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Evidence of a causal and modifiable
relationship between kidney function and
circulating trimethylamine N-oxide

A list of authors and their affiliations appears at the end of the paper

The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked
to increased cardiovascular risk but how its circulating levels are regulated
remains unclear. We applied “explainable” machine learning, univariate, mul-
tivariate and mediation analyses of fasting plasma TMAO concentration and a
multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study.
Here we show that next to age, kidney function is the primary variable pre-
dicting circulating TMAO, with microbiota composition and diet playing
minor, albeit significant, roles. Mediation analysis suggests a causal relation-
ship between TMAO and kidney function that we corroborate in preclinical
models where TMAO exposure increases kidney scarring. Consistent with our
findings, patients receiving glucose-lowering drugs with reno-protective
properties have significantly lower circulating TMAO when compared to
propensity-score matched control individuals. Our analyses uncover a bidir-
ectional relationship between kidney function and TMAO that can potentially
be modified by reno-protective anti-diabetic drugs and suggest a clinically
actionable intervention for decreasing TMAO-associated excess cardiovas-
cular risk.

Over the past two decades, the central role of the commensal gut
microbiota in pathologies such as atherosclerosis and type-2 diabetes
(T2D) has gained prominence1. The microbiota can influence host
pathophysiology by producing molecules that directly alter metabo-
lism and/or modulate cellular signaling either locally in the gut or
systemically via the circulation1,2.

Trimethylamine N-oxide (TMAO) is the phase-one liver N-oxide of
trimethylamine (TMA). TMA is a product of the microbial3–6 (pre-
dominately Firmicutes) metabolism of phosphatidylcholine7,8,
choline8, and L-carnitine9–11, components of the high-fat, high redmeat
western diet. TMA is taken up from the gut via the hepatic portal vein
and N-oxidized into TMAO by host flavin mono-oxygenase 312. High
circulating levels of TMAO have been linked to increased thrombotic
and cardiovascular risk in animal and human studies, even after
adjustment for known cardiovascular risk factors7–9,13. TMAO is there-
fore proposed to mediate the higher cardiovascular risk associated
with high red meat and fat intake14. Fish, the consumption of which is

associated with reduced incidence of cardiovascular disease14, is also a
rich source of TMAO15. Dietary TMAO is subject to retro-conversion:
i.e., it can undergo microbial reduction to TMA by Enterobacteriaceae
followed by hepatic conversion back to TMAO16. Concurrent with diet
and microbiota composition, TMAO plasma levels also reflect age17,
sex18, kidney function19–21, and chronic diseases7,22. To date, the relative
contribution of each of these factors to circulating TMAO levels and,
therefore, elevated cardiovascular risk remains unclear. Under-
standing how serum TMAO levels are regulated could uncover host
TMAO mechanistic targets and identify modifiable and actionable
therapeutic factors to lower circulating TMAO levels.

Here, by using a data-driven “explainable”machine learning (ML)
strategy23,multivariate and univariate analyses of epidemiological data
and mechanistic studies in cultured cells and rodents, we sought to
objectively identify variables influencing serum TMAO levels in parti-
cipants of the European multicenter MetaCardis study. Moreover, by
taking advantage of the unique cross-sectional MetaCardis design, we
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queried how variables influencing circulating TMAO manifest at dif-
ferent stages of cardiometabolic disease. Capitalizing on the ML ana-
lysis, we aimed to identify (i) novel host TMAO-related mechanistic
targets and (ii) a rationale for future interventions that could reduce
circulating TMAO levels and thereby decrease associated excess
cardiovascular risk.

In epidemiological studies, we observed that kidney function is
the main modifiable factor consistently regulating fasting serum
TMAO levels, and our preclinical studies align with the suggestion that
elevated circulating TMAO adversely affects kidney function, by
increasing kidney fibrotic injury. Further supporting the strong inter-
play between kidney function and fasting circulating TMAO, patients
withT2D in the cohort prescribednew-generation anti-diabetics (GLP-1
Receptor Agonists24; GLP-1RAs) with evidenced reno-protective
effects25 had lower serum circulating TMAO levels when compared
to propensity-score matched controls (Fig. 1).

Results
In the first analysis, we investigated how TMAO levels change
depending on disease classification in the MetaCardis population. We
confirmed, circulating TMAO significantly increased with cardiome-
tabolic disease severity, in line with previous reports7,22 (Supplemen-
tary Fig. 1A). To identify determinants of circulating TMAOmanifesting
at prodromal stages of cardiometabolic disease, we focused on the
subset of the MetaCardis cohort termed MetaCardis Body Mass Index
Spectrum subset (BMIS26; N = 837) comprising obese/overweight
individuals presenting with a range of metabolic syndrome features
but not overt T2D or ischemic heart disease (IHD) (Supplementary
Table 1).

Fasting serum concentration of TMAO is associated with worse
cardiometabolic profiles in BMIS MetaCardis population
Weexplored howTMAOcorrelatedwith bioclinical variables related to
cardiometabolic health in BMIS individuals. In this group, circulating
TMAO was associated with reduced values of estimated glomerular
filtration rate (eGFR, Spearman rho = −0.124, pFDR =0.06) and higher
fasting concentrations of uric acid (rho = 0.114, pFDR =0.09) after
adjustment for age, sex, country of recruitment (demographics
thereafter) and bodymass index (BMI) (Supplementary Fig. 1B).Higher
TMAO also positively associated with indicators of central adiposity,
including BMI (rho = 0.107, pFDR=0.09), visceral body fat rating
(rho = 0.122, pFDR =0.09) and waist circumference (rho =0.119,
pFDR =0.09), after demographics adjustment (Supplementary
Fig. 1C). Moreover, BMIS individuals with hypertension (systolic blood
pressure over 140mmHg, or receiving therapy for high blood pres-
sure; “Methods”) had higher plasma TMAO (P =0.01, Mann–Whitney
test; Supplementary Fig. 1D). In line with previous studies7,20, objec-
tively dividing BMIS participants into TMAO clusters using k-means27

revealed that those in the cluster with the highest TMAO levels had
consistently worse cardiometabolic traits and were significantly older
when compared to those in the cluster with lowest TMAO levels
(Supplementary Fig. 1E and Supplementary Table 2). Traits of cardio-
metabolic risk included altered eGFR, elevated liver enzymes, and
systolic blood pressure (Supplementary Fig. 1F–I).

Ageandalteredkidney function variables are themaindrivers of
circulating TMAO in BMIS
To better understand which variables (Supplemental Data 1) affect
circulating TMAO most, we trained extreme gradient-boosted deci-
sion-tree models. We used fivefold cross-validation to predict the
Explained Variance (EV) of each variable group onplasma TMAO in the
left-out BMIS participants after 100 iterations (Fig. 2A). Microbiota
composition alone performed poorly (EV 2%) whilst diet, another
purportedmajor contributor to TMAOproduction, explained less than
5% of TMAO variance. Serum metabolomics, excluding TMAO and its

precursor TMA, was the best predictor (EV 12%) with demographics
second, explaining 10% of circulating TMAO variance. 1H-NMR urine
metabolomics, excluding TMA and dimethylamine, was the worst
predictor explaining 1.5% of TMAO variance and correcting for urinary
creatinine, computed by 1H-NMR (“Methods”), did not improve pre-
dictions explaining 1% of TMAO variance on average (Supplementary
Fig. 2A). The full model, containing all variable groups, accounted, on
average, for 18.4% of TMAO variability. The average predicted TMAO
values by the full model significantly correlated with measured TMAO
values (rho =0.473, P < 2.2 × 10−16; Supplementary Fig. 2B).

We next assessed the independent contribution of each variable
group to the predictive power of the full model by training algorithms
as above but removing one feature group at a time for 100 iterations.
Almost 40% of the explainable variance of the full model (set to 100%)
was contributed by serum metabolomic variables, with biological,
dietary andmicrobiota taxonomic variables adding 5.5%, 4%, and 3.4%,
respectively, independently explained variance (Fig. 2B). Other vari-
able categories displayed negligible contribution to prediction sug-
gesting considerable information overlap with the metabolomic,
metagenomic, biological and dietary datasets.

