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Abstract

Multi-omics analyses are used in microbiome studies to under-
stand molecular changes in microbial communities exposed to dif-
ferent conditions. However, it is not always clear how much each
omics data type contributes to our understanding and whether
they are concordant with each other. Here, we map the molecular
response of a synthetic community of 32 human gut bacteria to
three non-antibiotic drugs by using five omics layers (16S rRNA
gene profiling, metagenomics, metatranscriptomics, metaproteo-
mics and metabolomics). We find that all the omics methods with
species resolution are highly consistent in estimating relative spe-
cies abundances. Furthermore, different omics methods comple-
ment each other for capturing functional changes. For example,
while nearly all the omics data types captured that the antipsy-
chotic drug chlorpromazine selectively inhibits Bacteroidota repre-
sentatives in the community, the metatranscriptome and
metaproteome suggested that the drug induces stress responses
related to protein quality control. Metabolomics revealed a
decrease in oligosaccharide uptake, likely caused by Bacteroidota
depletion. Our study highlights how multi-omics datasets can be
utilized to reveal complex molecular responses to external pertur-
bations in microbial communities.

Keywords metabolomics; metagenomics; metaproteomics;

metatranscriptomics; microbiology

Subject Categories Microbiology, Virology & Host Pathogen Interaction;

Proteomics

DOI 10.15252/msb.202311525 | Received 9 January 2023 | Revised 4 July 2023 |

Accepted 6 July 2023

Mol Syst Biol. (2023) e11525

Introduction

The human gut microbiota is a complex community of microorgan-

isms, which is affected by endogenous and environmental factors

such as host genotype, diet, drug treatment and disease status, and

in turn, influences host health and disease progression (Kau et al,

2011; Cho & Blaser, 2012; Cani, 2018; Durack & Lynch, 2018;

Schmidt et al, 2018; Lindell et al, 2022). Currently, insights into the

structure and function of the microbiota community mainly come

from 16S rRNA gene profiling and shotgun metagenomics. While

16S rRNA amplicon sequencing offers a cost-efficient way to assess

bacterial abundance at a higher taxonomic level, whole-genome

shotgun metagenomics resolves the abundance of species and

strains, together with the functional potential they encode (Quince

et al, 2017; Almeida et al, 2019; Pasolli et al, 2019). In addition,

gene and protein expression and metabolite abundance in the com-

munity can be quantified with metatranscriptomics (Bashiardes

et al, 2016), metaproteomics (Zhang & Figeys, 2019) and metabolo-

mics (Zierer et al, 2018; Han et al, 2021), respectively. Ultimately,

the combination of these methods should enable the integration of
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the major molecular layers of the cell, resulting in a more complete

picture of the microbiome (Jansson & Baker, 2016; Heintz-Buschart

& Wilmes, 2018). Several studies have shown how a combination of

two or more of these omics methods could lead to novel insights

regarding the dynamics and inner workings of a microbial commu-

nity (Heintz-Buschart et al, 2016; Lloyd-Price et al, 2017; Salazar

et al, 2019; Taylor et al, 2020). While multi-omics measurements

provide information across molecular layers, their comprehensive

integration remains challenging. One challenge is the limited knowl-

edge about the concordance of different measurements in complex

in natura settings in the absence of ground truth. Another challenge

in comparing and integrating multi-omics datasets is the difference

in their dynamics in response to perturbations. Although metabolite

changes occur on a time scale of seconds, transcriptional changes

usually occur on a time scale of minutes, while protein abundance

changes take the longest to respond to a perturbation (Gerosa &

Sauer, 2011; Choi et al, 2020).

Synthetic microbial communities have been increasingly used to

obtain a better understanding of the dynamics and species–species

interactions (Goldford et al, 2018; preprint: Cheng et al, 2021). Com-

pared with a natural gut microbiota, these synthetic communities

have lower complexity, higher controllability and reproducibility and

a well-defined composition at the strain level, at the cost of being sim-

plified representations of natural ecosystems (Roy et al, 2014; Aranda-

D�ıaz et al, 2022; Weiss et al, 2022). Yet, they do offer advantages over

single species studies, as single species’ behaviour can significantly

differ in mono-culture compared with co-culture (D’hoe et al, 2018).

The complex interactions between the gut microbiota and non-

antibiotic drugs have been elucidated from large-scale human stud-

ies and high-throughput laboratory experiments (Rizkallah et al,

2010; Forslund et al, 2015, 2021; Spanogiannopoulos et al, 2016;

Wilson & Nicholson, 2017; Zimmermann et al, 2021). This relation-

ship is bidirectional, as drugs can influence microbiome composi-

tion (Jackson et al, 2018; Maier et al, 2018; Vich Vila et al, 2020;

Vieira-Silva et al, 2020), while the gut microbiota can have an

impact on a drug’s efficacy and toxicity by altering its chemical

structure (Zimmermann et al, 2019a,b; Javdan et al, 2020; Kl€une-

mann et al, 2021). The emerging knowledge on drug–microbiota

interactions has the potential to influence the future of drug devel-

opment and personalised medicine (Doestzada et al, 2018; Weersma

et al, 2020; Maier et al, 2021; Zimmermann et al, 2021).

We therefore set out to answer the following three questions:

How do the different omics methods perform in capturing dynamic

changes in microbial communities in response to perturbations? Can

we identify the drug’s mechanism of action on the bacteria, or the

bacteria’s defensive responses? In which time frame do drugs cause

perturbations on the bacteria, as visible in genomes, transcripts,

proteins and metabolites? To this end, we designed a controlled

time-course experiment with a synthetic community of 32 human

gut representatives (Tramontano et al, 2018) in response to three

drugs from diverse indication areas: chlorpromazine (antipsy-

chotic), metformin (antidiabetic) and niclosamide (anthelmintic),

which were previously reported to impair growth of several gut bac-

teria (Maier et al, 2018). We followed the response of the defined

community to the three non-antibiotic drugs over 4 days on the

structural and functional levels across multi-omics layers, based on

16S rRNA gene, metagenome, metatranscriptome, metaproteome

and untargeted metabolome profiling.

Results

Establishment of a synthetic community for drug perturbations

To investigate microbial community response to drug perturbations in

a controlled system across five omics layers, we combined 32 human

gut microbiome representatives (Tramontano et al, 2018) and exposed

this community to three different non-antibiotic drugs (Fig 1A; Appen-

dix Table S1). The complete experiment was performed twice (run A

and run B) as biological replicates, starting from the initial community

assembly step from single bacterial cultures. More specifically, seven

slow-growing species (inoculated on day 1) were combined with 25

fast-growing species (inoculated on day 3) on day 5 to form a synthetic

community (Fig 1A and B). In order to ensure stable community com-

position, we performed three culture passages by growing the mixed

culture for 48 h and transferring 1% of total volume to a fresh culture

medium. Samples for 16S rRNA amplicon sequencing were taken

immediately after combining the strains (Inoculummix) and after each

passage (Transfers 1–3) to evaluate the stabilisation of the community

(Fig 1A; top row). We found that in both runs of the experiment the

community reached a stable composition with four highly abundant

species after three transfers (relative abundance > 10% for Escherichia

coli, Clostridium perfringens, Veillonella parvula and Bacteroides

thetaiotaomicron, Fig EV1A). The Bray–Curtis dissimilarity index

showed that both runs were highly similar after the third transfer

(Fig EV1C).

After stabilisation, in each run the community perturbation was

performed in duplicate during exponential growth (i.e., 5 h after

passaging, as determined by optical density [OD] measurements on

the previous transfer; Fig EV1D) by addition of one of the following

drugs: (i) 5 mM metformin, a type 2 diabetes drug, (ii) 20 lM chlor-

promazine, an antipsychotic drug, or (iii) 20 lM niclosamide, an

anthelmintic drug (Fig 1A), while DMSO was used as a control.

