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[1 1] A p p l y i n g  M o t i f  a n d  P ro f i l e  S e a r c h e s  

By PEER BORK and TOBY J. GIBSON 

Introduction 

The demonstration of homology, meaning descent from a common 
ancestor, is an essential tool in gaining understanding of gene function, 
whether one wants to obtain an overview of the functions for all the genes 
described during a genomic sequencing project or to focus on a particular 
protein. With the expansion of sequence databases, similarity searches 
have a steadily increasing chance of providing a clue toward functional 
characterization. The likelihood of identifying homologs is currently higher 
than 80% for bacteria, 70% for yeast, and about 60% for animal se- 
quence queries, l'a 

On the basis of experience with large-scale sequence analysis, 3-5 we 
estimate that at present about 10-20% of identifiable similarities cannot 
be retrieved automatically by standard database search programs such as 
BLASTP 6'7 and FASTA 8 alone. The proportion of missed similarities is 
even higher when considering modular proteins that are composed of sev- 
eral (often small) functionally and structurally independent domains. The 
significance of "twilight zone" matches (i.e., tempting pairwise similarities 
below widely used thresholds of approximately 25% identity, depending 

1 p. Bork, C. Ouzounis, and C. Sander, Curr. Opin. Struct. Biol. 4, 393 (1994). 
2 E. V. Koonin, R. L. Tatusov, and K. E. Rudd, this volume [18]. 
3 p. Bork, C. Ouzounis, C. Sander, M. Scharf, R. Schneider, and E. Sonnhammer, Protein 

Sci. 1, 1677 (1992). 
4 E. V. Koonin, P. Bork, and C. Sander, EMBO J. 13, 493 (1994). 
5 p. Bork, C. Ouzounis, G. Casari, R. Schneider, C. Sander, M. Dolan, W. Gilbert, and 

P. M. Gillevet, Mol. Microbiol. 16, 955 (1995). 
6 S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, J. Mol. Biol. 215, 

403 (1990). 
7 S. F. Altschul, M. S. Boguski, W. Gish, and J. C. Wootton, Nat. Genet. 6, 119 (1994). 
8 W. R. Pearson and D. Lipman, Proc. Natl. Acad. Sci. U.S.A. 85, 2444 (1988). 
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on length) has to be assessed using information provided by inspection of 
multiple alignments of protein families, as well as by deploying motif and 
profile alignment strategies based on these alignments. Searches with these 
tools, in turn, often lead to the identification of even more divergent homo- 
logs. The purpose of this chapter is to outline the main strategies currently 
in use, making clear both their powers and pitfalls, and to demonstrate 
their usage with two well-known domains as examples. 

Terminology: Motifs, Patterns, and Profiles 

The meaning of the terms motif, block, pattern, and profile need to be 
clarified. The search for motifs, namely, small conserved regions within 
larger entities, implies that only some of the information contained in a 
protein or domain is used. Sometimes, motifs are applied to certain func- 
tional features (e.g., glycosylation sites, SH3-binding sites) that develop 
independently from the surrounding context; for this (minority of) motifs 
the concept of homology may be irrelevant. As insertions and deletions 
(gaps) within a motif are not easy to handle from the mathematical point 
of view, a more technical term, alignment block, has been introduced that 
refers to conserved parts of multiple alignments containing no insertions 
or deletions. Patterns can be used in a more broader sense, as they can 
describe small motifs or larger regions containing several motifs and can also 
contain gaps. (Some authors use the term pattern to mean compositionally 
biased segments or low complexity regions, e.g., runs of aspartate residues; 
this usage is not meant here.) Profile is usually used to mean a full represen- 
tation of features in the aligned sequences and normally implies position- 
dependent weights/penalties for all 20 amino acids (as well as for insertion 
and deletion). 

Thus, there need be no contradiction of the terms motif and profile, as 
profiles can also be restricted to smaller regions. Nevertheless, the terms 
motif and profile mirror two different ideologies in the field of using family 
information for improving the sensitivity of homology searches: (1) restric- 
tion to key conserved features to reduce the higher "noise" level of the 
more variable regions, in contrast to (2) inclusion of all possible information 
to maximize the overall signal of the entity (protein/domain). Both ap- 
proaches are valid, as documented by many successful applications of each. 
It is worth noting that motifs are usually harnessed to fast word search 
algorithms, which can be used despite limited resources, whereas profiles 
often use exhaustive but slow dynamic programming algorithms. Therefore 
it is best to use the method most appropriate given the resources and the 
nature of the protein family under study. It can also be advisable to do the 
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earlier searches using motifs first, and to follow up with the slower profiles 
at the end. 9 

Numerous methods exist for both motif and profile searches, and the 
different methods grade into each other. No exact formula can be given for 
the choice of the method, as each protein family has a different conservation 
pattern. Different functional and structural constraints lead to a certain 
distribution of conserved and variable regions within a multiple alignment 
that may better suit one of the approaches. 

Note that we have specifically excluded here methods that can be com- 
bined under the term "threading," that is, that try to derive potentials 
(which can be translated into profiles) from known three-dimensional struc- 
tures, in order to recognize the compatibility of a given sequence to one 
of the known three-dimensional folds. Such methods have been reviewed 
extensively (e.g., Ref. 10 and references therein). Although they should 
have great potential in finding distant homologies, as yet only a few predic- 
tions based on such approaches have been published. Such successes as 
there have been could, in our view, have been achieved with conventional 
motif and profile searches using solely sequence information. 

Procedures 

In the hope of predicting a function for a protein under study, fast 
homology search programs are almost universally used. The current stan- 
dard seems to be the BLAST series of programs, accessible via several 
World Wide Web (WWW) servers, although both FASTA and BLITZ are 
also frequently used. These programs undertake a database search for a 
query sequence and are usually the sole search undertaken. However, the 
results of such searches make a logical starting point for motif and profile 
searches (Fig. 1). These can be divided into two steps: (1) derivation of a 
pattern and (2) searching for the pattern (motif/profile). For the first step, 
programs such as CAP (consistent alignment parser; see Ref. 11 and refer- 
ences therein) have been developed that are able to parse outputs of "one 
against all" initial database search programs and that automatically create 
multiple alignments of conserved regions shared by the query sequence 
and some of the database proteins. Other methods have been developed 
that can be used to find conserved regions in a set of unaligned sequences 
(e.g., Gibbs sampler12; blockfinder: S. Henikoff, personal communication, 

9 p. Bork, J. Gellerich, H. Groth, R. Hooft, and F. Martin, Protein Sci. 4, 268 (1995). 
lo E Eisenhaber, B. Persson, and P. Argos, Crit. Rev. Biochem. MoL Biol. 30, 1 (1995). 
11 R. L. Tatusov, S. F. Altschul, and E. V. Koonin, Proc. Natl. Acad. Sci. U.S.A. 91,12091 (1994). 
12 C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C. Wootton, 

Science 262, 208 (1993). 
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Steps of a motif/profile search 

- ~ ( 1  Initial homology search 
Sequence against the database) 

Items to be considered 

" - ~  I Alignment °f hits I 

Borderline of query segment 
Similarity matrices 
Gap penalties 

Filters (composition bias) 
Scoring schemes/ranking 

Choice of database 

Derivation of a pattern/profile <F--  

. I 
J Motif/profile database search I "~ 

Form of description 

Weighting of sequences 

Weighting of positions 

FIG. 1. Flowchart of steps in motif/profile searches and items to be considered. Note that 
some items may not apply to all the methods (e.g., gap parameters are not needed in MOST). 
Also, some of the programs combine several steps (e.g., in SOM, a starting alignment is not 
necessary because the detection of the conserved features in a set of sequences is part of the 
pattern recognition algorithm itself, Ref. 33a). 

see Fig. 2; pattern extractionl3; SOM: Ref. 33a, see Fig. 2). Even if such 
motifs are defined, it remains non-trivial to develop a proper description 
of these regions in order to be as sensitive as possible in the second step, 
the pattern search itself. 