Using feature attribution analysis (SHapley Additive exPlanations;
SHAP23,28), we assessed how individual variables drive TMAO-
predicting models. SHAP analysis identified 24 variables that con-
tributed more than 4% of the regularized TMAO standard deviation
(SD) to model outcomes. Of those, age affected predictions the most,
followed by eGFR, urinary betaine, percentage of visceral body fat and
serum butyryl-carnitine (Fig. 2C). Besides eGFR, additional variables
associated with kidney function including plasma urea29, the uremic
toxin p-cresol30 or markers of kidney function decline (i.e., serum
albumin29), were among those affecting model outcomes the most.
This analysis suggests that kidney function is a major determinant of
circulating TMAO. The impact of eGFR on model outcomes for BMIS
individuals was bimodal with values over 90mL/min/1.73m2, the clin-
ical cut-off value for normal kidney function in adults25, predicting
reduced plasma TMAO and lower values resulting in increased pre-
dicted circulating TMAO (Fig. 2D).

We next trained algorithms predicting TMAO using the 24 vari-
ables identified by our SHAP analysis (“top SHAP” model) and com-
pared it tomodels trained by traditional clinical risk factors31 or the full
model (Fig. 2E). The “top SHAP” model significantly (P < 2.2 × 10−16,
Mann–Whitney test) improved predictions when compared to the full
model (EV 21% vs. 18%, on average), presumably by removing noise,
supporting the importance of the variables identified by the SHAP
analysis.

To confirm that tree-based ML models are the most appropriate
for our analysis we also built Least Absolute Shrinkage and Selection
Operator (LASSO) models to predict circulating TMAO in the left-out
group using again fivefold cross-validation with all the available vari-
ables (full model) as input in BMIS (N = 582; “Methods”). LASSO
explained on average 14.9% of circulating TMAO variance after 100
iterations (Supplementary Fig. 3A; see source data for lambda and R2

values of each iteration) as opposed to 18.4% by boosted trees for the
fullmodel (Fig. 2A). This analysis supports the appropriateness of tree-
based ML models for predicting circulating TMAO in our population.

To determine how much of the variances of TMAO and of the
other metabolites most strongly associated with its levels in our ML
models (Fig. 2C; butyryl-carnitine, betaine, p-cresol and betaine_U,
oxaloacetate_U) is explainedby eGFRwebuilt linear-regressionmodels
with each metabolite as the dependent variable and eGFR as the
independent variable. Kidney function explained 7% of TMAO variance
in BMIS (Fig. 2F; Pearson’s r = −0.26, P = 5.4 × 10−14, N = 837) whilst the
explained variance for the other metabolites ranged from 6% to 1.4%
for p-cresol and urinary oxaloacetic acid, respectively (Supplementary
Fig. 4A–E). To further assess the varying relationship of metabolites
with eGFR we computed boosted trees models predicting eGFR with
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Fig. 1 | Overview of study design and main findings. Here we used an integrated
approach comprising Machine Learning (ML), multivariate, univariate, and med-
iation analyses to objectively characterize host parameters contributing to plasma
TMAO levels in the multicenter European MetaCardis study. We observed that
kidney function is themainmodifiable factor consistently regulating fasting serum
TMAO levels (Figs. 2–4) and corroborated our epidemiological findings in

preclinical models where TMAO increased kidney scarring (Fig. 5). Further sup-
porting the strong interplay between kidney function and fasting circulating
TMAO, patients with T2D in the cohort prescribed new-generation anti-diabetics
(GLP-1 Receptor Agonists; GLP-1RAs) with reno-protective effects had lower serum
circulating TMAO levels when compared to propensity-score matched controls
(Fig. 6). Created with BioRender.com.
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serummetabolomics as the input variable, with a similarmethodology
to TMAO. Serum metabolomics predicted on average 25% of eGFR
variance after 100 iterations. From all the metabolites in our analysis
TMAO was the top microbiota-derived compound that affected most
strongly eGFR predictions (Supplementary Fig. 4F) in line with its
reported exclusive glomerular secretion32. Collectively this analysis

suggests that in our population, TMAO is strongly interlinked
with eGFR.

Several reports have previously highlighted the inverse correla-
tion between TMAO and kidney function mostly in patients with
Chronic Kidney Disease (CKD)10,19,20,32–34, but there is limited evidence
for the predominance of this relationship in the non-clinical range. The
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novelty of the present study includes ranking of a multitude of factors
contributing to circulating TMAO levels and identification of kidney
function as the top modifiable factor in a non-CKD population across
the cardiometabolic disease spectrum.

Diet and microbiota composition have a modest impact on
fasting serum TMAO levels in BMIS individuals
OurMLmodels suggested that diet plays amodest role in determining
circulating TMAO. To corroborate this, we assessed how consumption
of food items rich in TMAO dietary precursors3 affected circulating
TMAO in BMIS participants with a Food Frequency Questionnaire35

(FFQ; N = 763). After correcting for demographics and BMI, with the
exception of oily fish (rho =0.125, pFDR =0.03), circulating TMAOwas
neither significantly associated with habitual consumption of red
meat, eggs or milk nor with the estimated dietary intake of the
micronutrients choline, carnitine or betaine, broadly in agreement
with a previous study3 (Fig. 3A). In addition, no significant correlations
were found between consumption of these food items and the serum
levels of TMAO precursors choline, betaine or γ-butyrobetaine36.
Conversely, circulating TMAO positively correlated with plasma cho-
line, betaine and γ-butyrobetaine, implying an association between the
serum concentrations of TMAO precursors. Our findings that diet and
particularly meat consumption does not associate with increased
TMAO levels in our population do not contradict a number of well-
designed human interventional trials9–11 that have established a clear
link between meat intake or L-carnitine supplementation and TMAO
circulating levels. Instead, collectively, our analyses suggest that in
non-interventional settings where most individuals consume meat
daily (75–233 g/day for European adults37), clearanceby the kidney and
not dietary intake of TMAO precursors is the major determinant of
fasting circulating TMAO levels and therefore of the excess cardio-
vascular risk associated with elevated TMAO (vegetarians and strict
vegans aside, who are infrequent in the MetaCardis cohort with only
65/1741 participants reporting no red meat consumption).

To identify putative microbial taxa influencing serum plasma
TMAO, we performed multivariate and univariate analyses. Principal
coordinates analysis of Bray–Curtis dissimilarity matrices at the spe-
cies level for BMIS individuals stratified into TMAO clusters revealed a
significant difference in microbiota composition between clusters
(P = 0.033; Fig. 3B). Consistent with previous reports3,38 and our ML
models, multivariate PERMANOVA analysis uncovered a significant,
albeit weak, association between circulating TMAO and microbiota
composition (P =0.001; R2 = 0.008, Fig. 3B) after demographics
adjustment. TMAO levels significantly associated with the quantitative
abundance of 65 bacterial species (corrected for bacterial load) in
BMIS individuals after correcting for demographics and BMI, primarily
(44/65) of the Firmicutes phylum (Fig. 3C). In agreement with Li et al.3,

we did not identify any overlap between bacteria associated with cir-
culating TMAO and higher redmeat, milk or egg consumption in BMIS
participants (N = 761; Fig. 3C). Contrasting low and high TMAOclusters
revealed 215 differentially abundant bacterial species between these
two groups (Fig. 3D; Mann–Whitney test).

We further analyzed the impact on circulating TMAO of the only
species, an unknown bacterium taxonomically closely related to
ruminoccoci (CAG01909), that contributed at least 4%of the TMAOSD
in our prediction models and was significant (pFDR <0.05) for both
correlation and differential abundance analyses (Fig. 3E). CAG01909
was more abundant and prevalent in the high TMAO cluster when
compared to the low (Supplementary Fig. 5A, B). Finally, BMIS indivi-
duals harboring CAG01909 had significantly higher circulating TMAO
than those that lacked it (Supplementary Fig. 5C), the CAG1909
abundance significantly correlating with TMAO concentration (Sup-
plementary Fig. 5D).