These are in the range of the estimated colon concentrations, which

are available for metformin (1.5 mM) and chlorpromazine (25 lM)

(Maier et al, 2018). We chose a higher concentration for metformin

based on the reported intestinal concentration and previous data on

metformin concentrations sufficient to impair growth of gut micro-

biota members in vitro (Bailey et al, 2008b; Maier et al, 2018). The

communities were sampled right before the addition of the drugs

and 15 min, 30 min, 1 h and 3 h following the drug perturbation

(Fig 1A). These time points were chosen to elucidate the early

response of the bacterial community to the drug treatment. After

43 h, an additional sample was taken, and the communities were

transferred into a fresh culture medium containing the drugs at ini-

tial concentrations. A final sample was taken 48 h after this passage

(91 h after the initial drug addition). In general, high correlation

was evident between technical replicates within the same omics

dataset (Appendix Fig S1).

Consistency of community composition across omics
measurements

We first evaluated similarities and differences between the omics

measurements in their ability to estimate species abundance. For

sequencing-based omics methods, we performed both na€ıve ana-

lyses with commonly used computational pipelines that do not use

the information about synthetic community composition (DADA2

2 of 17 Molecular Systems Biology e11525 | 2023 � 2023 The Authors

Molecular Systems Biology Sander Wuyts et al

 17444292, 0, D
ow

nloaded from
 https://w

w
w

.em
bopress.org/doi/10.15252/m

sb.202311525 by E
uropean M

olecular B
iology L

aboratory E
M

B
L

, W
iley O

nline L
ibrary on [11/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



for 16S rRNA amplicon sequencing (Callahan et al, 2016), mOTUS

v2.5 for metagenomics and metatranscriptomics (Milanese et al,

2019)), and targeted analyses based on mapping to the 32 reference

genomes of species comprising our community (Materials and

Methods). Within each omics method, both computational approaches

produced highly similar results (Appendix Fig S2). As the

composition-na€ıve approach only yields genus-level resolution for

16S rRNA sequencing data (Knight et al, 2018), we used the refer-

ence genome mapping approach that yields higher resolution for all

methods for comparison of community composition across omics

types. For consistency, the same methodology (reference genome

mapping) was used for metagenomics and metatranscriptomics. For

metaproteomics data, we estimated species abundance by summing

protein intensities for all proteins assigned to each species and

dividing these values by the total protein intensity in each sample,

as suggested previously (Kleiner et al, 2017).

We compared relative species abundances between all pairs of

omics methods except for metabolomics, which by nature repre-

sents total metabolite measurements in the community and does not

allow to separate compounds by species. Based on the correlation

analysis, we found the abundance estimates to be highly similar

(minimum Spearman correlation coefficient q = 0.78). Congruence

was more pronounced for highly abundant species (Fig 2A). Specifi-

cally, metagenomics and metatranscriptomics were the most similar

of all pairwise comparisons (q = 0.92). Further, 16S rRNA amplicon

sequencing showed high similarity with metagenomics for species

with relative abundances higher than 0.001% (q = 0.89). However,

for several species with low relative abundances, 16S rRNA

sequencing provided higher relative abundance estimates compared

to metagenomics, while other species, detected by metagenomics,

were not detected with 16S rRNA sequencing. For this observation,

no clear taxon-specific or condition-specific effect was found

(Fig EV2A–C), indicating that the differences at these low relative

abundances are most likely a result of differences in sequencing

depth per sample, as has been previously reported (Pereira-Marques

et al, 2019; Durazzi et al, 2021). Although metaproteomics is not yet

widely used for species abundance estimation, we found the corre-

sponding estimates in good agreement with the other omics

methods, but only for species with relative abundance above 1%

(q = 0.78–0.84; 16 out of 29 species detected across all the samples).

This indicates that metaproteomics is less sensitive than

sequencing-based methodologies for species abundance estimation,

as has also been observed for in natura metaproteomics studies

(Zhang & Figeys, 2019). Our results show generally high consistency

between omics data types in relative species abundance estimations,

and underline that metaproteomics can, in principle, provide robust

species abundance estimates, at least for synthetic microbial com-

munities, albeit with lower sensitivity.

Consistency of functional profiles across omics measurements

For each protein-coding gene of each species, we can compare rela-

tive abundances across the three molecular layers: gene (metage-

nomics), transcript (metatranscriptomics), and protein (metaproteomics).

We performed such pairwise comparisons both for individual genes

across all species (Appendix Fig S3) and for genes grouped based on the

KEGG orthology (Kanehisa et al, 2017; Fig 2B). The correlation between

metagenomic and metaproteomic estimates of gene and protein abun-

dances was moderate (q = 0.5 for KEGG grouped features and q = 0.48

for all non-zero genes and proteins). Metatranscriptomics and metapro-

teomics were the most similar (q = 0.73 for KEGG orthologs and

q = 0.60 for transcripts and proteins), followed by metagenomics and

metatranscriptomics (q = 0.7 for KEGG orthologs and q = 0.61 for genes

and transcripts).

To systematically assess how much information on the func-

tional level is captured by metagenomics, metatranscriptomics and

metaproteomics for different species, we estimated gene and path-

way coverage by calculating the proportion of genes or pathways

Figure 1. Experimental design and species used in this study.

A Schematic overview of the experimental design.
B Species cladogram constructed by pruning the relevant species from the GTDB species cladogram (release 95).
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Figure 2. Comparison of species and feature abundances and functional coverage across omics methods.

A Scatter plots representing species abundance defined as relative abundance of corresponding omics measurement in each sample. Each dot represents single species
abundance in one sample. q, Spearman correlation coefficient.

B Scatter plots representing gene, transcript or protein abundance linked through KEGG orthology. Each dot represents a single KEGG ortholog in one sample.
C Left: Genome coverage of each of the omics datasets across samples for each species, right: relative species abundance estimated by metagenomics. The fraction of

coverage is defined as the number of genes to which at least one read was mapped (for metagenomics and metatranscriptomics), or the number of detected proteins
for metaproteomics divided by the total number of genes in the corresponding genome. (Metagenomics n = 75 samples, metatranscriptomics n = 101 samples and
metaproteomics n = 112 samples).

D KEGG pathway coverage. For the metabolomics dataset, pathway coverage is defined as the number of unique pathway metabolites tentatively detected in at least
one sample, divided by the total number of metabolites in the pathway. For metagenomics, metatranscriptomics and metaproteomics, KEGG orthologs are used
instead of pathway metabolites.

E Heatmap of Mantel correlations across omics methods and Spearman correlation between replicates within each omics method.
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that were detected by each method (Fig 2C and D). We found that

18 out of 32 species had an almost complete coverage (> 90%) in

metagenomics, indicating that for these species most of the genes

were recovered in all samples measured in this experiment (Fig 2C;

in total 101,559 out of 103,921 possible protein-coding genes were

detected at least once in the metagenomics dataset). This was not

the case for 14 low-abundant species, for which the average gene

content coverage was < 20%. For metatranscriptomics, the coverage

was generally lower than for metagenomics (91,094 out of 103,921

possible transcripts detected at least once). This is however

expected as not all genes are expressed in any given condition.

Metaproteomics coverage was found to be much lower than metage-

nomics and metatranscriptomics (9,144 out of 103,921 predicted

proteins). This may be due to the limited dynamic range: In contrast

to mass-spectrometry-based measurements, sequencing-based

methods include an amplification step that increases the amount of

material and makes it possible to cover rare transcripts and genes.

For Escherichia coli, the most abundant species in our synthetic

community, the maximum coverage of proteins across all samples

did not exceed 30% (1,428 proteins out of 4,978 [29%] predicted

proteins compared to 4,978 genes out of 4,978 predicted genes

[100%] for metagenomics and 4,962 transcripts out of 4,978 tran-

scripts [99%] for metatranscriptomics). This result is lower than

state-of-the-art single species proteomics experiments, where

around ~ 62% (2,586 detected proteins out of 4,189 predicted pro-

teins) of bacterial proteins are captured (Mateus et al, 2020), likely

due to the increased sample complexity in the community context,

the increased search space of proteins and the presence of highly

similar sequences in homologous proteins (where peptides cannot

be unambiguously mapped to one protein).