Available Programs 

It is impossible to give a comprehensive overview of the numerous 
methods that exist for pattern (motif/profile) searches, especially given the 
explosion of WWW activities. The Internet provides access to a broad 
variety of programs/servers from simple string searches to sophisticated 
profile descriptions (for a small collection of recommended servers, see 

1~ R. F. Smith and T. F. Smith, Proc. Natl. Acad. Sci. U.S.A. 87, 118 (1990). 
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WWW: searchable moti f  and pattern databases 

PROSITE [Geneva's Expasy] 
Motif search, ICR [Kyoto] 
Scan of profiles, ISREC [Lausanne] 
BLOCKS, Hutchinson [Seattle] 
PRINTS, UC [LondonI 
PLMA, BCM [Houston] 
PRODOM [Toulouse] 

WWW: Motif  and profile searches 

Regular expressions,Uuiv [Washington] 
PROFILE, Weizmarm /Tel Aviv] 
PATSCAN motif search [Argonnel 
PatternFind, ISREC [Lausanne] 
Pmotif (protein >DNA) [Minneapolis] 
HMM descriptions [St. Louis] 
Discover (email server!) [New York] 

fittp:/ /expasy.hcuge.ch/sprot/prosite.html 
http: //www.genome.ad.jp/SIT/MOTIF.html 
http://ulrec3.unil.ch / software/PFSCAN_ form.html 
http: //www.blocks.fher c.or g / 
http: //www.biochem.uel.ac.uk/~attwood/PRINTS/PRINTS.html 
http: / / dot.imgercbcm.tmc.edu:9331/seq-search/protein-sear ch.html 
http: //protein.toulouse.irtr a .fr/prodom.htrui 

http://ibc.wustl.edu/fpat / 
http: / / sgbcd.weizmann.ac.il/Bic/ExeeAppl.htrnl 
http:/ /www.mcs.ard.gov /home/papka/ROSS/patscan.html 
http: //ulrec3.unil.ch/software/PATFND_maiiform.html 
http: / / alces.rned.umn.edu/pmotif.html 
http://genome.wustl.edu/eddy/hmm.html 
http://hertz.njit.edu/-jason/help.html 

FTP: addresses for some motif  and profile search programs 

Barton's flexible patterns [Oxford] 
Propat (property pattern) [Berlin] 
SOM (neural networks) [Berlin] 
SearcfiWise [Oxford] 
PROFILE, EBI [Cambridge] 
TPROFILESEARCH, EBI [Cambridge] 
MoST (motif search tool) [Bethesda] 
CAP (blast output parser] [Bethesda] 

flp: / / geoff.biop.ox.ac.uk 
ftp://ftp.mdc-ber lin.de / pub/makpat 
ft p://ftp.mde-berlin.de/pub/neur al 
http: //www.ocms.ox.ac.uk/-birney/wise/topwise.html 
ftp://ftp.ebi.ac.uk/pub/software/unix 
ftp://ftp.ebi.ae.uk/pub/vax/egcg 
ftp: / / ncbi.nlm.nih.gov/pub/koonin/most 
flp: / / ncbi.nlm.rdh.gov/pub/koonin/cap 

FIG. 2. Some p rog rams  that  are accessible on  the  ln te rne t  via W W W  pages  or  ftp addresses.  
Note  that  this list is not  comprehens ive  bu t  that  the  au thors  have tested the p ro g rams  referred 
to in this table. A more  detailed list and respective pointers  can be obta ined  via the  W W W  
from http://www.embl-heidelberg.del-bork/pattern.html. 

Fig. 2, or go directly to the WWW at http://www.embl-heidelberg.de/-bork/ 
pattern.html). In this section we will briefly summarize proven methods 
that have been extensively and successfully used in the identification of 
distant homology. 

Most of the methods currently used have their origins in approaches and 
ideas developed in the 1970s and 1980s. The thorough review by Taylor TM 

presents the earlier history of motif and profile searches. The template 
pattern matching method of Taylor and colleagues is based on combinations 
of profiles of amino acid properties and secondary structure propensities 
implemented in a flexible controlled environment. ~s Although the template 
methods require a fairly high level of user understanding and are not being 
widely used, they did achieve a notable success. On the basis of very weak 
similarities to the subdomain fold of aspartic proteases that were picked 
up by the template method, Pearl and Taylor 16 built a model structure for 
the human immunodeficiency virus (HIV) protease. The model was refuted 

14 W. R.  Taylor ,  Protein Eng. 2, 77 (1988). 
~5 W. R. Taylor,  Prog. Biophys. MoL Biol. 54, 159 (1989). 
16 L. I~I. Pearl  and W. R, Taylor ,  Nature (London) 328, 351 (1987). 



[11] APPLYING PATTERN SEARCHES 167 

by the first solved H I V  protease structure, but the second solved structure 
found the first one to have been incorrectly built, demonstrat ing that the 
prediction was essentially correct. 17 

Searches with Regular Expressions 

The simplest method  to search for a motif  makes  use of regular expres- 
sions that can be combined with logical operators  to identify a repetitive 
or especially conserved moti f  in other  proteins. This method is usually very 
fast, is implemented  in various software packages, and can be recommended  
as a first scan in order  to estimate the number  of occurrences, as well as 
the background noise, for a motif  of interest. As the search does not provide 
any significance estimates, conclusions drawn from matches have to be 
evaluated very carefully. 

Moti f  Databases 

Signatures, based on regular expressions, for numerous  protein families 
and functional sites are stored in the P R O S I T E  database18; the database 
annotat ion provides an excellent description of the respective families/ 
motifs. As a simple description by regular expressions has obvious limita- 
tions, more  flexible descriptors have been developed, 19 and thus the PRO-  
SITE database will become even mor  useful in the near  future. Another  
approach to increase the utility of the collected motifs was taken by Heni-  
koff and Henikoff,  2° who reconstructed alignments f rom the P R O S I T E  
entries, providing a database of core alignment "blocks"  which is searched 
with tools that are more  sophisticated than regular expressions. The Blocks 
server can be accessed by E-mail  or W W W  (Fig. 2). 