This analysis corroborated the ML models suggesting a small,
albeit significant, contribution of microbiota variations on circulating
TMAO and identified a bacterium newly associated with higher serum
TMAO in BMIS.

Signaturespredicting circulatingTMAOshift indifferent disease
groups
To identify putative common variables driving circulating TMAO levels
in different disease groups, we trainedML algorithms for T2D (N = 561)
and IHD sub-cohorts (N = 356). Similar to BMIS, microbiota composi-
tion and dietary variables alone performed poorly, explaining on
average 2% and 1% of TMAO variance, respectively, in T2D and IHD
individuals (Fig. 4A and Supplementary Fig. 6A, respectively). For the
T2D cohort, serum metabolomics was again the best predictor (EV
12.8%) followedbybioclinical (EV 9.6%) and demographic variables (EV
8.7%) with the full model accounting for 16.2% of TMAO variance. For
IHD, individual feature categories—except for serum metabolomics
(EV 19.5%)—performed poorly, with the full model accounting for 16.1%
of circulating TMAO variance (Supplementary Fig. 6A), possibly
reflecting reduced power due to smaller sample size and/or IHD group
heterogeneity. Feature attribution analysis revealed 19 variables in the
T2D cohort and 10 variables in the IHD cohort that contributed more
than 4% of regularized TMAO SD to model outcome (Fig. 4B and
Supplementary Fig. 6B, respectively). In patients with T2D, model
outcome was mostly affected by eGFR followed by age and the serum
concentrations of the uremic toxin p-cresol30 and D-threitol, also
indicative of kidney function39. In patients with IHD, serum butyryl-
carnitine, followed by age, alternative healthy eating score (aHEI)
related to the ratio of white to red meat intake and the levels of the
proinflammatory cytokine IP10, a marker of adverse cardiac
remodeling40 were the top variables. As in BMIS, the “top SHAP”

Fig. 2 | Age and parameters associated with kidney function are the main dri-
vers of circulating TMAO in BMIS MetaCardis participants. A Coefficients of
determination (Explained Variance; EV) of predicted circulating TMAO levels
determined by xgboost algorithms after fivefold cross-validation in the left-out
group (Supplementary Table 3 for n numbers and xgboost parameters), trained
exclusively on variables from each feature category (Supplemental Data 1 for
variables included in each group), or the full model (all variables), after 100 itera-
tions. B Averaged independent predictive contribution of each feature category to
full model predictions of plasma TMAO, trained as in (A), calculated as the average
reduction of EV achieved in relation to the full model (set to 100%) after removing
all variables belonging to each feature group after 100 iterations. C Swarm plots of
impact on model output (SHAP values) for each BMIS individual with complete
phenotypic data (N = 582) for all variables contributing more than 4% to model
predictions of regularized TMAO standard deviation, as determined by xgboost
algorithms trained on each feature category. Mean absolute SHAP values from all
BMIS participants (N = 582) are shown (in descending order) next to each variable.
Individual dots, representing each participant, are colored by the inverse-

normalized value of the corresponding variable. U denotes urinary metabolites.
D Dependance plot of eGFR values (x axis) versus their impact on model outcome
(y axis) calculated for each individual in BMIS (N = 837) from algorithms trained on
bioclinical variables, vertical red line indicates 90mL/min/1.73m2. The curve was
drawnusing locally weighted scatterplot smoothing (LOWESS) and the shaded area
indicates 95% confidence interval (CI). E Boxplots depicting EV (R2) of circulating
TMAO for BMIS participants computed from algorithms trained on clinical risk
factors29, the fullmodel or all 24 variables contributingmore than 4%of regularized
TMAOstandarddeviation to predictions, as determined by SHAPanalysis, after 100
iterations. Significance was determined by the two-sided Matt–Whitney test.
F Linear-regression-based scatterplot showing correlation between serum TMAO
(log-transformed) and estimated Glomerular Filtration Rate (eGFR, ml/min/
1.73m2). Insert; unadjusted Pearson’s r, P value and explained variance (R2). Shaded
area indicates 95%CI.A, ECenter lines denotemedians, box limits indicate the 25th
and 75th percentiles, whiskers extend to the minimal and maximal values. Source
data are provided as a Source Data file.
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models significantly improved predictions (EV 24% versus 16.2% for
T2D; Fig. 4C and EV 21.3% versus 16.1% for IHD; Supplementary Fig. 6C)
when compared to models trained with clinical risk factors or the
full model.

Eight variables contributing more than 4% of TMAO SD were
shared between BMIS and T2D, including, eGFR, age, and p-cresol

whilst there were six common features between BMIS and IHD
(including eGFR, urea, age and butyryl-carnitine). Only three variables
(eGFR, age and butyryl-carnitine) strongly contributed as predictors
across all three disease groups (Fig. 4D).

We thus identified age and kidney function as the prominent
variables influencing fasting circulating TMAO levels. To further
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pants (N = 834) stratified in TMAOclustersby the k-means algorithm (1 the lowest, 4
the highest) at the species level (input; 699 species present in at least 20% of the
BMIS population). Insert; PERMANOVA (999 iterations) of taxonomic Bray–Curtis
dissimilarity matrices association with regularized TMAO levels with age, sex, and
country of recruitment as covariates. C Overlap of microbiome taxa significantly
associated with circulating TMAO (Spearman partial correlations adjusted for age,

sex country of recruitment and BMI) and the consumption of food items rich in
TMAO precursors in BMIS participants (N = 763). D Volcano plot of differential
bacterial species abundances between BMIS participants in the lowest (N = 101) and
highest (N = 147) TMAO clusters (blue; taxa significantly depleted, red; taxa sig-
nificantly enriched in the high TMAO cluster respectively, two-sided
Mann–Whitney U test, pFDR<0.05). E Venn diagram summarizing the overlap
between taxa associating with circulating TMAO according to our three compli-
mentary analyses (SPC Spearman correlations, ML machine learning and feature
attribution analysis; MU: two-sided Mann–Whitney U test between high and low
TMAOclusters). For all *pFDR<0.05, **pFDR<0. 0.01. Source data are provided as a
Source Data file.
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substantiate this relationship, we evaluated whether data fitted a
model where eGFR causally mediates the increase of TMAO con-
centration with age. Under this model, kidney function achieved sig-
nificance as mediating ~20% of the positive association between age
and circulating TMAO levels in BMIS with its impact further strength-
ening in the T2D (55%) and IHD (51%) disease groups (Supplementary
Fig. 6D), thus corroborating the ML analysis.

Microbiota composition modestly affects plasma TMAO levels
in T2D
In patients with T2D, ML and SHAP analyses revealed an inverse
association between fecal Romboutsia timonensis quantitative abun-
dance (corrected for bacterial load) and circulating TMAO (Fig. 4B),
whilst no taxa strongly influenced TMAO predictions in the IHD sub-
cohort (Supplementary Fig. 6B). R. timonensis inversely associated
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with TMAO concentration (rho = −0.140, P =0.0009; Supplementary
Fig. 7A), T2D individuals with detectableR. timonensis had significantly
lower TMAO levels (Supplementary Fig. 7B) and R. timonensis was
depleted in T2D compared to BMIS participants (Supplementary
Fig. 7C), in line with circulating TMAO (Fig. 1A). Conversely, in T2D and
IHD CAG01909 abundance or presence, unlike BMIS, did not associate
with higher circulating TMAO (Supplementary Figs. 7D–5F). Further
investigation revealed that CAG01909 abundance was inversely asso-
ciated with metformin intake (rho = −0.141, pFDR=0.042; Supplemen-
tary Fig. 7G), in accordance with the well-documented effect of drugs
on the gut microbiome41,42. Irrespective of TMAO associations with
individual species, similarly to BMISmultivariate PERMANOVA analysis
uncovered a significant, albeit weak, association between circulating
TMAO and microbiota composition (P = 0.001; R2 = 0.005) after
adjustment for demographics.

Collectively, these analyses suggest that the composition of the
gut microbiota may only modestly influence circulating levels of
TMAO in patients with T2D, and in subjects with IHD or T2D abun-
dance of the CAG01909 taxon is not linked with serum TMAO.