Since metabolomics data reflect the total pools of metabolites in

the sample and cannot be analysed at the species level, we assessed

the coverage of metabolic pathways defined in the KEGG database

and compared it to pathway coverages by other omics methods

(Fig 2D). For our analysis, we used 1,142 detected ions tentatively

annotated as 3,488 possible metabolites by matching their accurate

masses against the HMDB database (Wishart et al, 2018). This

approach generally provides only low confidence in individual

annotations and is unable to distinguish between isomers, yet

ensures very broad tentative metabolome coverage. For metabolic

pathways annotated in bacterial genomes, we observed an average

pathway coverage of 35% for metabolomics, as compared to 44%

for metaproteomics and 86% for metatranscriptomics. Even though

direct comparison of omics methods is challenging, we believe that

the lower coverage for metabolomics has several explanations. First,

we measured metabolites in supernatant samples, to capture the

drug and its metabolites and the secreted metabolites that play

important roles in microbial communities in cross-feeding and sig-

nalling (Yu et al, 2022). A more in-depth study could also addition-

ally use the cell pellet for metabolomics, for example, to detect

bioaccumulation (Kl€unemann et al, 2021). This means that compo-

nents of the rich medium masked part of the signal (e.g., amino

acids, peptides and polysaccharides), and extracellular products of

bacterial metabolism, especially produced by only one or few spe-

cies, may therefore be too dilute to be detected. Second, only a sub-

set of all metabolites present in the bacterial cell will be secreted

outside of the cell. Third, to calculate metabolic pathway coverage,

we assumed that each pathway consists of metabolites that are

produced or consumed by metabolic enzymes annotated in bacterial

genomes, which is likely an overestimation of pathway sizes, since

presence of an enzyme-coding gene in the genome does not neces-

sarily imply that this enzyme was expressed or that its reactants

were present in our experimental conditions.

To further compare the samples measured with different omics

methods, we performed a Mantel test, which measures a correlation

coefficient between sample similarity matrices calculated based on

each omics data type individually (Fig 2E). For example, while it is

not possible to directly compare matrices of species and protein

abundances, it is possible to calculate sample similarity matrices for

these two methods that can then be compared with each other.

Notably, transcript abundance as measured by metatranscriptomics

showed a high correlation (≥ 0.57) with sample distance matrices of

all other omics measurements, underlining that this method cap-

tured both species abundance and functional information in our

experiment. Hierarchical clustering of Mantel correlation coefficients

revealed two groups, which shared transcript abundance data from

metatranscriptomics as a common member: one group with species

abundance data (from metagenomics, metatranscriptomics and

metaproteomics) and gene abundance (metagenomics); and the sec-

ond group with protein abundance data (metaproteomics) and

metabolite abundances. The emergence of these groups can be

explained by the nature of the data used to calculate sample dis-

tance matrices: species and gene abundances in one group, and

functional feature abundances in the other group. Altogether, meta-

transcriptomics was found to be the most universal and versatile

readout, as it can both provide robust and sensitive estimates of spe-

cies abundance, and at the same time reflects functional changes,

which are in concordance with protein changes detected by

metaproteomics.

Chlorpromazine treatment strongly affects
community composition

After testing the technical consistency between omics measurements

in a synthetic microbial community, we explored the impact of drug

perturbations on the community composition and the respective

responses at species, gene, transcript, protein and metabolite levels.

For the control condition and all perturbations (chlorpromazine,

metformin and niclosamide), similar dynamic changes in alpha

diversity were observed over time. In general, the alpha diversity

(inverse Simpson index) increased as the community grew over

time after inoculation, however, this increase was lower for chlor-

promazine compared with the other drugs and the control condition

(Fig EV3A and B). We observed different community dynamics

between runs A and B during the exponential phase: E. coli and

C. perfringens were the most abundant species in all conditions in

run A (Figs 3A and EV3C), while E. coli dominated community com-

position during exponential phase in run B. However, community

compositions became more similar between the runs at 43 h after

drug treatment (Appendix Fig S4). These analyses revealed that the

addition of metformin and niclosamide had negligible effects on

the community composition, while chlorpromazine treatment

shifted the community composition in both runs.

To identify differentially abundant species after drug perturba-

tion, we analysed the composition of microbiomes by comparing

species abundances in drug-treated samples against control samples
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estimated by each omics type (Fig 3B; ANCOM (Mandal et al,

2015)). This analysis revealed that most members of the Bacteroidota

phylum (Odoribacter splanchnicus, Parabacteroides distasonis, Phocaei-

cola vulgatus, Bacteroides fragilis, Bacteroides thetaiotaomicron and

Bacteroides uniformis) were less abundant in chlorpromazine-treated

samples. This reduction in Bacteroidota abundance was detected

across all four omics methods capturing community composition, indi-

cating that each of these methods is capable of detecting strong signals

of species abundance change. In addition to Bacteroidota, Fusobac-

terium nucleatum was found to be less abundant in chlorpromazine-

treated samples. In contrast, the other two drugs did not cause major

shifts in relative abundances: although ANCOM test identified signifi-

cant changes of abundance of several species, their relative abundance

was not changing more than two-fold (Fig 3B). In summary, we found

a consistent and substantial depletion of species belonging to the phy-

lum Bacteroidota upon chlorpromazine treatment.

Multi-omics measurements capture functional response of the
community to all three drugs

As compositional shifts do not provide information on the mecha-

nisms of response of each community member, we investigated

these functional responses in more detail by performing differential

analysis of metatranscriptomic, metaproteomic and metabolomic

datasets after a normalisation step wherein taxonomic abundance

effects were reduced (see ‘Gene, transcript and protein counting’ in

the Materials and Methods section). The highest number of differen-

tially abundant transcripts, proteins and metabolites were found in

samples treated with chlorpromazine (adjusted P-value < 0.001 and

absolute fold change > 4 compared with the control for metatran-

scriptomics, adjusted P-value < 0.05 and absolute fold change > 1.5

for metaproteomics and metabolomics; Fig 4A), which is in line

with our findings that chlorpromazine caused the largest disruption

to bacterial community (Fig 3B). Transcriptional response to chlor-

promazine is detected already after 15 min of treatment across spe-

cies belonging to different phyla, suggesting that, although

Bacteroidota show the strongest response, other species also adapt

their gene expression.

In order to evaluate similarities between functional responses

across omics data types, we performed pathway enrichment analy-

sis of differentially abundant features between drug treatment and

controls across all time points using the KEGG pathway annotations

(Fig 4B). In general, we detected less overlap between omics layers

on the functional level compared to species abundance analysis, as

no single pathway was statistically significant in the enrichment

analysis of all three functional omics datasets. Across all conditions,

five pathways were found to be significantly enriched upon drug

treatment compared to the control condition in two omics data

types, while 35 pathways were statistically significantly enriched in

only one omics dataset. The largest number of significantly enriched

pathways was found in chlorpromazine-treated samples for

metatranscriptomics data.