Consensus Patterns 

Patthy has developed and applied a method 21'22 that assigns a pat tern 
to an alignment using the concept of a consensus sequence. The pat tern is 
a string of amino acids that are conserved according to a user-defined 
threshold, are separated by "un impor tan t "  positions, and are given posi- 
t ion-dependent  gap penalties. Although this method does not use the full 

17 A. Wlodawer, M. Miller, M. Jask61ski, B. K. Sathayanarayana, E. Baldwin, I. T. Weber, 
L. M. Selk, L. Clawson, J. Schneider, and S. B. H. Kent, Science 245, 616 (1989). 

18 A. Bairoch and P. Bucher, Nucleic Acids Res. 22, 3583 (1994). 
a9 p. Bucher, K. Karplus, M. Mooeri, and K. Hofmann, Comput. Chem. 20, in press (1996). 
20 S. Henikoff and J. G. Henikoff, Nucleic Acids Res. 19, 6565 (1991). 
21 L. Patthy, J. Mol. Biol. 198, 567 (1987). 
:2 L. Patthy, this volume [12]. 
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information of the multiple alignment (learning set), the success of the 
method in finding distant relationships 22 shows that filtering important 
positions can be used to increase the signal-to-noise ratio (although the 
signal itself becomes weaker). 

Property Patterns 

The program PROPAT,  developed by Bork and Grunwald 23 and later 
improved by Rohde and Bork, 24 has been applied many times in the detec- 
tion of distant homologies. This method is able to generalize a pattern, 
even from a rather small learning set, by automatically deriving distinct 
combinations of physicochemical properties for each position; a vector of 
such properties is assigned to each amino acid (for details, see Ref. 24). 
It can be used for a single motif, combinations of motifs, or for whole do- 
mains, and is already a step toward profile searching, since a vector of 
weights (in this case penalties) is assigned to each position of the alignment 
(including gaps). PROPAT can search six-frame translations of DNA data- 
bases. 

Flexible Patterns 

The flexible patterns of Barton and Sternberg 25 combine features of 
motifs and profiles. The patterns can be set up in various ways but are 
essentially permutations of conserved blocks, separated by gaps of specified 
ranges, and are compared to sequences using a dynamic programming 
approach. The Barton approach has been applied, for example, in a survey 
of the D H R  domain distribution, z6 

Classical Profile Method  

Profile analysis as implemented by Gribskov et al. 27"28 is used to perform 
exhaustive alignment by dynamic programming of a family-based scoring 
matrix against test sequences. The profile is comprised of two components 
for each position in the alignment: (1) scores for the 20 amino acids and (2) 
variable gap opening and extension penalties. The amino acid substitution 
scores are created by summing Dayhoff  exchange matrix values according 

23 p. Bork and C. Grunwald, Eur. J. Biochem. 19L 347 (1990). 
24 K. Rohde and P. Bork, Comput. Appl. Biosci. 9, 183 (1993). 
25 G. J. Barton and M. J. E. Sternberg, J. Mol. Biol. 212, 389 (1990). 
26 C. P. Ponting and C. Phillips, Trends Biochem. Sci. 20, 102 (1995). 
27 M. Gribskov, A. D. McLachlan, and D. Eisenberg, Proc. Natl. Acad. Sci. U.S.A. 84, 4355 

(1987). 
28 M. Gribskov and S. Veretnik, this volume [13]. 
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to the observed amino acids in each column of the alignment. Gap penalties 
are reduced at positions with gaps, according to the length of the longest 
insertion spanning that point in the alignment. The programs PRO- 
FILEMAKE, PROFILESEARCH, and PROFILEGAP are widely avail- 
able through the GCG (Genetics Computer Group) sequence analysis pack- 
age, 29 making them the most frequently used programs in the field of motif 
and profile searches. However, the GCG PROFILESEARCH (including 
version 8.0) does not handle current database sizes and fails to warn the user 
that the search is incomplete. The TPROFILESEARCH version [available 
from P. Rice, EBI (European Bioinformatics Institute), Hinxton, UK] cor- 
rects this problem. 

Improved Profile Methods 

A number of modifications have been suggested for improving the 
creation of profiles that increase the sensitivity of the method. Several of 
these improvements have been incorporated into programs such as PRO- 
FILEWEIGHT 3° and the method of Liithy et aL 31 For example, an align- 
ment often consists of many closely related sequences together with a 
few rather divergent ones. The closely related sequences in the multiple 
alignment (learning set) offer little additional information, yet bias the 
profile residue scores. Sequence weighting schemes which upweight diver- 
gent sequences while downweighting closely related groupings have been 
found to improve profile sensitivity. 3°'31 

Noise is also reduced in database searches by gap excision 3° as long 
insertions are sites of breakdown in homology within the family and typi- 
cally lack meaningful conservation. Release 2 of PROFILEWEIGHT will 
also bring in new gap penalty reductions based on average gap length, 
rather than the single longest sequence, to better match observed gap 
properties in alignments. 

Both TPROFILESEARCH (P. Rice, EBI, Hinxton, see Fig. 2) and the 
PairWise/SearchWise package (E. Birney, J. Thompson, and T. Gibson, 
see Fig. 2) are able to perform protein profile alignments to six-frame 
translations of DNA sequences. The latter programs use an extension to 
dynamic programming to compare the profile simultaneously to the three 
translation frames of a DNA strand, allowing frame jumping. 32 

29 j. Devereux, P. Haeberli, and O. Smithies, Nucleic Acids Res. 12, 387 (1984). 
30 j. D. Thompson, D. G. Higgins, and T. J. Gibson, Comput. Appl. Biosci. 10, 19 (1994). 
31 R. L~ithy, I. Xenarios, and P. Bucher, Protein Sci. 3, 139 (1994). 
32 T. J. Gibson, E. Birney, M. HyvOnen, A. Musacchio, and M. Saraste, Trends Biochem. Sci. 

19, 349 (1994). 
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Automated Iterative Motif Search 

The motif search method MoST (for Motif Search Tool 2,1I) follows the 
BLAST strategy (in which gaps are not treated) in order to be able to 
handle the resulting alignment blocks in a proper mathematical sense. These 
blocks are converted to a position-dependent weight matrix following a 
log-odds, Bayesian-based approach and incorporating prior residue proba- 
bilities calculated from a mixture of Dirichlet distributions. MoST combines 
an extremely fast block search with good sensitivity.1 ~ In addition, automatic 
iterations have been incorporated, that is, database sequences scoring above 
a user-defined threshold are incorporated in the block alignment and the 
weighting for the next iteration is adapted to the new alignment. To allow for 
the different behaviors of protein families, manual intervention is possible at 
several levels. The drawback of excluding gaps will be circumvented in an 
improved version that handles the statistics of several blocks (E. V. Koonin, 
personal communication). Thus, this method is highly recommended, partic- 
ularly if functionally conserved residues are surrounded by semiconserved 
but structurally important positions, as can be observed in distantly re- 
lated enzymes. 