Inference analysis suggests that TMAOmaycausallymediate the
decline of eGFR with age
ML analysis identified age and kidney function as the most prominent
variables influencing TMAO. Therefore, we tested the inverse rela-
tionship: i.e., whether TMAO may mediate eGFR decline with age43. In
BMIS, TMAO modestly, albeit significantly, modulated the inverse
relationship between age and eGFR (mediation effect 3%, P =0.018),
whilst in T2D and IHD the impact of TMAO on kidney function decline
with age strengthened (mediation effect 13%, P < 2.2 × 10−16 and 7.1%,
P < 2.2 × 10−16; Fig. 4E). Mediation analysis thus indicated that TMAO,
far from being a bystander, directly and adversely affects kidney
function. Our finding is in agreement with a prospective study
reporting that baseline TMAO positively associated with rates of eGFR
decline21 and with studies in animal models of CKD where TMAO diet
supplementation increased kidney injury44,45 and reduced eGFR.

Interestingly, mediation analysis showed that TMAO’s adverse
effect on kidney function strengthened at more severe stages of car-
diometabolic disease, implying TMAO synergywith existing pathology
(thereby providing “2-hit model”). Accordingly, we next employed
preclinical models of kidney injury to gain mechanistic insights into
the potential interplay between TMAO and kidney function and the
putative molecular nature of the 2nd hit.

TMAO increases trans-differentiation of human primary renal
fibroblasts into myofibroblasts in conjunction with TGF-β1
signaling
Based on TMAO’s detrimental association with kidney damage of
diverse aetiologies19,20 similar to renal fibrosis46, we investigated the
impact of TMAO on human primary renal fibroblasts (HRFs). In HRFs,

unlike platelets47, TMAO stimulation resulted in rapid [Ca2+]i increase
(Fig. 5A). In endothelial cells, the ERK1/2 pathway is activated in a Ca2+-
dependent manner48,49 and ERK1/2 activation exacerbates renal
fibrosis50. Therefore, we investigated whether a similar pathway
operates inHRFs. TMAO challenge increased phospho-ERK1/2 levels in
a time- (Fig. 5B) and dose-dependent (Fig. 5C and Supplementary
Fig. 8A) manner, at concentrations (10–100 µM) relevant to human
disease (up to 150 µM in patients with CKD)19. TMAO-induced ERK1/2
activation was inhibited by a MEK inhibitor, suggesting the activation
occurs downstream of Ras-Raf-MEK50. In addition, ERK1/2 activation in
response to TMAO was suppressed when intracellular Ca2+ was che-
lated (Supplementary Fig. 8B) or extracellular Ca2+ was removed
(Supplementary Fig. 8C). Moreover, Ca2+ influx was sufficient to acti-
vate ERK1/2 in HRFs (Supplementary Fig. 8D), indicating that TMAO-
induced Ca2+ influx was required for ERK1/2 activation. We have
reported that ERK1/2 phosphorylation was required for HRF trans-
differentiation tomyofibroblasts in response to TGF-β150. Unlike short-
term application (up to 30min), TMAO stimulation for 48 h had
minimal effect on ERK1/2 or SMAD3 phosphorylation (Fig. 5D and
Supplementary Fig. 8E, F) or on the expression of the myofibroblast
marker αSMA (Fig. 5E and Supplementary Fig. 8G). Conversely, TMAO
dose-dependently augmented ERK1/2 pathway activation and myofi-
broblast trans-differentiation, when co-administered with TGF-β1 in
comparison to TGF-β1 or TMAO alone, without affecting SMAD3
phosphorylation (Fig. 5D, E and Supplementary Fig. 8E, F).

TMAO increases renal fibrosis: evidence from an intervention in
male mice
To corroborate our in vitro findings suggesting that TMAO directly
increases myofibroblast trans-differentiation and establish in vivo
relevance, we performed Unilateral Ureter Obstruction (UUO) surgery
in mice, a model assessing renal fibrosis in the absence of other co-
morbidities51 that could be also impacted by TMAO. Male mice were
fed a choline (1% w/w)- or TMAO (0.12% w/w)-supplemented diet for
6 weeks20. Subsequently, the ureter of one kidney was ligated whilst
the other kidney remained unobstructed (Supplementary Fig. 9A). In
the unobstructed (control) kidneys,αSMAstainingwas not affected by
diet. As expected, five days of UUO resulted in a significant increase in
renal αSMA staining of the injured kidney. However, unlike the unob-
structed kidneys, TMAO or choline diet supplementation resulted in
significantly more myofibroblast expansion (Fig. 5F, G). Western blot-
ting of kidney lysates corroborated augmented αSMA and vimentin
(another marker of myofibroblasts50) expression in injured kidneys of
mice receiving TMAO or choline diets (Fig. 5H–J). Similar to αSMA,
collagen deposition or macrophage infiltration, another indicator of
fibrotic kidney damage46, were not affected by the TMAO or choline
diets in the unobstructed kidneys (Supplementary Fig. 9B–E). Con-
versely, collagen and macrophage staining of kidney slides from UUO
kidneys of mice consuming TMAO or choline diets were significantly

Fig. 4 | Signatures predicting circulatingTMAOshift indifferentdiseasegroups
and TMAO causally mediates eGFR decline with age. A Explained Variance (EV)
of predicted serum TMAO levels determined by boosted decision trees (Supple-
mentary Table 4 for N numbers and optimized xgboost parameters per variable
group), trained exclusively on variables from each variable category (Supplemental
Data 1 for a list of variables included in each group), or the fullmodel (containing all
variables), after 100 iterations in T2D MetaCardis patients. B Swarm plots of SHAP
values (impact on model outcome) for each T2D MetaCardis participant with
complete phenotypic data (N = 387); represented by individual dots, for all vari-
ables contributing more than 4% to model predictions of regularized TMAO stan-
dard deviation, computed from xgboost algorithms trained on each feature
category. Numbers denotemean absolute SHAP values fromall T2Dparticipants (in
descending order) next to their corresponding variable. Dots are colored by the
inverse-normalized value of their corresponding variable. C Boxplots depicting
Explained Variance (EV; R2) of circulating TMAO in T2D individuals calculated by

algorithms trainedon clinical risk factors31, the fullmodel containing all variables or
all the variables contributing more than 4% of regularized TMAO standard devia-
tion to T2D model predictions, as determined by SHAP analysis, after 100 itera-
tions.D Heatmap depicting all the variables contributing at least 4% of regularized
TMAO standard deviation in model predictions as determined by SHAP analysis in
at least one of the MetaCardis disease groups. *Μean absolute SHAP value > 0.04.
EMediation analysis (see “Methods”) computing the direct effect of TMAOoneGFR
decline with age in BMIS (blue), T2D (red) or IHD (orange)MetaCardis participants.
ADE: Average direct effect (of age on eGFR); ACME: average causal mediated effect
(of TMAO on eGFR); Total effect: (cumulative effect of age and TMAO on eGFR
(ADE +ACME)); Mediation effect: (% of the effect of age on eGFR attributed to
TMAO). A, C Center lines denote medians, box limits indicate the 25th and 75th
percentiles, whiskers extend to the minimal and maximal values. Source data are
provided as a Source Data file.
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enhanced compared to controls. Thus, in our experiments in a murine
model of kidney fibrosis, TMAO or choline diet supplementation
resulted in “hyperactivation” of ERK1/2, mTORC1 and SMAD3 pro-
fibrotic signaling46,50 (Supplementary Fig. 9F).

Collectively, our in vivo and in vitro findings are consistent with
TMAO aggravating kidney fibrosis due to ERK1/2 hyperactivation
synergistically, probably with activation of the TGF-β1-mediated
SMAD3 pathway causing a secondary hit in our disease model.