For our metformin-treated samples, we did not observe substan-

tial effects of metformin neither on community composition nor on

transcript or protein abundance in our study, at least at the concen-

trations used. Only a small number of pathways were significantly

overrepresented (pFDR < 0.001 for metatranscriptomics and

pFDR < 0.05 for metaproteomics and metabolomics) within the set

of up- and downregulated features (transcripts/proteins/metabo-

lites) in metformin-treated samples (Fig 4B). Further inspection of

putative metabolites involved in these pathways showed that their

abundance also decreased upon addition of metformin in the non-

bacterial control samples (Appendix Fig S5). This indicates that met-

formin primarily interferes with the measurement of these putative

metabolites, probably due to their chemical similarity, underlining

the importance of including non-bacterial control samples to study

drug response. However, we cannot exclude that metformin also

interacts with lysine and arginine metabolism pathways in bacteria,

as reported before (Forslund et al, 2015; Pryor et al, 2019). In the

previous single-strain experiments, metformin at the same concen-

tration was shown to have an effect on several of the tested species

(Maier et al, 2018). We attribute this discrepancy to the possibility

that these species show a different behaviour in a community set-

ting compared to a single culture setting, as already shown for other

species (D’hoe et al, 2018). Unfortunately, our datasets do not pro-

vide any further hypotheses as to what the underlying cause of this

protective community effect could be.

For niclosamide-treated samples, 10 pathways were significantly

enriched (pFDR < 0.001) among regulated transcripts, including

amino acid and nitrogen metabolism. Transcripts of nitrogen metab-

olism pathway upregulated in the early time points (15 min,

30 min, 1 h, 3 h) were annotated as NAD-specific glutamate dehy-

drogenase (belonging to the Cluster of Orthologous Groups

COG0334 from the EggNOG database present in B. thetaiotaomicron,

P. vulgatus, B. fragilis), hydroxylamine reductase (COG1151 in

C. perfringens, B. uniformis) and carbamate kinase (COG0549 in

Eggerthella lenta) (Appendix Fig S6). Previously, NAD-specific gluta-

mate dehydrogenase was found to be upregulated in response to

nitrogen availability in Mycobacterium smegmatis, where it is

assumed to have a de-aminating activity (Harper et al, 2010). Fur-

thermore, hydroxylamine reductase and carbamate kinase are

enzymes belonging to the family of oxidoreductases which both act

on nitrogenous compounds. Therefore, the upregulated pathway

and its transcripts suggest increased nitrogen metabolism in

niclosamide-treated samples. Further examination of our metabo-

lomic dataset revealed that niclosamide gets degraded in both runs

of the experiment (Fig EV4), which could explain the observed

absence of perturbations of the community composition. Nitrore-

ductases are known to detoxify niclosamide (Copp et al, 2020).

While members of the nitroreductases family (COG0778) are

expressed, we did not observe significant changes in their expres-

sion levels upon treatment with niclosamide. Additional follow-up

experiments are needed to elucidate the mechanisms underlying the

microbial degradation of niclosamide and the roles of individual

community members.

Chlorpromazine induces stress response and metabolic changes
in the community

Since the number of differentially abundant features and pathways

was high in chlorpromazine-treated samples (Fig 4A and B), we

tested whether there are features that change concordantly across

omics layers. We first compared transcript and protein fold changes

upon perturbation, which revealed general agreement between rela-

tive changes in gene expression and protein abundance, with tran-

script fold changes at each time point correlating more strongly with
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protein changes at later time points (Fig 4C; Appendix Fig S7), likely

reflecting the delay between transcription and translation

processes. Based on this analysis, we assessed the most prominent

and concordant changes between metatranscriptomics and metapro-

teomics 15 min and 1 h after chlorpromazine addition, respectively

(Fig 4D). The most concordantly downregulated features were pro-

teins and genes of Bacteroidota species and F. nucleatum, including

ribosomal proteins, elongation factors, and central carbon metabo-

lism enzymes gldA (glycerol dehydrogenase), gapdh (glyceralde-

hyde 3-phosphate dehydrogenase), and pta (phosphate

acetyltransferase), the latter two being downregulated in several

species (Fig 4D). Furthermore, the most upregulated features found

both in metatranscriptomics and metaproteomics were stress

response genes in E. coli, such as the small heat shock proteins IbpA

Figure 3. Changes in community composition upon drug perturbation.

A Relative species abundance changes over time in the three drug conditions and control. Time 0 indicates timepoint of the drug addition 5 h after the passage in the
fresh medium. Relative abundance measured from metagenomics data.

B Left, distribution of relative species abundance for each species across all samples (all conditions and timepoints). Right, heatmap of species abundance fold changes
measured by different omics methods for each drug condition versus control. Significance of changes estimated by the ANCOM test is indicated by asterisks: *changes
detected at 0.7 threshold of W statistic; **changes detected at 0.8 threshold; ***changes detected at 0.9 threshold; nd, not detected.
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and IbpB (Inclusion body-associated proteins A and B), other chap-

erones, and ABC transporters. IbpA and IbpB serve as a first line of

defence against protein aggregation (Miwa et al, 2021). In addition

to ibpA and ibpB, we found upregulation of the transcriptional regu-

lator rpoH and the chaperones dnaK and groEL, which are also

involved in heat shock response (Yura, 2019; Appendix Fig S8).

Figure 4. Functional analysis of transcript, protein and metabolite response after niclosamide, metformin or chlorpromazine treatment.

A Number of differentially abundant transcripts, proteins and metabolites.
B Pathway enrichment analysis across all conditions and time points. P-values are indicated by asterisks: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.
C Heatmap representing Spearman correlation between fold changes (relative to control) detected by metatranscriptomics and metaproteomics across all drug

perturbations.
D Scatterplot depicting protein fold changes (relative to control) detected after 15 min of chlorpromazine exposure by metatranscriptomics versus after 1 h of exposure

by metaproteomics.
E COG enrichment analysis differentiating between species susceptible to chlorpromazine treatment (Bacteroidota) and non-susceptible species (non-Bacteroidota).

COGs that are enriched in upregulated genes are coloured in red, while COGs that are enriched in downregulated genes are coloured in blue. Only COGs that were
found to be significantly enriched in at least three out of four early time points are shown. COG names that are coloured are discussed in more detail in the main
text.

F Di-, tri- and tetra-saccharide abundances as measured by untargeted metabolomics (tentative metabolite annotation is based on m/z values indicated in the panel
titles). The lines are coloured according to the experimental conditions (chlorpromazine, metformin, niclosamide and control), and the line type represents whether
these are community culture or non-bacterial controls.
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Together, these results show that chlorpromazine causes the activa-

tion of a stress response in E. coli, probably due to induction of pro-

tein aggregation either directly or indirectly.

We then tested whether genes associated with stress response

were differently regulated between chlorpromazine-susceptible and

non-susceptible species. Two COGs related to the stress response

were enriched in upregulated genes in at least two of the four early

time points in the depleted (susceptible) species (Fig 4E, annotated

in green, Fig EV5). One of them, COG0265, is upregulated by both

susceptible and non-susceptible species and encompasses serine

proteases (e.g., HtrA proteins such as DegP and DegQ), which repre-

sent an important class of chaperones and heat-shock-induced ser-

ine proteases, protecting periplasmic proteins. Furthermore, two

COGs enriched in upregulated genes were related to (multidrug)

transporter activity. COG1538, which contains genes annotated as

membrane protein OprM, was the only COG enriched in upregulated

genes by Bacteroidota in all four early time points (Fig 4F, annotated

in purple). In Pseudomonas aeruginosa, OprM is part of MexAB–

OprM, a multidrug efflux pump of the resistance-nodulation-cell

division (RND) superfamily, where it plays a central role in multi-

drug resistance by transporting drugs from the cytoplasm across the

inner and outer membranes outside the cell envelope (Alekshun &

Levy, 2007; Tsutsumi et al, 2019). RND-efflux pumps are found in a

number of Gram-negative bacteria, for example, AcrAB–TolC is

found in E. coli (Du et al, 2018) while Bacteroides fragilis harbours

multiple copies of RND pumps BmeABC (Ghotaslou et al, 2018).