Other Methods 

In addition to improvements in techniques related to the ones mentioned 
above, other approaches that might prove valuable in identifying distant 
homologies include the application of neural networks 33,33a and methods 
that try to tackle the automatic iteration of the search procedure. 34 The 
use of hidden Markov models (HMMs) offers the prospect of a more formal 
mathematical treatment for profiles. For example, using a profile description 
that incorporates HMMs, 19 Bucher and colleagues have been able to iden- 
tify several divergent intracellular domains. A number of groups are cur- 
rently working on the application of HMMs to profile searches (see Fig. 2 
for a WWW pointer to one of the HMM alignment descriptions). 

Parameters and Pitfalls 

Multiple factors influence the choice for a certain program, such as 
computer resources, sensitivity, local availability, and user-friendliness. Ide- 
ally, one should know the powers and pitfalls of each of them and also 
how to handle the optional parameters. To help the user set up and run 

33 D. Frischman and P. Argos, Z Mol. Biol. 228, 951 (1993). 
3~a j. Hanke, G. Beckmann, P. Bork, and J. G. Reich, Protein Sci. 5, in press. 
34 T. M. Yi and E. S. Lander, Protein Sci. 3, 1315 (1993). 
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pattern searches effectively, we have provided a checklist of points, which 
we routinely apply (Table I). 

The GCG profile programs illustrate why it is important for the user 
to review the parameter set up. The default normalization for database 
entry length, which downweights the scores against long sequences, can be 
highly deleterious for domains in large proteins. The default normalization 
for amino acid bias also lowers sensitivity as it downweights characteristic 
residues in database entries. 

Another important point to consider is the report of only the optimal 
hit; that is, it is easy to overlook internal repeats. Most of the programs 
discussed here have ways to handle such internal repeats. With the GCG 
programs, the user must remember to look for repeats themselves, for 
example, by iteratively searching the regions in a protein on either side of 
a match against a domain profile. Dot-plot self-comparison can provide a 
second independent check. 

Domain Borders 

As in database searches with a single sequence, choice of the proper 
length of the query is of great importance. Three-dimensional structures 
increasingly reveal how to refine the domain borders, adjustment of which 
often leads to increased sensitivity. One particular problem is the phasing 
of successive repeats; in the literature there are numerous examples in 
which artificial domains are published spanning the C terminus of one 
repeat and the N terminus of the next. These "repeats" will thus never be 
detected when occurring as a single domain in other proteins. Contrary to 
popular perception, intron boundaries are extremely unreliable guides to 
intracellular domain boundaries, because traceable exon shuffling appears 
to involve extracellular domains exclusively. Intron boundaries have been 
more useful in demarcating extracellular modules, but they must show 
cross-consistency between repeats (or proteins), as the intron positions 
have often rearranged subsequently, particularly in Caenorhabditis elegans 
(see review by Patthy 35 for discussion of exon shuffling and module bound- 
aries). 

Gap Treatment and Sequence Weights 

Gapped regions of alignments usually contain little useful information. 
They are typically deleted in motif searches and specified as allowed inser- 
tion ranges. In profiles, they are given reduced gap penalties and may also 
be deleted. Gaps vary in their tolerance of long insertions, and this ought 
to be reflected in the cost assigned to each gap. As yet there is no satisfactory 

35 L. Patthy, Curt. Opin. Struct. Biol. 4, 383 (1994). 
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TABLE I 
CHECKLIST FOR MOTIF AND PROFILE SEARCHES 

Point to be considered Reason 

Is multiple alignment correct? Correct alignment is prerequisite for any search method: 
misalignments and frameshifts seriously degrade the 
signal 

Some programs lack effective downweighting schemes 
for close relatives in learning set: sometimes one 
should omit very redundant sequences and select a rep- 
resentative set of divergent sequences 

Arbitrarily truncated segments will have a weaker signal, 
whereas artificially enlarged ones add noise 

Is given set of sequences rep- 
resentative? 

Are borderlines correctly de- 
fined or does enlargement/ 
reduction of the studied seg- 
ment make more sense? 

Is appropriate method being 
used for the sequence 
family? 

Is chosen amino acid substitu- 
tion matrix appropriate? 

Are gaps considered appro- 
priate? 

For profile searches, have the 
gap penalties been opti- 
mized on trial runs? 

Are apparently essential posi- 
tions (e.g., required for ca- 
talysis) set to be required in 
pattern/profile? 

Have all databases been 
searched? 

Is output interpreted cor- 
rectly? 

Is knowledge about putative 
target sequences applied ap- 
propriately? 

For highly gapped alignments, block searches are not ad- 
visable; profiles spanning full proteins are sometimes 
less sensitive than restriction to a few short conserved 
motifs, when there is no other strong conservation 

Depending on the family, another matrix might lead to 
clearer/different results. For example, "soft" matrices 
tend to be inappropriate for short motifs 

Large insertions might occur between more conserved re- 
gions; small extracellular domains with cores mainly of 
disulfide bridges have more freedom for insertions/dele- 
tions than, for example, enzymes 

Appropriate penalties vary with divergence of query set. 
Set too strong: gaps cannot be crossed. Set too weak: 
query profile spreads out over false positives, giving 
higher scores 

Weight/penalty for such positions is often not high 
enough in available programs and additional informa- 
tion should be manually included, e.g., by stronger 
weight/penalties 

Many programs are unable to search in DNA databases 
or six-frame translations which usually harbor addi- 
tional hits; some network servers might offer out-of- 
date databases 

Be familiar with parameters and scoring systems, to be 
sure of the resulting scores (e.g., normalized Z scores 
in PROFILESEARCH are misleading when searching 
for small domains in larger proteins as they upweight 
small sequences) 

Searching with core metabolic enzyme suggests down- 
weighting hits with extracellular proteins, as biological 
context is different, but be careful as all kinds of excep- 
tions exist and proteins with unrelated functions can 
be homologous 
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TABLE I (continued) 

Point to be considered Reason 

Have databases been 
searched with putative 
novel members before inclu- 
sion into alignment for next 
iteration? 

Has reciprocity of detections 
been checked? 

If putative novel member belongs to a family that is 
well-characterized and distinct or which has different 
conserved regions, it is likely a false positive 

If profile of family A identifies family B as similar, does 
profile of family B find family A? Caution is needed as 
in some cases profiles of two artificially aligned fami- 
lies might identify both families before noise 

way of calculating these costs. The user should conduct several trial searches 
varying the gap parameters  in order  to optimize alignment of  the query 
profile with the database proteins (especially to eliminate dramatic spread- 
ing of the profile against false positives) and the detection signal-to-noise 
ratio. 

Sequence weighting should be  used in preparing profiles. See Higgins 
et al? 6 for a discussion of the resulting benefits. 

Appropriate Use of  Amino Acid Similarity Matrices 

New residue substitution matrices, particularly the B L O S U M  37 and 
Gonne t  series, 38 have been found to improve the signal-to-noise ratio in 
profiles. 3°,31 B L O S U M  45, a modera te  to high divergence matrix, works 
well and is a good starting point. 31 However ,  several matrices should always 
be tested. As in all sequence searches, the length of the query affects 
the tolerance of the noise introduced by high divergence matrices. Small 
domains may  need more  stringent matrices such as B L O S U M  62 (or Gonnet  
Paml20/Paml60) ,  whereas profiles for larger domains are often most  sensi- 
tive at higher divergence, in which case the Gonnet  series in the range 
Pam250-Pam350  is useful. The older Dayhoff  Pam matrices and the G C G  
default normalized matrix per form considerably less well. Gap  penalties 
need to be recalibrated whenever  a different matrix is used. 