Glucagon-like peptide-1 receptor analogs (GLP-1RAs) intake
associates with lower serumTMAO concentration inMetaCardis
T2D participants
Given the strong bidirectional connection we uncovered between
serum TMAO and eGFR, we hypothesized that use of reno-protective
medication could be linked with lower circulating TMAO. To identify
suitable drugs, we trained algorithms to predict eGFR in MetaCardis
patients with T2D, where TMAO appears to have the biggest impact on
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kidney function, using prescribed medication as input. SHAP analysis
revealed that antihypertensive and anti-cholesterol treatments had a
negative impact on predicted eGFR, probably reflecting more
advanced disease (Fig. 6A). Conversely, anti-diabetic treatments had a
positive effect, withGLP-1RAs being the drugswith the biggest positive
impact on predicted eGFR (Fig. 6A). In accordance with their docu-
mented reno-protective effect even in T2D patients with no preexist-
ing nephropathy25, patients with T2D receiving GLP-1RAs had
significantly lower circulating TMAO (Fig. 6B) than individuals mat-
ched for age, sex, hypertension, and disease group (Supplementary
Fig. 8A–E and Supplementary Table 6). This exploratory analysis

suggests that GLP-1RAs may reduce serum TMAO concentration and
thereby the associated higher risk of IHD.

Discussion
With our approach combining epidemiological studies, explorative
cellular experiments and murine interventions, we demonstrate that
kidney function is the main modifiable factor consistently regulating
fasting serumTMAOconcentrations and that TMAO adversely impacts
on eGFR, at least partially, by increasing kidney scarring synergistically
with existing pathophysiology elevating kidney tissue TGF-β1 signal-
ing. Consistent with our findings, use of reno-protective drugs,

Fig. 5 | TMAO promotes myofibroblast differentiation and exacerbates renal
fibrotic injury. A Representative ratiometric traces (340/380nm) from Human
Renal Fibroblasts (HRFs) loaded with the Ca2+ indicator Fura-2 and stimulated with
100 µM TMAO. B Serum-starved HRFs were preincubated with the MEK inhibitor
trametinib (10 nM) for 30min prior to stimulation with 100 µM TMAO for the
indicated times. Phospho-ERK1/2 levels were probed by Western blot; membranes
were stripped and re-probed for total ERK1/2. C Serum-starved HRFs were stimu-
lated with the indicated concentrations of TMAO and phospho-ERK1/2 and total
ERK1/2 levels were determined as in (B). HRFs in complete medium were pre-
incubated with the indicated concentrations of TMAO for 30min and stimulated
with TGF-β1 (5 nM) or vehicle for 24h. Phospho-ERK1/2, phospho-SMAD3 (D) and
alpha-smooth muscle actin (αSMA) (E) levels were probed with western blot. Β-
actin levels for (D,E) were probed in parallel westernblots. ForB–E a representative
image from three independent biological repeats is shown. F Immunostaining with

αSMA of kidney sections (×20 magnification) from obstructed (UUO; 5 days post-
surgery) or contralateral sham-operated (control) kidneys. Animals were fed nor-
mal chow (control), a diet containing 0.12% w/w TMAO (TMAO) or 1% choline w/w
(Choline) for 6 weeks prior to surgery, as indicated. n = 6 per group.
G Quantification of positive αSMA staining as (%) of stained area/field of view
averaged from 5 images per animal. H Western blot of whole-kidney lysates for
αSMA and vimentin expression. Tubulin, as loading control, was probed in parallel
western blots. A representative photomicrograph from n = 2 Western blots with
n = 1 animals for control (non-ligated kidneys, chow diet; C) n = 6 animals for all
other groups is shown.ODof the (I)αSMA and (J) vimentin bands in (H) normalized
against tubulin. The normalized density of the sham-control sampleswas arbitrarily
set to 1. For all graphs, error bars represent the mean ± SEM of data from n = 4–6
animals per group. *P <0.05 versus the UUO control. Source data are provided as a
Source Data file.
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Fig. 6 | Reno-protective medication is associated with reduced circulating
TMAO in MetaCardis participants with T2D. A Swarm plots of impact on model
eGFRpredictions (SHAPvalues) forMetaCardis T2D individuals (N = 561) for the top
15 drugs, as determined by xgboost algorithms trained exclusively on prescribed
medication. Mean absolute SHAP values from participants with T2D are shown (in
descending order) next to each variable. Individual dots, representing each parti-
cipant, are colored by the inverse-normalized value of the corresponding drug
variable. B Comparison of circulating regularized TMAO levels between subjects
with T2D prescribed GLP-1 receptor agonists (GLP-1Ras; N = 59) and non-GLP-1Ras
treated subjects with T2D propensity-matched for age, sex, disease group, and
hypertension status (N = 59) (Supplementary Table 6 for group characteristics).

P value determined by two-sided Mann–Whitney U test. Center lines denote med-
ians, box limits indicate the 25th and 75th percentiles, whiskers extend to the
minimal and maximal values. C Summary of the main findings of our study. We
demonstrate that eGFR, irrespective of disease stage, is the primary modifiable
modulator of circulating TMAO. Far from being a bystander, TMAO significantly
accelerates the rate of renal output decline by age, with its effect increasing at
advanced stages of disease. TMAO promotes renal fibrosis in conjunction with
established pathophysiology (two-hit” model) further negatively impacting renal
clearance. Accordingly, medication with reno-protective properties (red arrows),
such as GLP-1RAs, reduce circulating TMAO levels thereby potentially moderating
its adverse effect on kidney function. Sourcedata are provided as a SourceDatafile.
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GLP-1RAs25, was associated with lower circulating TMAO inMetaCardis
participants with T2D (Fig. 5C).

Irrespective of cardiometabolic disease severity, gut microbiota
composition had a modest (R2 < 0.01), albeit significant, association
with serum TMAO levels in the MetaCardis population, in agreement
with recent human studies3,38. We replicated associations of
Firmicutes3–5 with circulating TMAO and uncovered novel associations
between an unknown bacterium (CAG01909) and R. timonensis, a
marker of less diverse diet in autistic children52. However, taxa asso-
ciated with TMAO diverged between disease modalities. This could at
least, partially, be due to medication, suggesting that targeting TMAO
production at the species level would be ineffective.

In agreement with a recent study3, we did not find any significant
association between habitual consumption of red meat and fasting
serum levels of TMAO. With a few notable exceptions3, the contribu-
tion of diet and in particular red meat and L-carnitine to TMAO levels,
showing an increase following intervention, has predominately been
examined inmetabolically healthy volunteers9–11. In such interventions,
often L-carnitine has been provided as a dietary supplement, which is
poorly absorbed in the small intestine (~12%), as opposed to dietary L-
carnitine (~71%)53, and therefore may be more available for microbial
catabolism in the upper gut and large intestine, leading to over-
estimating its role in TMA and, thereby, TMAO production. Our
observations, similar to the report in ref. 3, suggest that in non-
interventional settings where individuals habitually consumemeat (75
to 233 g/day in European adults37), this contributesminimally to fasting
circulating TMAO variability, possibly limiting the isolated effect of
dietary manipulation on TMAO levels in non-interventional settings,
aside strict vegans or vegetarians.

Further, our analyses revealed that the multi-omics signature
associated with higher circulating TMAO concentrations and, there-
fore, elevated cardiovascular risk, shifted from obesity with increased
insulin resistance toward overt T2D and IHD with only three variables
(age, eGFR, and serum butyryl-carnitine) consistently being strong
contributors across models built with the BMIS, T2D and IHD disease
groups. This is in agreementwith our recent report that themajority of
markers of dysmetabolism manifest early during cardiometabolic
disease development31. Accumulation of butyryl-carnitine has been
associated with abnormal mitochondrial lipid β-oxidation in T2D54,
suggesting a link between TMAO and mitochondrial dysfunction
consistent with the finding that TMAO binds to protein kinase R-like
endoplasmic reticulum kinase and increases mitochondrial stress55.

Far from being a bystander, mediation analysis indicated that
TMAO significantly accelerated the rate of kidney function decline by
age, with its effect increasing inmore severedisease stages. Consistent
with this, our preclinical work uncovered that TMAO primed renal
fibroblasts for conversion to myofibroblasts, the primary collagen-
producing cells in the kidney46, and contributed to renal fibrosis, a
hallmark of kidney damage irrespective of the underlying cause that
significantly contributes to eGFR decline46. However, TMAO insult
alone was not sufficient to convert renal fibroblasts to myofibroblasts
requiring synergy with a preexisting pathological state, i.e., pro-
fibrotic signaling (“second-hit”) in the form of TGF-β1 stimulation, the
most prominent pro-fibrotic cytokine46. TGF-β1 expression is increased
in ligated UOO mouse kidneys56 or kidneys of patients with diabetic
nephropathy57 and circulating TGF-β1 is elevated in conditions that are
risk factors for CKD including hypertension, dyslipidemia and T2D58.
Therefore, our results suggest that TMAO accelerates eGFR decline in
concert with existing pro-fibrotic signaling (i.e., TGF-β1; “second-hit”),
consistent with observations in animal models of CKD44,45 and
humans20,21.