Further, in addition to COG1538 (OprM homologues), also COG0841

containing homologues of the MexB/AcrB/BmeB protein (Fig 4E,

also annotated in purple) was found to be enriched in upregulated

genes, both in Bacteroidota and non-Bacteroidota species. These

observations suggest an important role of the AcrAB–TolC/MexAB-

OprM/BmeABC efflux pumps in determining chlorpromazine sus-

ceptibility. Indeed, a recent study showed that chlorpromazine is

both a substrate and an inhibitor of the AcrB multidrug efflux pump

in Salmonella enterica and E. coli (Grimsey et al, 2020). Together,

our results suggest that chlorpromazine could also be an inhibitor of

BmeB, the AcrB/MexB homologue in Bacteroidota species and that

this, potentially in combination with protein aggregation, could be

one of the reasons explaining why Bacteroidota are affected by

chlorpromazine treatment.

Finally, depletion of Bacteroidota and downregulation of their

genes involved in saccharide uptake might explain the enrichment of

‘Starch and sucrose’ and ‘Fructose and mannose metabolism’ path-

ways among metabolites more abundant upon chlorpromazine treat-

ment compared to the control samples (Fig 4B). As Bacteroides

species are known to be capable of metabolising a wide variety of

polysaccharides (Schwalm & Groisman, 2017), we believe that the

higher abundance of ions tentatively annotated as oligosaccharides

after chlorpromazine treatment (Fig 4F) measured by metabolomics

is a result of their reduced consumption by these species. At the

same time, the abundance of Bacteroidota is decreased compared to

control. With the present data, we are not able to quantify the rela-

tive contributions of reduced Bacteroidota biomass and lower meta-

bolic activity per cell to the observed differences in metabolite levels.

Taken together, by integrating multi-omics measurements, we

propose that a series of events happens upon treatment with chlor-

promazine: (i) a stress response is induced across several bacterial

species with overexpression of ibpA and ipbB chaperones being the

most pronounced response in E. coli; (ii) this stress response

involves upregulation of AcrB/BmeB type of RND pumps, which

may be bound and blocked by chlorpromazine in a species-specific

manner; (iii) Bacteroidota species are more susceptible to chlor-

promazine and are quickly depleted from the community while also

downregulating genes involved in saccharide uptake, both of which

result in (iv) higher levels of oligosaccharides in the culture medium

due to the reduced ability of the perturbed community to utilise them.

Discussion

In this study, we evaluated the impact of drug perturbations on a

synthetic gut microbial community by analysing five different omics

data types in a highly controlled in vitro experiment. In general, we

found concordance between all omics data types regarding the esti-

mation of community composition (taxonomic profiling). To our

knowledge, this is the first study to systematically compare taxo-

nomic profiles obtained by four omics data types and can thus serve

as a baseline for integrating different data types in ‘in natura’ set-

tings. Using the synthetic community, we could show a high correla-

tion between metagenomics and metatranscriptomics (q = 0.92),

similar to a previous study that used only these two omics methods

(q = 0.81; Heintz-Buschart & Wilmes, 2018). The taxonomic profiles

obtained from our metaproteomics dataset, which is increasingly

used in microbiome studies (e.g. Kleiner et al, 2017; Kleikamp

et al, 2021), showed correlations between q = 0.78 and q = 0.84

with all other omics for species with a relative abundance higher

than 1%. Although the number of detected proteins and the detec-

tion limits remain to be improved, we showed that species abun-

dance estimates can be derived from metaproteomics in a relatively

simple, defined microbial community.

For a defined community as used here, 16S amplicon sequencing

would be sufficient to capture species abundance. However, when

closely related species are used or natural communities are cultured

ex vivo, a method based on shotgun sequencing is necessary. If the

available resources make it necessary to prioritise, then metatran-

scriptomics sequencing would be preferred, as its estimation of spe-

cies abundance is highly correlated with metagenomics, but it

additionally allows for functional profiling and offers insights into

alterations in gene expression.

Metabolomics measurements offer a complementary readout of

the community functions. In our experiment, metabolomics

revealed differences in the degradation of the studied drugs and

suggested the links between the abundance of oligosaccharide com-

pounds in the culture medium and changes in Bacteroidota abun-

dance in response to chlorpromazine treatment. However, since our

flow injection approach enabled acquisition of only exact ion

masses (MS1), our dataset contains many ambiguous ion annota-

tions. Follow up studies collecting tandem mass spectra (MS1 and

MS2) and using chemical standards are required to confirm the

identities of the changing metabolites (Schymanski et al, 2014). Fur-

thermore, our dataset contains only extracellular metabolite mea-

surements, and thus only provides indirect information on

intracellular functional changes in the bacterial community. Of the

three drugs used for perturbation, only chlorpromazine caused a

large disturbance in the community composition. Surprisingly, met-

formin, which has been shown to alter the gut microbiome in
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patients (Forslund et al, 2015; Wu et al, 2017), did not perturb the

community in our study, even though our earlier study suggested

that the growth of at least four different species is inhibited by met-

formin at the concentration used in monocultures (F. nucleatum,

B. longum, P. copri and P. merdae; Maier et al, 2018). This observa-

tion hints at a protective effect from the community, although this

protective effect is not caused by drug degradation, as metformin

concentrations remained high during the course of experiment

(Fig EV4), but could be due to other interactions between members

of the bacterial community, for example, by altered growth rates

(D’hoe et al, 2018). Similarly, niclosamide was expected to cause a

depletion of most of the members of the synthetic community,

except for E. coli and B. wadsworthia (Maier et al, 2018), which was

not observed in this study, also pointing to community-related pro-

tection effects. Our metatranscriptomic data revealed an upregula-

tion of genes related to nitrogen metabolism, while niclosamide

concentration decreased during incubation, which was not observed

in the non-bacterial controls. Therefore, we believe that certain spe-

cies are capable of degrading niclosamide, which ultimately

protected the whole community against possible inhibitory effects of

niclosamide treatment.

For chlorpromazine, the observed depletion of Bacteroidota spe-

cies was in concordance with single species experiments (Maier

et al, 2018). The antibiotic activity of chlorpromazine was reported

relatively soon after its first usage in the 1950s (Kristiansen & Verg-

mann, 1986; Dinan & Cryan, 2018). Its antibiotic mechanism of

action is described to be multifold and includes effects on the cell

membrane, energy generation and interference with cell replication

due to DNA intercalation in E. coli (Grimsey et al, 2020). In our

study, several genes and proteins related to protein aggregation

were found to be upregulated in the metatranscriptomic and meta-

proteomic data in E. coli and other community members. One study

already reported protein aggregation of bovine insulin after chlor-

promazine treatment (Bhattacharyya & Das, 2001). However, it

remains unclear whether chlorpromazine can cause protein aggrega-

tion in microbes either directly or indirectly, a hypothesis that

should be followed-up in future experiments.

Finally, we identified upregulation of RND-type efflux pumps in

the Gram-negative bacteria, even in the Bacteroidota species that

were severely depleted. It was recently shown that in S. enterica and

E. coli, chlorpromazine is both a substrate and an inhibitor of AcrB,

the inner membrane transporter of the tripartite system AcrAB–TolC,

which is an RND-type efflux pump (Bailey et al, 2008a; Grimsey

et al, 2020). Based on our data, we hypothesise that BmeB, the AcrB

homologue in Bacteroidota, is also susceptible to chlorpromazine

inhibition as we found upregulation of this and related genes, similar

to what has been described by others in single species experiments

(Grimsey et al, 2020). The suggested mechanism could be of signifi-

cance in the battle against the rising multidrug resistance of Bacter-

oides fragilis, a commensal bacterium that can act as a virulent

pathogen when it escapes its normal niche (Wexler, 2007, 2012;

Niestezpski et al, 2019). However, chlorpromazine’s antimicrobial

activity generally occurs at concentrations higher than those clini-

cally achievable (Grimsey & Piddock, 2019). Therefore, it is possible

that, similarly as suggested for S. enterica, chlorpromazine could act

as an antimicrobial adjuvant for Bacteroidota where its inhibition of

RND-type efflux pumps prevents the extrusion of administered anti-

biotics (Grimsey et al, 2020). From the perspective of human health,

these results underline the detrimental effect of antipsychotics on the

gut microbiome reported before (Dinan & Cryan, 2018). However,

the revealed phylum-specific differences provide an opportunity to

explore whether complementation of antipsychotic therapy with

Bacteroidota-promoting dietary interventions could improve mental

health and increase patients’ quality-of-life by restoring a healthy

microbiota (Patnode et al, 2019).