Errors and Expressed Sequence Tags 

Errors in sequence databases, particularly shifts in the translation frame, 
can be caused by sequencing mistakes and wrongly predicted introns and 

36 D. G. Higgins, J. D. Thompson, and T. J. Gibson, this volume [22]. 
37 S. Henikoff and J. G. Henikoff, Proc. Natl. Acad. Sci. U.S.A. 89, 10915 (1992). 
38 S. A. Benner, M. A. Cohen, and G. H. Gonnet, Protein Eng. 11, 1323 (1994). 
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exons. Frameshift errors are known to be widespread, and it is likely that 
some 5% of entries in SWISS-PROT, the most carefully annotated sequence 
database, have frameshifted segments. They are so common that we now 
expect to find frameshifts in each new protein family being investigated, 
as was true for both test examples given below. 

If there are frameshifts in the learning set, they can lead to the introduc- 
tion of gaps at erroneous positions and affect the apparent residue conserva- 
tion. Both of these effects will degrade the query pattern. If there are 
frameshifts (due to errors or introns) in database entries, at the protein 
level only part of a pattern will match, while at the DNA level the frames 
jump. SearchWise can track the frame jump and reveal these in the search 
outputs, whereas its interactive partner PairWise allows suspicious se- 
quences to be investigated in more detail. 

Another increasing problem concerns fragmented and truncated entries. 
Truncated open reading frames (ORFs) are often adjacent to a targeted 
gene sequence. Similarly, the ends of cosmid entries from genomic sequenc- 
ing projects have unreliable annotation. Often, cDNAs are reported as full 
length but are truncated at their N termini (and occasionally C termini). 
Even more complicated to deal with are the EST entries (expressed se- 
quence tags), single gel reads (usually -300 bases) of random cDNAs. Not 
only is there a high frameshift error rate (>>10% of entries, sometimes 
multiple), but the hits are, by definition, fragments of the query and so 
search scores will be less than for full-length sequences. To deal with 
such a situation, parameters might be specially tuned as, for example, 
implemented in SearchWise (and applied by Aasland et  a/.39), in which 
case the EST databases should be searched separately. 

Significance Assessments 

Having discussed major sources for improvement of sensitivity, the 
assessment of significances for tempting hits remains problematic. Most of 
the programs provide some significance estimates, but all these calculations 
have to make certain assumptions that lead in practice to limitations. The 
calculation of Z scores (normal deviates) is estimated from the quality of 
the input sequences compared to the total distribution of scores. However, 
the score distribution does not follow a Gaussian distribution, as assumed in 
many Z-score calculations; Dirichlet mixtures are currently used to describe 
phenomena such as tails in the distributions. Another scoring system is 
based on p values that give the probability of a match by chance. The 
probability may not take into account sequence and residue biases, and is 

39 R. Aasland, T. J. Gibson, and A. F. Stewart, Trends Biochem. Sci. 20, 56 (1995). 
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dependent on database size, so that a given value (e.g., 10 -6) will become 
less significant in time as the databases expand. 

The better the statistical description, the more reliable will be the re- 
sulting scores. (Thus, here is another hidden parameter that has an influence 
on the results but differs from family to family.) Deficiencies in the current 
schemes are widely acknowledged, and efforts are being made to improve 
statistical assessments. Claverie 4° has suggested statistics aimed at better 
discrimination for the threshold between true and false hits for ungapped 
profiles of fixed length, assuming that random matches behave according 
to the extreme value distribution. The distribution of the family members 
is considered in MoST when estimating the ratio of the expected number 
of sequence segments with a given score to the observed number (parameter 
r in MOST), yielding a rather accurate estimate for a given alignment block. 

In any event, the significance values of the different methods only try 
to eliminate false-positive hits. In this they are largely successful for globular 
sequences but are less reliable for reduced complexity sequences. As judged 
from the numerous very similar three-dimensional structures without obvi- 
ous sequence similarity, many homologs do not meet the significance criteria 
of the particular method and are likely to escape attention when applying 
motif and profile searches. 

Assessing Statistically Insignificant Hits 

The way to assess weak candidate hits is to consider what are the 
constraints which must apply between sequences as a consequence of ho- 
mology between them. These constraints are predominantly structural in 
nature, and yet they can often be applied even in the absence of a solved 
structure. Table II provides a checklist designed to help in weeding out 
the false hits: again we routinely use these checks. This logic was used, for 
example, in detecting highly divergent PH domains. 41 Conserved hydropho- 
bic residues were assumed to be in the core, whereas runs of hydrophilic 
residues tolerating gaps were assumed to be in exposed loops. From the 
periodicity of the conserved residues it was possible to infer the number 
of a helices and /3 strands in the domain. Borderline hits from profile 
searches were then only accepted when the sequence was fully compatible 
with all the predicted secondary structures, the hydrophobic core residues, 
the predominantly hydrophilic surface residues, and the absence (or rarity) 
of Pro and Gly in helices and strands. Later, solved PH domain structures 

40 J.-M. Claverie, Comput. Chem. 18, 287 (1994). 
41 A. Musacchio, T. J. Gibson, P. Rice, J. Thompson, and M. Saraste, Trends Biochem. Sci. 

18, 343 (1993). 
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TABLE II 
CHECKLIST FOR EVALUATING PLAUSIBILITY OF WEAK HITS 

Examinations on hit Reason 

Is amino acid distribution con- 
sistent with globular (cyto- 
solic, extracellular), integral 
membrane, coiled-coil, fi- 
brous, or random-coil 
structure? 

Is there structural information 
known for query or hit? 

Is there a partial overlap of hit 
with established domain 
class in reciprocal search? 

Is full domain potentially 
present? 

Is there match to all conserved 
alignment blocks? 

Is there match to all highly 
conserved hydrophobic res- 
idues? 

Do most positions that are 
aligned to unconserved posi- 
tions in query have hydro- 
philic residues? 

Has Pro been aligned to posi- 
tion in block where it was 
not seen before? 

Has Gly been aligned to posi- 
tion in block where it was 
not seen before? 

Is segment rich in Gly, Pro, 
Asn, Ser aligned to block 
poor in these residues? 