Supporting our assertion that TMAO accelerates cardiovascular
disease progression together with existing pathology, at least partially
by impacting the kidney, TMAO increased all-cause mortality only in
individuals with eGFR <90mL/min/1.73m2 (see ref. 59) and circulating

TMAO levels in healthy adults were not indicative of future athero-
sclerotic burden60.

TMAO is an independent risk factor of cardiovascular morbidity
and mortality in patients with established IHD or CKD18,19 with accu-
mulating evidence suggesting direct causal effects47. Our work sug-
gests that reno-protective strategies could potentially lower
circulating TMAO and therefore preserve kidney function in indivi-
duals with high circulating TMAO in the presence of risk factors known
to increase TGF-β1 signaling (i.e., hypertension and T2D58). Indeed, we
observed that patients with T2D prescribed GLP-1RAs, drugs with
documented reno-protective and beneficial cardiovascular effects24,25,
had significantly lower fasting plasma TMAO levels than propensity-
score matched controls. Differences in microbiota composition were
predictive of glycemic responses to GLP-1RA intake61 and further work
is required to determine factors influencing GLP-1RA-mediated reno-
protection which appear to be independent of improvements in gly-
cemic control62.

Collectively, our findings demonstrate that eGFR, irrespective of
disease stage, is the primary modifiable modulator of circulating
TMAO, which then by promoting renal fibrosis in conjunction with
established pathophysiology (“second-hit” model) further negatively
impacts kidney function. Accordingly, we observe that intake of GLP-
1RAs is associated with lower circulating TMAO levels, thereby
potentiallymoderating the adverse effect of TMAOon kidney function
and suggesting a putative mechanism for these drugs that observed
renoprotection in large pharmaceutical trials25.

Ourwork conceptually advances the understanding of howTMAO
levels (and therefore associated cardiovascular risk) are regulated in
humans with a wide range of cardiometabolic disease burden in non-
interventional settings. In addition, we uncover a direct mechanistic
link between TMAO and renal fibrosis in conjunction with existing co-
morbidities (known to elevate TGF-β1 signaling) such as hypertension
and T2D. Furthermore, our findings suggest that therapeutic mod-
alities preserving kidney function could markedly benefit and reduce
cardiovascular risk in individuals with high circulating TMAO in the
presence of risk factors (T2D, hypertension, or metabolic syndrome).
This merits urgent testing in a longitudinal independent clinical trial.

Methods
MetaCardis study design and recruitment
MetaCardis is a cross-sectional study that recruited individuals at
increasing stages of dysmetabolism and IHD severity (ranging from
metabolically healthy, metabolic syndrome and/or obesity, T2D, IHD),
aged 18–75-years old and recruited from Denmark, France and Ger-
many between 2013 and 2015. Patients under care of the participating
hospitals meeting the inclusion criteria of the study were invited to
enroll. Healthy controls were recruited via public advertisement. Study
participants provided written informed consent and the study was
undertaken according to Helsinki Declaration-II. Ethical approval was
obtained from the Ethics Committee CPP Ile-de France, the Ethical
Committees of the Capital Region of Denmark (H-3-2013-145), and
Ethics Committee at the Medical Faculty at the University of Leipzig
(047-13-28012013). Study design, recruitment and exclusion criteria
has been extensively described26,31,41,63. The overarching goal of the trial
was to investigate the impact of qualitative andquantitative changes in
the gut microbiota on the pathogenesis of cardiometabolic diseases
(CMDs) and their associated co-morbidities (ClinicalTrials.gov Identi-
fier: NCT02059538). For the present study, patients were subclassified
in three groups: BMI-spectrum patients (BMIS26; N = 837), encom-
passingMetaCardis participants presenting withmetabolic syndrome-
related risk factors or conditions (hypertension, as defined by the
American Heart Association64; obesity, as defined by the World Health
Organization65 and metabolic syndrome, as defined by the Interna-
tional Diabetes Federation66) and patients diagnosed with type-2 dia-
betes (T2D, asdefinedby the AmericanDiabetes Association67;N = 561)
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or ischemic heart disease (IHD; N = 356). The IHD group comprised
patients with Acute (<15 days) Coronary Syndrome (ACS; N = 106),
Chronic IHD (CIHD; N = 157) with normal Left Ventricular Ejection
Fraction (LVEF) determined by echocardiography and Heart Failure
patients (HF;N = 93, LVEF < 45%).Cardiometabolicdisease is used as an
umbrella term for all the above cases, and severity of cardiometabolic
disease refers, in this manuscript, to the progression from single risk
factors such as obesity to overt T2D and cardiac phenotype (ischemic
heart disease and heart failure).

Sample and phenotypic information collection
Biofluid and biomatter collection has beendescribed elsewhere26,31,41,63.
Briefly, blood samples were collected in the morning after overnight
fasting, and fecal samples were collected at home by participants,
frozen immediately and transferred to study centers on dry ice within
48 h. All samples were stored at −80 °C until use. Clinical history,
medication and phenotypic information were acquired as
described26,31,41,63 with standardized procedures across centers. Parti-
cipants reported habitual food intake through a customized Food
Frequency Questionnaire (FQQ). The participant’s responses to the
FQQs was validated by three web-based dietary recalls for a subset of
study participants (N = 324) according to established practices35. Bio-
clinical variables were measured in a single center according to stan-
dard procedures31. Estimated glomerular filtration rate (eGFR) was
calculated with the CKD-EPI formula without ethnicity adjustment68.

Metabolic profiling
1H-nuclear magnetic resonance (1H-NMR) spectroscopy. Spectra
acquisition, using an Avance spectrometer (Bruker) at 600MHz; and
structural assignments have been extensively described previously31.
Absolute quantifications were derived using the “In Vitro Diagnostics
for research” (IVDr) quantification BI-Quant-UR algorithm (Bruker,
https://www.bruker.com/en/products-and-solutions/mr/nmr-clinical-
research-solutions/b-i-quant-ur.html, v1.1). For some analyses meta-
bolites absolute quantifications were divided by the creatinine con-
centration, also derived by the IVDr platform from the 1H-NMRspectra.

Gas chromatography-coupled mass spectrometry (GC-MS). Serum
samples (100 µl) were prepared, analyzed and processed as
described31,41. Briefly, protein was methanol-precipitated, methanol
was evaporated to dryness and subsequent to derivatization samples
were injected to anAgilent 7890B-5977B Inert Plus GC-MS system. The
chromatographic column was an Agilent ZORBAX DB5- MS
(30m× 250 µm ×0.25 µm+ 10mDuragard). The temperature gradient
was 37.5min long and the mass analyzer was operated in full-scan
mode between 50 and 600m/z. Peaks were annotated with the use of
the Fiehn library (Agilent G1676AA Fiehn GC/MS Metabolomics RTL
Library, User Guide, Agilent Technologies, https://www.agilent.com/
cs/library/usermanuals/Public/G1676-90001_Fiehn.pdf). Metabolic
features with low reproducibility or linearity were removed from the
dataset, resulting in 102 annotated metabolic features.

Ultra-performance liquid chromatography-tandem mass spectro-
metry (UPLC–MS/MS). UPLC–MS/MS performed on a Waters Acquity
UPLC-Xevo TQ-S UPLC–MS/MS system equipped with an Acquity BEH
HILIC (2.1 × 100mm, 1.7 µm) chromatographic column was employed
to determine TMA, TMAO, choline, betaine, γ-butyrobetaine, betaine
aldehyde, butyryl-carnitine, isovaleryl-carnitine, OH-isovaleryl-carni-
tine, stearoyl-carnitine, oleoyl-carnitine, linoleoyl-carnitine, myristoyl-
carnitine, lauroyl-carnitine, and decanoyl-carnitine as described
previously31,41. TMAO circulating values of all MetaCardis participants
were log10-transformed, and subsequently the median was subtracted
and divided by the standard deviation23 (SD; regularized TMAO values
throughout). MassLynxTM software (Waters corporation, v4.2) was
used for data acquisition and analysis.

