cohort
	Sample Collection in the ES and DE Cohorts
	Shotgun Metagenomic Sequencing and Data Analysis in the JP Cohort
	Identification of Bacteriophages in the Metagenomic Data
	Statistical Analysis and Model Construction

	Results
	Species and Functional Characterization of the PDAC Microbiome
	Metagenomic Classifiers for PDAC in the JP Cohort
	Analysis of the Gut Microbiomes of Patients With Intraductal Papillary Mucinous Neoplasm and Chronic Pancreatitis
	Validation of the Metagenomic Classifiers in the ES and DE Cohorts
	Gut and Oral Microbiomes Are Associated With the Risk of PDAC-related Death
	Bacteriophages Infecting Species Associated With PDAC and PDAC-related Mortality

	Discussion
	Supplementary Material
	References
	Acknowledgments
	Data Availability
	CRediT Authorship Contributions