These are mutually exclusive structural classes that 
should not overlap within a domain (although they 
can be juxtaposed in multidomain proteins). High scor- 
ing random coil is not a good indicator of homology 

Knowledge of three-dimensional structure greatly facili- 
tates evaluation, as constraints from hydrophic core, 
catalysis, etc., can be included 

Partial overlap immediately rules out potential similar- 
ity. By definition, globular domains do not overlap (al- 
though they can be inserted into loops in other do- 
mains) 

Globular structure is stabilized by interactions in hy- 
drophobic core. The presence of only half a globular 
domain is thus very rarely observed 

Conserved blocks usually indicate secondary structural 
elements 

Conserved hydrophobic residues are essential to given 
hydrophobic core. Very few exceptions are tolerated 

Surface residues are usually hydrophilic and are uncon- 
served unless binding other molecules. Multiple mis- 
matched hydrophobic residues are contrary indicators. 
(Surprisingly frequently, transmembrane regions are 
erroneously aligned to cytosolic proteins) 

Pro is favored in the N-terminal 3 residues of a helices. 
Any deeper and it breaks H bonds. It is allowed on 
edge/3 strands. It breaks H bonds on internal strands. 
Exceptions are rare and cannot be arbitrarily invoked 
for weak hits 

The lack of a side chain reduces helix and strand stabil- 
ity. Gly aligned to small hydrophobic residues (Ala, 
Val, Cys) may indicate a plausible tight packing ar- 
rangement; otherwise, only occasional exceptions may 
be tolerated 

Such alignment indicates that a loop region is erron- 
eously aligned to a secondary structure element 



1111 APPLYING PATI'ERN SEARCHES 177 

TABLE II (continued) 

Examinations on hit Reason 

Are matches to blocks consis- 
tent with block secondary 
structure? 

Have new insertions/deletions 
appeared in conserved re- 
gions? 

For Cys-rich sequences, do 
Cys patterns match? 

Are functions of hits com- 
patible? 

Does additional functional or 
biochemical information pro- 
vide some clues for ho- 
mology? 

Secondary structures of matched blocks should be identi- 
cal. In addition to above rules, amino acid preferences 
may be indicative: e.g., aligning a sequence composed 
of/3-preferring residues like Ile, Val, Thr, Ser onto an 
c~ helix would be highly implausible (unless these 
were already favored in aligned sequences) 

Alignment blocks are usually conserved due to struc- 
tural or functional constraints; therefore, large or fre- 
quent insertions and deletions are unlikely 

Number and spacing of Cys residues distinguish between 
classes of extracellular disulfide-rich modules, as well 
as (often with His) intracellular zinc fingers, e.g., 
GAL4 

On one hand do not overinterpret results to fit a tempt- 
ing functional context; on the other hand, some func- 
tional aspects should be considered (e.g., query pro- 
teins are extracellular, hit is a metabolic enzyme) 

Already identified catalytic residues, disulfide bridges, 
mutation data, etc., add constraints that can be helpful 
in excluding false positives 

vindicated the structural assignments, thereby lending credence to the PH 
domain detections. 32 

Secondary structure predictions can help in clarifying whether two or 
more sequence families are structurally related. It is now recognized that 
secondary structure predictions based on multiple alignments are often 
quite accurate. The server of Rost and Sander 42 usually gives good results, 
in particular when the reliability scores are taken into account. For example, 
pattern searches with a phosphate-binding motif present in certain/3/o~- 
barrel enzymes, such as glycolate oxidase, weakly picked up a surprising 
number of different enzyme families with unknown structures and, mostly, 
poorly investigated mechanisms. These families had no apparent sequence 
similarity to each other. Secondary structure predictions, 42 based on align° 
ments of the individual families, gave alternating fl/ot predictions, consistent 
with the/J/a-barrel structure. This information, together with the length 
of the proteins and the C-terminal location of the phosphate-binding motif, 
was critical to assigning homology between a large set of enzymes acting 

42 B. Rost and C. Sander, J. Mol. BioL 232, 584 (1993). 
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on heterocyclic compounds in diverse pathways, including histidine biosyn- 
thesis, purine metabolism, and thiamin biosynthesis. 9 

To illustrate the strategies explained above, we present two examples 
in which we are able to identify new members of well-established domain 
families using several different pattern search programs. In the process, we 
identified two frameshifted entries, and one with a wrongly predicted spliced 
exonic sequence, which undoubtedly hindered earlier detection of the do- 
mains. 

Retrieving GAL4 Domains 

Our first example is the retrieval of fungal zinc binuclear cluster do- 
mains, a specific DNA-binding domain found in numerous fungal transcrip- 
tion factors. The three-dimensional structure has been determined for the 
corresponding domains in PPR1 and in GAL4 (see Marmorstein and Har- 
rison 43 and references therein). GAL4 activates galactose catabolism in 
yeast and is the best characterized member of the family. GAL4-1ike DNA- 
binding domains are extremely widespread in fungi and are involved in 
numerous transcription regulation pathways, and yet not a single one of 
these domains has been found in any other eukaryote, nor in bacteria. 
With more than 50% of the genomic sequence of yeast available in public 
databases, an up-to-date collection would yield a first realistic estimate of 
their total number. Another interesting problem is the mode of spreading 
of this domain: Is it simple gene duplication and subsequent modification, 
or, as suggested by the considerable number, is a sort of domain shuffling 
the reason for their frequency? In the latter case, the location of the domain 
should vary within the proteins. So far, it has been mostly found at the N 
terminus of transcription regulators, including GAL4 itseK. 

Given the defined GAL4 domain borderlines (verified by the three- 
dimensional structure) and assuming a nonbiased amino acid distribution 
within the domain, a first quick homology search can be performed by 
BLASTP using only the domain itself as the query, in order to reduce the 
noise caused by matches of other parts of the GAL4 protein. A scan of 
the well-annotated SWISS-PROT database (release 31) records 9 hits with 
significant matches below a probability of matching by chance ofp  = 10 -7. 
(Although this is a strict value for assessing BLAST outputs, the first false 
positive, a viral coat protein, had a p value of 9.4 × 10-6.) 

These sequences will normally be aligned in the next step, an option 
either provided within the motif/search/programs or performed with a mul- 
tiple alignment program. The GAL4 alignment (Fig. 3) shows six invariant 
cysteines, essential for structural zinc binding, and strong conservation of 

43 R. Marmorstein and S. C. Harrison, Genes Dev. 8, 2504 (1994). 
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several other residues, in particular positively charged residues between 
the second and third cysteine, that are important in DNA binding. Only 
one gap was opened in the starting set. We compared here three methods 
(profile/SearchWise, PROPAT, MOST); all three collect the same number 
of sequences in the protein databases, with no false positives in SWISS- 
PROT (a few difficult cases are discussed below). All methods performed 
much better than iterative BLASTP database searches. Thus, another appli- 
cation of motif and profile search programs becomes apparent with the 
presence of large families in databases, namely, the fast collection of all 
members. In SWlSS-PROT release 31 we found 42 GAL4-1ike domains, 
whereas only 37 of them will be found using BLASTP (with the threshold 
p - 10-7). Even if the remaining 5 can be pulled out of the twilight zone 
by various output evaluation procedures, preparation and evaluation of 
many BLASTP runs require a considerable effort compared, for example, 
to a single run (after the initial BLASTP search with GAL4) of MOST. 