Metagenomic analysis
Phylogenetic microbiota profiles were built after correction for bac-
terial load as extensively described26,31,41,63 using a protocol devised in
ref. 69 with modifications. Briefly, total fecal DNA was extracted fol-
lowing the International Human Microbiome Standards (IHMS)
guidelines (SOP 07 V2 H) and samples were sequenced using ion-
proton technology (ThermoFisher Scientific). Gene abundance profil-
ing was performed using the 9.9 million gene integrated reference
catalog of the human microbiome, as described26,31,41,63. The following
libraries were used to process metagenomic data: METEOR (v.3.2;
https://forgemia.inra.fr/metagenopolis/meteor), Alientrimmer v0.4.0,
Bowtie2 v2.3.4, MetaOMineR (momr, v1.31), Omixer-RPM (v1.0).

Customized microbial module analysis (GMM)
Manually curated customized module sets focusing on anaerobic
bacterial and archaeal fermentation processes relevant to the human
gut microbiota were assembled as previously extensively
described26,31,41,63.

Statistical analyses
Statistical analysis was undertaken using R (v4.03; R Core Team
(2020). R: A language and environment for statistical computing. R
(v4.03) Foundation for Statistical Computing, Vienna, Austria. URL:
https://www.R-project.org/). For comparing two groups, we used
Mann–Whitney U and for multiple group comparisons Kruskal–Wallis
tests. Unadjusted Spearman correlations were computed using R,
whilst adjusted Spearman correlations with ppcor (v1.1). P values were
corrected for multiple comparisons using the Benjamini–Hochberg
method.

Machine learning (ML) analysis
Variable groups. Patient phenotypic variables were separated into ten
groups (Supplementary Data 1). Specifically, biological parameters
included biochemical and clinical serum laboratory tests, including
lipids, glycated hemoglobin, creatinine, and eGFR. Clinical parameters
consisted of clinical history, BMI, systolic and diastolic blood pressure,
anthropometric variables, and stool frequency and type. Demographic
information comprised age, physical activity, educational and income
levels, smoking status, ethnicity and country of recruitment. Drug
variables included intake of common medication as described41,
number of antibiotic courses in the last 5years and number of anti-
hypertensive, anti-diabetic and lipid-lowering treatments. Dietary
parameters included habitual consumption of 37 food items, daily
nutrients intake derived from these food items calculated as in35,
alternative Healthy Eating70 (aHEI), Dietary Approaches to Stop
Hypertension71 (DASH) and Dietary Diversity72 (DDS) scores. Clinical
risk factors variables included age, systolic and diastolic blood pres-
sure, glycated hemoglobin levels, fasting cholesterol levels, smoking
status and waist circumference as described31. Serum metabolomics
comprised the absolute or relative levels of 116 circulatingmetabolites
determined by GC-MS or UPLC–MS/MS31,41. Urine metabolomics
included absolute quantification of 47 urine metabolites from 1H-NMR
spectra calculated with the IVDr algorithm. Microbiota variables
included an abundance of 699 bacterial species present in at least 20%
of MetaCardis patients corrected for microbial load and the first 10
principal components from a PCA of relative microbial gene
abundances31,41. Microbiome (Modules) group included abundance of
116 manually curated bacterial modules31. In all cases, categorical
variables were converted into dummy variables using caret (v6.0.86).

Boosted decision trees (Xgboost). We predicted regularized circu-
lating TMAO levels by using gradient-boosting decision trees based on
the xgboost algorithm (v1.3.2.1)73, co-opting a strategy from ref. 23.
Xgboost consistently outperforms other algorithms in Kaggle com-
petitions for tabular data. For each of our 10 variable groups
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(Supplementary Table 5) we optimized xgboost models using fivefold
cross-validation and two sequential hyperparameter grids searches
with early stopping (972 different parameter combinations for each
feature group in total) to predict mean-centered and unit variance-
scaled (regularized) TMAO levels in the left-out group using root-
mean-square error (RMSE) to evaluate model outcomes. After para-
meter optimization, wepredicted circulating TMAOusing 5-fold cross-
validation for 100 iterations using as input the variables of each group
or all variables (full model). For each round, we calculated the coeffi-
cient of determination using the rsq function from yardstick (v0.0.7)
and the predicted regularized TMAO values. Xgboost models trained
with 80% of each patient group participants during cross-validation
(five for each round) were saved and used for feature attribution
analysis in the left-out group (see below).

To minimize the risk of overfitting, we took four steps:
1. during the model parameter optimization step, training was

stopped if predictions were not improved for ten rounds
(early_stopping_rounds = 10).

2. We incorporated the regularization parameters lambda and
gamma in our models, thus making our models more
conservative23.

3. We introduced randomness by using 0.8–0.9 of the available
variables in each variable group (colsample_bytree=0.8–0.9
depending on parameter optimization; Supplemental Tables 4–6
for specific model parameters) for the training of each tree, as a
way to minimize overfitting.

4. all our conclusions are based on ensemblemodels (the average of
100 independent runs) that in combination with the introduced
randomness and the out-of-sample predictions (fivefold cross-
validation) makes our models conservative.

Please see also the XGBoost documentation for additional infor-
mation on model parameters (https://xgboost.readthedocs.io/en/
latest/index.html).

SHapley additive exPlanations (SHAP) analysis. We interpreted our
ML models and assigned relative importance to variables influencing
circulating TMAO levels by co-opting SHAP values, as expanded for
tree-based ML models28 and recently used to objectively evaluate
factors driving metabolite plasma levels in humans23. Briefly, for each
prediction the SHAP value of a particular variable is the difference in
themodel outputwhen this variable is included versuswhen excluded.
Variables are added to the model in all possible orderings, and the
SHAP value is computed from the average of model outcomes28.
Variable SHAP values for each individual in the five left-out groups
were extracted from corresponding xgboost models trained on the
remaining 80% participants for each variable group using SHAP-
forxgboost (0.1.0) and averaged over 100 iterations. We assigned
relative importance to each variable by computing the mean of the
absolute SHAP value for all individuals in each disease group similarly
to ref. 23. For swarm plots depicting each individual participants SHAP
values, variable values were inverse-normalized using the RNOmni
(v1.0.0) package.

Least absolute shrinkage and selection operator (LASSO). We used
the LASSO algorithm as implemented in the glmnet (v4.1) package to
predict regularized TMAO values in BMIS (N = 582) participants using
all available variables as input (full model). Initially, we used fivefold
cross-validation to determine the best regularization parameter
lambda (from 100 values ranging from 10−3 to 105) for predicting cir-
culating TMAO in the left-out group. We next trained five LASSO
regression models in 80% of BMIS participants excluding the corre-
sponding left-out group with the optimal lambda parameter. These
models were then used to predict regularized TMAO in the left-out
groups and subsequently to calculate the coefficient of determination

using the rsq function from yardstick (v0.0.7). This process was
repeated for 100 iterations, similar to the xgboost analysis.

Clustering. Clustering was performed using the built-in R k-means
function with the Hartigan–Wong algorithm using 25 random sets, as
described27.

Multivariate analysis. To identify microbiota composition differences
between individuals split in TMAO clusters we performedmultivariate
homogeneity analysis of Bray–Curtis dissimilarity matrices at the
species level (699 species present in at least 20% of our population)
and determined statistical significancewith a permutation ANOVA test
(999 iterations) using the vegan (v2.5.7) package. Permutation analysis
of variance (PERMANOVA) of regularized circulating TMAO versus
Bray–Curtis taxonomic dissimilarity matrices with age, sex, and
country of recruitment as covariates for 999 iterations were per-
formed with vegan (v2.5.7).