In conclusion, we directly compared data from multiple omics

methods and showed that they agree on species abundance estima-

tion of a defined and drug-perturbed microbial community in vitro.

Those methods that are able to detect functional information also

correlate with each other, albeit to a lower degree. We could

also confirm expected time delays between transcriptional and trans-

lational responses to perturbations, underlining that these methods

reveal biological insights that happen at different time scales. While

we were not able to detect the induction of metabolising enzymes in

response to drug perturbation, we could detect the upregulation of

other resistance mechanisms such as transporters just 15 min after

the perturbation (Fig 4). Future studies could therefore investigate a

broader panel of drugs with the timepoints established in this study.

Although multi-omics analysis of natural communities is hampered

by their increasing complexity, combining multiple omics measure-

ments allows to measure the response of the community to perturba-

tions across molecular layers and provides information that is not

achievable by any method alone.

Materials and Methods

Species and drug selection

The species used in this study represent a subset of abundant and

prevalent species from the human gut. In total, 32 species were

selected based on our previous work (Maier et al, 2018; Tramontano

et al, 2018). The bacterial isolates were received from DSMZ, BEI

Resources or ATCC and Dupont Health & Nutrition. The drugs were

chosen because of their antimicrobial activity (Maier et al, 2018)

and diversity in therapeutic usage.

Reference genomes

Reference genomes were downloaded from RefSeq in March 2019

(release 92) and reannotated using Prokka v1.14.0 (Seemann, 2014).

Taxonomic classification was based on GTDB taxonomy release 95

(Parks et al, 2018) and inferred using GTDB-Tk v1.3.0 (Hyatt et al,

2010; Matsen et al, 2010; Price et al, 2010; Eddy, 2011; Ondov

et al, 2016; Jain et al, 2018; Chaumeil et al, 2020). Further func-

tional annotations (e.g., the KEGG orthology and eggNOG ortholo-

gous group) were retrieved using eggNOG-mapper v2.0.1 which is

based on eggNOG v5.0 (Huerta-Cepas et al, 2017). A cladogram was

built by pruning the species cladogram from GTDB (bac120.tree,

release 95) using the ETE toolkit (Huerta-Cepas et al, 2016).

Medium and drug preparation

mGAM medium was prepared according to manufacturer’s instruc-

tions (HyServe GmbH & Co.KG, Germany, produced by Nissui Phar-

maceuticals) and all the single species were grown in this medium
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except V. parvula (Todd-Hewitt Broth (Sigma-Aldrich) + 0.6%

sodium lactate) and B. wadsworthia (mGAM + 60 mM sodium

formate + 10 mM taurine). All media were placed in anaerobic

chamber 1 day before use under anoxic conditions (Coy Laboratory

Products Inc.) (2% H2, 12% CO2, rest N2). Chlorpromazine (TCI

Chemicals) and niclosamide (Santa Cruz Biotechnology) were added

from DMSO stock solution. Metformin (Sigma) was added as pow-

der directly into the medium after which the medium was filter-

sterilised. Final concentrations of each drug were chosen based on

previous work (Maier et al, 2018) with concentrations of 5 mM for

metformin and 20 lM for chlorpromazine and niclosamide. The

higher concentration for metformin is motivated by previously

published data, which showed that a concentration of 20 lM was

not sufficient to impair growth of gut microbiome members in vitro

(Maier et al, 2018; Fig EV4).

Experimental set-up and sample collection

Species were pre-inoculated in isolation on liquid mGAM medium

from pure stocks and incubated at 37°C under anaerobic condi-

tions for a period of 3 or 5 days, depending on the growth rate of

each species (see Fig 1). The monocultures were subsequently

mixed in equal proportions based on their OD and then inoculated

in 100 ml of mGAM liquid medium. To allow species to reach a

stable state (stabilisation phase), the mixed culture was grown for

48 h after which 1 ml was transferred to fresh medium. In total,

three passages were performed and after the second transfer OD

measurements were taken to determine the start of the exponen-

tial phase.

Following the stabilisation phase, the mixed community was

inoculated in medium prepared with one single drug or DMSO (con-

trol) as soon as the community reached the exponential phase (OD

roughly equal to 2–3). The cultures were subsequently sampled

(3 mL) at fixed time intervals (0 min, 15 min, 30 min, 1 h, 3 h,

48 h), transferred to fresh medium (with drugs or DMSO) after 48 h

and then sampled again 48 h later (or 96 h after the start of the

experiment). The whole experiment was performed twice (labelled

as run A and run B).

1.5 ml of each collected sample was centrifuged (30 s at max

speed) after which the supernatant was removed and the cell pellet

was stored at �80°C until further processing for DNA and RNA

extractions. For protein and metabolite extraction, again 1 ml of

each collected sample was centrifuged (30 s at max speed) and

450 ll of supernatant was used for metabolite extraction while the

cell pellet was used for protein extraction (proteins in the cells).

The remainder of the samples was frozen at �80°C as backup.

DNA and RNA extraction

Genomic DNA and total RNA were extracted from the same flash-

frozen samples using Allprep Powerfecal DNA/RNA kit (Qiagen,

Hilden Germany) following the manufacturer’s protocol but an addi-

tional phenol–chloroform extraction step of 700 ll was performed

after lysis. DNA yield was measured by using QubitTM dsDNA HS

Assay Kit (Qubit, Waltham, Massachusetts, USA), split into two

aliquots for ribosomal 16S rRNA amplicon sequencing and metage-

nomic shotgun sequencing and was stored at �20°C. RNA yield was

measured via Bioanalyzer (Agilent, Santa Clara, California, USA)

with Pico and Nano chips depending on the sample concentration

and stored at �80°C for further analysis.

16S rRNA amplicon, metagenomic and
metatranscriptomic sequencing

For 16S rRNA amplicon sequencing, extracted DNA was amplified

using primers targeting the V4 region of the 16S rRNA gene on the

F515 and R806 primer pair (Caporaso et al, 2011). PCR was

performed according to the manufacturer’s instructions of the KAPA

HiFi HotStart PCR Kits (Roche, Basel Switzerland) using barcoded

primers and a two-step PCR protocol (NEXTflexTM 16S V4 Amplicon-

Seq Kit, Bioo Scientific, Austin, Texas, USA). PCR products were

pooled and purified using size-selective SPRIselect magnetic beads

(0.8 left-sized, Beckman Coulter, Brea, CA, USA). The library was

then diluted to 6 pM for sequencing. The library was sequenced on

an Illumina (San Diego, USA) MiSeq platform using 2 × 250 bp

paired-end reads at Genomics Core Facility (European Molecular

Biology Laboratory [EMBL], Heidelberg, Germany).

Metagenomic libraries for all samples were prepared using the

NEB Ultra II and SPRI HD kits with a targeted insert size of 350, and

sequenced on an Illumina HiSeq 4000 platform (Illumina, San

Diego, CA, USA) in 2 × 150 bp paired-end with the aim of 1.5 Gbp

average setup at the Genomics Core Facility (EMBL, Heidelberg,

Germany).

RNA samples were depleted for ribosomal RNA using the

NEBNext Bacteria rRNA Depletion Kit (New England Biolabs, Ips-

wich, Massachusetts, USA). Samples were pooled into a library

using the NEBNext Ultra II Directional RNA Library Prep Kit (New

England Biolabs) and subsequently sequenced on Illumina

NextSeq500 platform (75 bp; single end) at Genomics Core Facility

(EMBL, Heidelberg, Germany).