When extending the search to other data resources, including nucleotide 
sequence databases, 60 sequences were retrieved (Fig. 3). Fifty entries 
contain annotation hinting at the presence of GAL4-1ike domains: of the 
remainder, only two had been published at the time of writing, but the 
domain presumably escaped attention in several other cases. During the 
course of the searches, two erroneous sequences were detected, both of 
which were already entered in SWISS-PROT: (1) Yhl6_Yeast lacks the 
N-terminal GAL4 domain because it contains a frameshift (detected by 
SearchWise) and so was not placed in the predicted ORF YHR056c by 
automatic translation procedures (Fig. 4a), and (2) Alcr_Emeni has a miss- 
ing exon (detected by several programs) due to incorrect interpretation of 
the splicing pattern (Fig. 4b). 

Thus, the example of GAL4 underlines some of the points discussed. 
The pattern searches led to the identification of previously undetected 
GAL4 family members and also revealed two common kinds of errors 
(one in the sequence itself and one in the interpretation of the raw DNA 
sequence). From the 44 GAL4 domains we found in yeast, spread over all 
the chromosomes, we can extrapolate to the whole genome and expect 
more than 80 GAL4 domains in total. The majority of the proteins seem 
to be colinear, sharing another (more weakly) conserved domain (P. Bork, 
unpublished results), so that the frequency in yeast seems to be the result 
of extensive gene duplication rather than domain shuffling. 

J ak  Kinases Contain SH2 Domains 

We also conducted pattern searches with SH2, a well-known domain 
in signaling proteins that recognizes and binds phosphotyrosine-containing 
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AFLR ASPFL 23 RKLRDSCTSCASSKVRCTKEKP- I-CARCIERGL~-ACQYMVSKRMGRN P41765 
ALCR EMENI 6 RRQNHSCDPCRKGKRRCDAPEN - 11 - C SNCKRWNK~ - DCTFNWLS SQRSK P21228 a 
AMDR ASPOR 13 GNGSAACIHCHRRK~CDARIV- 3-CSNCRSAGK-ADeRIHEKKKRLAV Q06157 
AMDR EMENI 13 GNGSAACVHCHRRKVRCDARLV- 3-CSNCRSAGK-TDCQIHEKIqKKLAV P41044 
ARG2 YEAST 15 AKTFTGCWTCRGRKVKCDLRHP- I-CQRCEKSNL--PCGGYDIKLRWSK P05085 
CAT8 YEAST 64 YRIAQACDRCRSKKTRCDGKRP~ I-CSQCAAVGF--ECRISDKLLRKAY P39113 
CB32 YEAST 8 LKSKHPCSVCTRRKVKCDKMIP- 0-CGNCRKRGQDSECMKSTKLITASS P40969 
CYPI YEAST 58 NRIPLSCTICRKRKVKCDKLRP~ I-CQQCTKTGVAHLCHYMEQTWAEEA P12351 
CZFI CANAL 312 KRSRMGCLTCRQRKKRCCETRP- I-CTECTRLRL-~NCTWPKPGTEHKN P28875 
DAB1 YEAST 144 GNI/4GSCNQCRLKKTKCNYFPD- 3-CLECETSRT-~KCTFSIAPNYLKR P21657 
GAL4 YEAST 5 SSIEQACDICRLKKLKCSKEKP- I-CAKCLKNNW--ECRYSPKTKRSPL P04386 
LAC9_KLULA 89 EVMHQACDACRKKKWKCSKTVP- I-CTNCLKYNL--DCVYSPQVVRTPL P08657 
LEUR YEAST 31 RKRKFACVECRQQKSKCDAHER- 4-CTKCAKKNV--PCILKRDFRRTYK P08638 
LYI4_YEAST 153 KYSRNGCSECKRRRMKCDETKP- I-CWQCARLNR--QCVYVLNPKNKKR P40971 
MA3R_YEAST 2 TLVKYACDYCRVRRVKCDGKKP- 0-CSRCIEHNF--DCTYQQP~GS P38157 
MA6R_YEAST 2 GIAKQSCDCCRVRRVKCDRNKP- 0-CNRCIQRNL--NCTYLQPLKKRGP PI0508 
NIRA EMENI 36 RCVSTACIACRRRKSKCDGNLP- I-CAACSSVYH-TTCVYDPNSDHRRK P28348 
NIT4_NEUCR 47 RCVSTACIACRRRKSKCDGALP- I-CAACASVYG-TECIYDPNSDHRRK P28349 
PDRI_YEAST 40 SKVSKACDNCRKRKIKCNGKFP- 0-CASCEIYSC--ECTFSTRQGGARI P12383 
PDR3 YEAST 9 SKVSTACVNCRKRKIKCTGKYP- 0-CTNCISYDC--TCVFLKKHLPQKV P33200 
PPRI YEAST 28 SKSRTACKRCRLKKIKCDQEFP- I-CKRCAKLEV--PCVSLDPATGKDV P07272 
PUT3__YEAST 28 QRSSVACLSCRKRHIKCPGGNP- 0-CQKCVTSNA--ICEYLEPSKKIW P25502 
QAIF_NEUCR 70 QRVSRACDQCRAAREKCDGIQP- I-CFPCVSQGR--SCTYQASPKKRGV PI1638 
QUTA EMENI 43 QRVSRACDSCRSKEDKCDGAQP- I-CSTCASLSR--PCTYRANPKKRGL P10563 
SUCI CANAL 7 APYTRPCDSCSFRKVKCDMKTP- 0-CSRCVLNNL--KCTNNRIRKKCGP P33181 
THII_SCHPO 33 RRVFRACKHCRQKKIKCNGGQP- 0-CISCKTLNI--ECVYAQKSQNKTL P36598 
UGA3_YEAST ii KYSKHGCITCKIRKKRCSEDKP- I-CRDCRRLSF--PCIYISESVDKQS P26370 
UME6_YEAST 765 TRSRTGCWICRLRKK/<CTEERP- I-CFNCERLKL~-DCHYDAFKPDFVS P39001 d 
YAFI_YEAST 60 NRILFVCQACWKSKTKCDREKP- I-CGRCVKHGL--KCVYDVSKQPAPR P39720 
YB00 YEAST i01 SRVTKACDYCRKRKIRCTEIEP- 4-CRNCIKYNK--DCTFHFHEELKRR P38114 
YB89 YEAST 34 KNTNVACVNCRRLHVSCEAKRP- 0-CLRCISKGLT~APRKKSKYL P38140 
YB90_YEAST 24 GRTFTGCWACRFKKRRCDENRP- I-CSLCAKHGD--NCSYDIRLMWLEE P38141 
YBG6 YEAST 51 HRPVTSCTHCRQHKIKCDASQN- 4-CSRCEKIGL--HCEINPQFRPKKG P34228 
YBO3__YEAST 50 KKASHACDQCRRKRIKCRFDKH- 3-CQGCLEVGE--KCQFIRVPLKRGP P38073 
YCOI_YEAST Ii SKAFKTCLFCKRSHVVCDKQRP- 0-CSRCVKRDIAHLCREDDIAVPNEM P19541 
YCZ6 YEAST 9 PRLRLVCLQCKKIKRKCDKLRP~ I-CSRCQQNSL--QCEYEERTDLSAN P25611 
YEI4 YEAST 12 SRVTKACDRCHRKKIKCNSKKP- 0-CFGCIGSQS--KCTYRNQFREPIE P39961 
YHL6 YEAST 9 VRKPPACTQCRKRKIGCDR!KP- I~CGNCVKYNK-PDCFYPDGPGKMVA P38781 b 
YHX8 YEAST 16 TTELYSCARCRKLKKKCGKQIP- I~CANCDKNGA-~HCSYPGRAPRRTK P38699 
YIN0_YEAST 15 RRVTRACDECRKKKVKCDGQQP- 0-CIHCTVYSY-~ECTYKKPTKRTQN P40467 
YJI6_YEAST 41 GRAHRACIACKKRKVRCSGNIP- 0-CRLCQTNSY--ECKYDRPPRNSSV P39529 
YJX9_YEAST 14 KSIQTACEFCHTKHIQCDVGRP- 0-CQNCLKRNIGKFCRDKKRKSRKRI P42950 
YK44 YEAST 13 HRITVVCTNCKKRKSKCDRTKP- 0-CGTCVRLGDVDSCVYLTDSSGQPE P36023 
YKD8_YEAST 41 TKASRACDQCRKKKIKCDYKDE- 3-CSNCQRNGD--RCSFDRVPLKRGP P32862 
YKW2_YEAST 18 KKPAKSCHFCRVRKLKCDRVRP- I-CGSCSSRNR-KQCEYKENTSAMED P35995 
MALX/YEAST 7 TCAKQACDCCRIRRVKCDGKRP- 0-CSSCLQNSL--DCTYLQPSRKRGP L12223_I 
PRIB/LINED 14 VRGARACTTCKAAKMKCVGAED- 4-CQRCKRANV--QCIFEKHRRGRKP D14489_I 
PAH2/PICAN ? RKVGAACVICHRRKIKCDIGTA- 3-CSKCKELKVESQCVLHKRRRKTDG U22930_I d 
SIP4/YEAST 40 VRKAHACDRCRLKKIKCDGLKP- I-CSNCAKIDF--PCKTSDKLSRRGL U17643_I 
UAY/ASPNI 61 FRNVSACNRCRQRKNRCDQRLP- I-CQACEKAGV--RCVGYDPITKREI X84015_I d 
YXI/CANPE 194 KGNPNPCDHCRRRQIKCITVPN- 3-CVQCETKGI--KCTHSESPSNPAL X02903_3 c 
YFXI/YEAST 2 ARNRQACDCCCIRRVKCDRKKP- 0-CKCCLQHNL--QCTYLRPLK~RGP D50617 
YLXI/YEAST 38 NKSKTGCDNCKRRRVKCDEGKP- I-CKKCTNMKL--DCVYSPIQPRRRK U19027_9 d 
YLX2/YEAST 9 VKPSFVCLRCKQRKIKCDKLWP- I-CSKCKASSS--ICSYEVEPGRINK Z47973_17 
YLX3/YEAST 35 KGRSRSCLLCRRRKQRCDHKLP- I-CTACLKAGI--KCVQPSKYSSSTS U17243_I d 
YMXI/YEAST 81 LRVQKACELCKKRKVKCDGNNP- 0-CLNCSKHQK~-ECRYDFKATNRKR Z49211_7 
YMX2/YEAST 25 RKVIKSCAFCRKRKLKCSQARP- I-CQQCVIRKL~PQCVYTEEFNYPLS U17244 9 
YMX3/YEAST 70 KRNSFACVCCHSLKQKCEPSDV- 7-CRRCLKHKK--LCKFDLSKRTRKR Z46373_6 d 
YOXl/YEAST 130 KRVSKACDHCKKRKIRCDEVDQ- 4-CSNCIKFQL--PCTFKHRDEILKK X83121_8 d 
YPXl/YEAST 2 SIVRSQCDCCRVRRVKCDRNRP- 0-CDRCRQRNL--RCTYLQPLRKRGP U25841 ii 