Mediation analysis. We performed mediation analysis74 to assess the
putative impact of eGFR on plasma TMAO increase with age and,
conversely, the impactof TMAOoneGFRdeclinewith age.Weused the
Preacher and Hayes bootstrapping method, as implemented in the
mediation (v4.5.0) R package75, using general linear models with sex
and country of recruitment as covariates. Confidence intervals and
Bayesian P values were computed after 999 simulations.

Propensity-score matching. MetaCardis participants with T2D were
propensity-score matched using the R package MatchIt76 (v.4.1.0) with
age, sex, disease group, and hypertension status as covariates using
nearest neighbor matching determined by generalized linear models.
All covariates were given equal weight.

Preclinical models
In vitro experiments
Cell culture and protein extraction. Primary human adult kidney
fibroblasts from a single donor (DV Biologics, AU009-F) were cultured
in 10% FCS low-Glucose DMEM with 1% Pen/Strep antibiotics (Sigma).
For acute (up to 30min) TMAO stimulation, cells (100,000/condition)
were serum-starved for 1 h in a physiologic serum-free buffer as pre-
viously described50. Fibroblasts were preincubated with Tramenitib
(10 nM, Shelleckchem), BAPTA-AM (20 µM, Molecular Probes) or
vehicle for 30min before TMAO (Sigma) stimulation. For longer-term
(24 h) stimulation, fibroblasts were in serum-free low-glucose DMEM
overnight and subsequently stimulated with TMAO, TGF-β1 (5 ng/ml,
R&D), or their combination. At the end of the experiment, fibroblasts
were lysed and stored at −80 °C until further use, as described50.

Cytosolic [Ca2+] measurements. Fibroblasts were serum-starved
overnight in low-glucose DMEM and subsequently loaded with 5 µM
fura-2-AM (Molecular Probes) in pH 7.4 Hanks Balanced Salt Solution
(HBSS; Sigma) containing Ca2+ andMg2+. Measurements were obtained
on an epifluorescence inverted microscope equipped with a ×20
fluorite objective. Single-cell intracellular Ca2+ ([Ca2+]i) was monitored
using excitation at 340 and 380nm, through amonochromator (Cairn
Research). Emitted light was reflected through a 515 nm filter to a
QImaging Retiga CCD camera (Cairn Research) and digitized to 12-bit
resolution. All imaging data were collected and analyzed using soft-
ware from Andor.

Animal procedures. All animal experiments were conducted in
accordance with the United Kingdom Home Office Animals 1986 Sci-
entific Procedures, with local ethical committee approval (Project
License 70/8356). Male C57BL/6 J mice (Charles River) at 6–8 weeks of
agewere fed a control, 0.12%w/wTMAO- or 1%w/wcholine-containing
diets (Teklad Global 18% Protein Rodent Diet (Cat. #2018); 6 animals/
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group) for 6 weeks20. Food and water were available ad libitum, and
mice were held at 12/12 h light/dark cycle at 20–23 °C and 40–60%
humidity in standard individually ventilated cages (5–6 animals in each
cage). Subsequently, Unilateral Ureter Obstruction (UUO) was estab-
lished as previously described50. Only male mice were used, since this
is common practice for this model50. Briefly, mice were anesthetized
with isoflurane and the abdominal cavity was exposed using midline
laparotomy, the right ureter was isolated and tied off 0.5 cm from the
pelvis. The left ureter was left unclamped and served as the sham-
operated control. At day 5, mice were euthanized by terminal anes-
thesia with ketamine and cardiac puncture, and subsequently the
kidneys were harvested. Both kidneys from each animal (UUO and
sham)were cut in half longitudinally. One-half of eachkidneywas snap-
frozen in liquid nitrogen and subsequently stored at −80 °C for Wes-
tern blotting. The other half was fixed with 10% Formalin (Sigma) for
16 h at 4 °C, transferred to a 70% v/v ethanol solution for a further 24 h
and was then paraffin-embedded for immunohistochemistry.

Westernblot. We used the NuPAGE electrophoresis and buffer system
(Invitrogen) for immunoblot analysis of kidney samples or cellular
lysates as described48,49. AmershamTM RainbowTM full-range molecular
weight (MW) markers (Merck, GERPN800E) were used to determine
MW and cut membranes for probing with specific antibodies. Proteins
were visualized with ECL Prime (GE Healthcare). Optical densities of
bands of interest were determined using ImageJ 1.46r (NIH) and nor-
malized against loading controls. The value of the normalized control
sample was arbitrarily set to 1. Membranes were stripped using the
Restore Plus reagent (Fisher Scientific), and re-probed with appro-
priate loading controls (total ERK1/2). In caseswhere therewas overlap
in MW between loading controls and proteins of interest, loading
controls were run in parallel gels. The following antibodies were used
in the present study with dilutions in parentheses: FromCell Signaling
Technology, Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) Anti-
body (1:3000) #9101, p44/42MAPK (Erk1//2) Antibody (1:5000) #9102,
Phospho-Smad3 (Ser423/425) (C25A9) Rabbit mAb (1:1000) #9520,
Phospho-p70 S6 Kinase (Thr389) Antibody (1:1000) #9205, Phospho-
S6 Ribosomal Protein (Ser235/236) Antibody (1:1000) #2211, Phospho-
4E-BP1 (Ser65) Antibody (1:1000) #9451, Vimentin (R28) antibody
(1:1000) #3932. From Sigma-Aldrich, monoclonal anti-actin, α-Smooth
Muscle (clone 1A4) A2547 (1:10,000), monoclonal Anti-α-Tubulin
antibody (clone DM1A; 1:10,000) T9026, anti-β-actin antibody (clone
AC-74, 1:10,000) A2228.

Immunohistochemical staining. Formalin-fixed kidneys were embed-
ded inparaffin, and4-μmsectionswere cut by theBartsCancer Institute
Pathology Unit. Staining for Sirius red, α-SmoothMuscle Actin (αSMA),
and F4/F80 were performed as described50 with the DISCOVERY XT
(Ventana) automated slide processing instrument using the OmniMap
reagents (Ventana), according to themanufacturer’s recommendations.
Images were captured at ×20 magnification, using a Zeiss AxioPhot
microscope with an AxioCam HRc camera. Five kidney cortex images
were captured per mouse, and staining was quantified as the percen-
tageof the total area, using ImageJ 1.46r (NIH). TheAnti-F4/F80 (Cl:A3-1)
antibody (1:50) from Biorad (MCA497) was used.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Raw shotgun sequencing data that support the findings of this
study have been deposited in the European Nucleotide Archive under
accession codes “PRJEB37249”, “PRJEB38742”, “PRJEB41311”, and
“PRJEB46098”. The SerumNMRandurineNMRmetabolomedata have
been uploaded to Metabolights with accession number “MTBLS3429”.

The Serum GC-MS and isotopically quantified serum metabolites
(UPLC–MS/MS) that have been used in this study are deposited in
MassIVEwith accessionnumbers “MSV000088042 [https://doi.org/10.
25345/C5CV76]” and “MSV000088043 [https://doi.org/10.25345/
C58246]”, respectively. In adherence to EU and national privacy laws,
unrestricted access to patient phenotypic data cannot be provided for
this study. Interested researchers, wishing to access individual phe-
notypic data would need to submit argued applications to the relevant
National Data Protection Agencies. These are the Danish Data Protec-
tion Agency (https://www.datatilsynet.dk/english) for phenotypic data
from study participants recruited in Denmark, the Federal Commis-
sioner for Data Protection (https://www.bfdi.bund.de/EN/Home/
home_node.html) for phenotypic data from study participants recrui-
ted in Germany and the Commission Nationale Informatique & Liber-
tés (https://www.cnil.fr/en/home) for phenotypic data of study
participants recruited in France. Application procedures are given on
the outlined websites. If such permission is granted, phenotypic data
will be then made available by the corresponding authors within
5 weeks. Source data are provided with this paper.

Code availability
No custom code or algorithm was used for the analyses conducted in
this work. Code and associated phenotypic data to replicate the ana-
lyses presented in this work can be obtained by contacting the corre-
sponding authors (please also see the Data availability statement).
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