Quality control of raw reads was performed using NGLess

(Coelho et al, 2019). For metagenomics, reads were trimmed to the

longest subread where each base had a Phred score of at least 25.

For metatranscriptomics, a sliding window approach was used and

reads were trimmed to the longest subread with an average Phred

score of 20 (window size: 4 bp). Resulting reads shorter than 45 bp

were discarded. To remove possible human contamination, all

reads were mapped against a human reference database (release

GRCh38.p10, Ensembl; Zerbino et al, 2018) using NGLess and

samtools (Li et al, 2009). Reads with an identity threshold ≥ 90%

were discarded. For metatranscriptomics specifically, rRNA reads

were also removed from the dataset using SortMeRNA (Kopylova

et al, 2012) with default parameters.

Protein extraction

Sample preparation, including protein extraction, digestion and pep-

tide purification was performed according to the in-StageTip proto-

col (Kulak et al, 2014, 20) with automation on an Agilent Bravo

liquid handling platform according to (Geyer et al, 2016). In brief,

samples were incubated in the PreOmics lysis buffer (P.O. 00001,

PreOmics GmbH) for reduction of disulfide bridges, cysteine alkyl-

ation and protein denaturation at 95°C for 10 min. Samples were

sonicated using a Bioruptor Plus from Diagenode (15 cycles of

30 s). The protein concentration was measured using a tryptophan

assay. In total, 200 lg protein of each organism were further
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processed on the Agilent Bravo liquid handling platform by adding

trypsin and LysC (1:100 ratio—lg of enzyme to lg of sample pro-

tein). Digestion was performed at 37°C for 4 h.

The peptides were purified in consecutive steps according to the

PreOmics iST protocol (www.preomics.com). After elution from

the solid phase extraction material, the peptides were completely

dried using a SpeedVac centrifuge at 60°C (Eppendorf, Concentrator

plus). Peptides were suspended in buffer A* (2% acetonitrile [v/v],

0.1% trifluoroacetic acid [v/v]) and sonicated for 30 min (Branson

Ultrasonics, Ultrasonic Cleaner Model 2510).

Metaproteomics

Samples were analysed using a liquid chromatography (LC) system

coupled to a mass spectrometer (MS). The LC was an EASY-nLC

1200 ultra-high pressure system (Thermo Fisher Scientific) and was

coupled to a Q Exactive HFX Orbitrap MS (Thermo Fisher Scientific)

using a nano-electrospray ion source (Thermo Fisher Scientific).

Purified peptides were separated on 50 cm HPLC-columns (ID:

75 lm; in-house packed into the tip with ReproSil-Pur C18-AQ

1.9 lm resin [Dr. Maisch GmbH]). For each LC–MS/MS analysis

about 500 ng peptides were separated on 100 min gradients.

Peptides were separated with a two-buffer-system consisting of

buffer A (0.1% [v/v] formic acid) and buffer B (0.1% [v/v] formic

acid, 80% [v/v] acetonitrile). Peptides were eluted with a linear

70 min gradient of 2–24% buffer B, followed stepwise by a 21 min

increase to 40% buffer B, a 4 min increase to 98% buffer B and a

5 min wash of 98% buffer B. The flow rate was constant at 350 nl/

min. The temperature of the column was kept at 60°C by an in-

house-developed oven containing a Peltier element, and parameters

were monitored in real time by the SprayQC software (Scheltema &

Mann, 2012).

First, data-dependent acquisition (DDA) was performed of each

single organism to establish a library for the data independent

acquisition (DIA) of the community culture samples. The DDA scans

consisted of a Top15 MS/MS scan method. Target values for the full

scan MS spectra were 3e6 charges in the 300–1,650 m/z range with

a maximum injection time of 25 ms and a resolution of 60,000 at

m/z 200. Fragmentation of precursor ions was performed by higher-

energy C-trap dissociation (HCD) with a normalised collision energy

of 27 eV. MS/MS scans were performed at a resolution of 15,000 at

m/z 200 with an ion target value of 5e4 and a maximum injection

time of 120 ms. Dynamic exclusion was set to 30 s to avoid

repeated sequencing of identical peptides.

MS data for the community culture samples were acquired with

the DIA scan mode. Full MS scans were acquired in the range of

m/z 300–1,650 at a resolution of 60,000 at m/z 200 and the auto-

matic gain control (AGC) set to 3e6. The full MS scan was followed

by 32 MS/MS windows per cycle in the range of m/z 300–1,650 at

a resolution of 30,000 at m/z 200. A higher-energy collisional dis-

sociation MS/MS scans was acquired with a stepped normalised

collision energy of 25/27.5/30 eV and ions were accumulated to

reach an AGC target value of 3e6 or for a maximum of 54 ms.

The MS data of the single organisms and of the community

cultures were used to generate a DDA-library and the direct-DIA-

library, respectively, which were computationally merged into a

hybrid library using the Spectronaut software (Biognosys AG). All

searches were performed against a merged protein FASTA file of the

reference genomes annotated using Prokka (see above). Searches

used carbamidomethylation as fixed modification and acetylation of

the protein N-terminus and oxidation of methionines as variable

modifications. Trypsin/P proteolytic cleavage rule was used, permit-

ting a maximum of 2 missed cleavages and a minimum peptide

length of 7 amino acids. The Q-value cut-offs for both library gener-

ation and DIA analyses were set to 0.01.

Metabolomics measurements

Untargeted metabolomics analysis of cell-free supernatants by flow

injection-mass spectrometry was performed as described previously

(Fuhrer et al, 2011). Briefly, samples were analysed on a LC/MS

platform consisting of a Thermo Scientific Ultimate 3000 LC system

with autosampler temperature set to 10°C coupled to a Thermo Sci-

entific Q-Exactive Plus Fourier transform MS equipped with a heated

electrospray ion source and operated in negative or positive ionisa-

tion mode. The isocratic flow rate was 150 ll/min of mobile phase

consisting of 60:40% (v/v) isopropanol:water buffered with 1 mM

ammonium fluoride at pH 9 for negative ionisation mode or 60:40%

(v/v) methanol:water buffered with 0.1% formic acid at pH 2 for

positive ionisation mode, in both cases containing 10 nM tauro-

cholic acid and 20 nM homotaurine as lock masses. Of note, the LC

system was only used to transfer samples from the autosampler to

the MS, but did not include a chromatographic column for analyte

separation (‘flow injection’). Mass spectra were recorded in profile

mode from 50 to 1,000 m/z with the following instrument settings:

sheath gas, 35 a.u.; aux gas, 10 a.u.; aux gas heater, 200°C; sweep

gas, 1 a.u.; spray voltage, �3 kV (negative mode) or 4 kV (positive

mode); capillary temperature, 250°C; S-lens RF level, 50 a.u; resolu-

tion, 70 k @ 200 m/z; AGC target, 3 × 106 ions, max. inject time,

120 ms; acquisition duration, 60 s. Spectral data processing includ-

ing peak detection and alignment was performed using an auto-

mated pipeline in R analogous to previously published pipelines

(Fuhrer et al, 2011). To evaluate the impact of the drugs on mea-

surements of other metabolites, we also prepared non-bacterial con-

trols (i.e., each drug incubated in mGAM culture medium) and

analysed them with the same procedure. Detected ions were tenta-

tively annotated as metabolites based on accurate mass within a

dynamic tolerance depending on local instrument resolving power

ranging from 1 mDa at m/z = 50 to 5 mDa at m/z = 1,000 using the

Human Metabolome Database (Wishart et al, 2018) as reference

considering [M-H] and [M-2H] ions in negative mode or [M+],

[M + H], [M + Na] and [M + K] ions in positive mode and up to

two 12C to 13C substitutions. We additionally provide mappings

to the Microbial Metabolites Database (Wishart et al, 2023) as part

of the associated data repository. Of note, this approach precludes

the resolution of isomers, of metabolites mapping to the same ion

using different adduct assumptions, of unaccounted neutral gains or

losses, or of metabolites with slightly distinct masses that neverthe-

less map to the same ion within the respective local matching

tolerance.

Metabolomics data analysis

Raw intensity values were quantile-normalised separately for ions

acquired in positive and negative modes. For further analysis, the

data from the two acquisition polarity modes were combined in one
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table and filtered as follows: only annotated ions were retained; ions

annotated to 13C-compounds only were removed; for each metabo-

lite, only the ion with the annotation considered most likely was

retained (either the ion with the highest correlation with the total

ion current, or the ion with the largest mean intensity across sam-

ples). We provide both the filtered and the original unfiltered table

with metabolite annotations in the associated data repository.

Gene, transcript and protein counting

Metagenomic and metatranscriptomic reads were mapped against a

database of reference genomes containing only the species used in

this study, using NGLess and samtools, with a minimum match size

of 45 and minimum identity of 97%. Abundance estimates were

produced by counting the number of reads mapping to each genome

included in the study. If a read mapped to multiple genes, the count

was distributed to each of the genes (e.g., if a read maps to gene X

and gene Y, gene X and gene Y each get a count of 0.5).

Proteins quantification and filtering. Proteins were filtered based

on the information from the DDA experiment on which peptides are

detected in which single species. Metaproteomics report with pro-

tein and peptide quantification obtained from Spectronaut software

applied to DIA samples was used as input. For each peptide in the

community peptide report file, number of exact protein and species

matches was calculated. For each protein, only unique peptides that

match to one species were left for quantification. For each protein,

the peptides were sorted according to the number of samples in

which they were detected. Protein abundance was calculated as the

mean of three most commonly measured peptides as suggested

before (Ludwig et al, 2018). If the number of peptides was < 3, the

protein was discarded.

To reduce taxonomic abundance effects in downstream analyses,

taxon-specific scaling was performed on metagenomics, metatran-

scriptomics and metaproteomics as described by (Klingenberg &

Meinicke, 2017). These measurements are all relative, and therefore

changes in cell counts or biomass are not taken into account.

Species abundance estimation

Multiple computational strategies were used to estimate species

abundance. Unless stated otherwise, for all analyses the

species abundances resulting from read mapping were used. For this

approach, first a database of 16S rRNA regions was constructed by

manually querying the SILVA rRNA database (Quast et al, 2013)

and extracting the representative sequence from each of our 32 spe-

cies. Amplicon sequencing reads were then mapped against this

database using MAPseq v1.2.4 (Matias Rodrigues et al, 2017).

Paired reads were mapped independently and assignments were

only considered upon agreement. Abundance estimates were then

produced by counting the number of reads mapping to each genome

included in the study. For metagenome derived estimates, total

counts were normalised by the size of the genome (number of base-

pairs). For metatranscriptome derived estimates, additional steps

were required. Gene predictions by Prokka/Prodigal were used to

calculate the total number of coding bases per genome, after exclu-

sion of rRNA regions. Finally, total read counts were normalised by

the number of coding bases on each genome.

Species abundance was estimated from metaproteomic data by

summing up all filtered protein intensities detected per each species,

and dividing the sum by the total summed protein intensity in a

given sample.

In addition, to the approaches based on read mapping, several

popular tools were used to estimate species abundance. For

amplicon sequencing, DADA2 v1.10 (Callahan et al, 2016) was used

with the GTDB database release 86 (Parks et al, 2018) for sequence

classification which was limited to genus level classification. Meta-

genomic and metatranscriptomic species abundances were esti-

mated using mOTUs v2.5 (Milanese et al, 2019) and MetaPhlAn v3

(Beghini et al, 2021).

Coverage analyses

Gene, transcript and protein coverage were defined as the number

of genes/transcripts/proteins that showed a count higher than 0,

divided by the total number of predicted genes per species. For path-

way coverage, the same approach was used, but genes/transcripts/

proteins were grouped by the KEGG pathways instead and thus

divided by the number of KEGG orthologs in one single pathway.

The same procedure was repeated for metabolites, but using the

number of metabolites per pathway as predicted by KEGG instead of

the number of KEGG orthologs.

Mantel test

Mantel tests were performed to compare each pair of omics data-

sets and evaluate the similarity between them. Abundance tables

of each omics were transformed into distance matrices using

1�Spearman’s correlation coefficient, and the matrices were com-

pared using the mantel function in the vegan package (version

2.5.5) with the default option. For gene (metagenomic), transcript

(metatranscriptomic) and protein (metaproteomic) level profiles,

features with mean abundances below 1E-7, 1E-7 and 1E-5, respec-

tively, were excluded, and only features above those thresholds

were included in the analysis. All the features were included in

the species-level profiles for each omics. Sixty-one samples that

were common among all the omics datasets were used in this

analysis.

Differential species abundance analysis

Differential analysis of species abundance across conditions was

performed with ANCOM v. 2.1. Tables of species abundances calcu-

lated from each omics measurements were preprocessed with

feature_table_pre_process with sample names used as sample vari-

ables, condition used as group variable, and parameters

out_cut = 0.05; zero_cut = 0.90; lib_cut = 0; neg_lb = TRUE. The

ANCOM function was applied to each pre-processed table with

condition used as the main variable and time used as the formula

for adjustment (with parameters: main_var = “condition’;

p_adj_method = ‘BH’; alpha = 0.05, adj_formula = “time”;

rand_formula = NULL). P-values were adjusted with Benjamini–

Hochberg method (p_adj_method = ‘BH’). The cut-off of 0.7 for the

W statistic was used to identify significantly differentially abundant

species (detected_0.7 = TRUE).
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Differential transcript, protein and metabolite
abundance analysis

Differential transcript analysis was performed using DESeq2 v1.26.0

(Love et al, 2014) after taxon-specific scaling (see above). The

design formula included the factors run, drug, time point and

the interaction term drug:timepoint. Statistical testing was

performed with the Wald-test and IHW (Ignatiadis et al, 2016) to

control the false discovery rate.

Differential protein and metabolite analysis were performed

using repeated measures analysis of variance using the lmer func-

tion in the ade4 package. The same formula used in the differential

transcript analysis was also used in the analysis. To exclude low-

abundant features, those that have 0 or NA in at least half of the

samples were removed prior to the analysis. P-values were adjusted

by the IHW method. Fold changes of proteins and metabolites com-

pared to those of controls were calculated based on raw values.

Pathway and COG enrichment analysis

Pathway enrichment was performed on differentially abundant fea-

tures (cut-off for metatranscriptomics abs(log2(fold change)) > 2,

pFDR < 0.001, cut-off for metabolomics and metaproteomics abs

(log2(fold change)) > log2(1.5), pFDR < 0.05) with Fisher exact test

using stats.fisher_exact in Python 3.7.7. P-values were adjusted with

Benjamini–Hochberg procedure with multipletests function from

statsmodels. For metabolomics, pathway enrichment analysis was

performed for ion features rather than metabolite features (e.g. if

one ion is annotated to two or more metabolites from the same

pathway, it is counted only once in pathway enrichment analysis).

For each feature, only one measurement corresponding to the maxi-

mum absolute fold change over time was used for pathway enrich-

ment analysis. COG enrichment was performed in the R

environment using ClusterProfiler (Wu et al, 2021).

Data availability

The MS-based proteomics data have been deposited to the Proteo-

meXchange Consortium via the PRIDE partner repository and are

available via ProteomeXchange with identifier PXD036445. Metabo-

lomic data has been submitted to MetaboLights under accession

number MTBLS3129. Sequencing data is deposited at the European

Nucleotide Archive (ENA): PRJEB46619. Preproccessed data files

and tables are available on Figshare at https://doi.org/10.6084/m9.

figshare.21667763. Code to generate all figures is available at

https://github.com/grp-bork/multiomics_Wuyts_2022.

Expanded View for this article is available online.
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