FIG. 3. GALA domain alignment. From left to right: first column, names (SWISS-PROT 
codes are given when available); second column, position of the first amino acid; third column, 
sequence; fourth column, database accession number (an underscore indicates the number 
of the ORF in larger cosmids). Numbers within the alignments indicate omitted amino acids 
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peptides. Solved structures of SH2/peptide complexes 44 have revealed the 
SH2 core and functional residues, of which the most conserved is a phos- 
phate-binding arginine. We began with a search of SWISS-PROT (release 
31) using BLASTP and the archetypal chicken Src SH2 domain. The 
BLASTP search detected numerous SH2 domains before the highest false 
positive (p = -10°), but many were well below our very conservative 
threshold of p = 10 -7. Many of the top hits were also tyrosine kinases 
almost identical to Src, which would add little or no value to the patterns. 
Therefore, a representative set of 27 SH2 domains above the threshold of 
10 -7 was used to initiate the different motif and profile searches. Again, 
all three methods performed well, with the profiles being slightly ahead as 
they can cope best with many (sometimes large) insertions (see alignment 
of SH2 domains in Higgins et al. 36 ). Although the number of iterations and 
the computer time used are different for each program, all programs could 
detect known divergent members of the family such as the only described 
yeast SH2 domain (Spt6), its C. elegans homolog Emb5, and the STAT 
family of transcription factors. 

In addition to the expected hits, both PROPAT and SearchWise indi- 
cated the presence of divergent SH2 domains in the Jak group of tyrosine 
kinases, which were not assigned SH2 domains in the annotation. SH2 in 
Jak kinases would be of clear biological significance since the great majority 
of cytoplasmic tyrosine kinases possess the domains. Both programs picked 
up the Jak entries more strongly in the later iterations, as increasingly 
divergent SH2 domains were added to the alignments. The Jak entries 
scored better than the STATs. The core structural and surface functional 
positions, including the critical conserved phosphate-binding positive 
charge, were all satisfied by the Jaks. Reciprocal searches (as recommended 
in Table I) with SearchWise and a profile of the putative Jak kinase SH2 
domains listed 55 SH2-containing entries before the first false positive in 
SWISS-PROT. Therefore, the Jak kinases fulfill the criteria in Table II for 
divergent homologs. 

44 G. Waksman, S. E. Shoelson, N. Pant, D. Cowburn, and J. Kuriyan, Cell (Cambridge, Mass.) 
72, 779 (1993). 

in a loop region. Cys residues essential for the binuclear cluster are highlighted in boldface 
type. Marker letters: a, sequence differs from the protein in SWlSS-PROT release 31 due to 
splicing revision (see Fig. 4a); b, symbol ! indicates frameshift, and sequence differs in SWISS- 
PROT release 31 (see Fig. 4; both errors have been corrected in subsequent SWISS-PROT 
releases, on the basis of this report); c, this protein (and the frameshifted YHL6) had not 
been reported to contain a GAL4 domain; d, GAL4 domains are not annotated in the database 
entries and thus some of these GAL4 domains were probably not detected earlier. 
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8 
Score 9750 
Aligned Ranges: 
10-40 ~rofile) 
5445-5541 (sequence) 
Showing backward strand 

** ***** ** ! * . . . . • 

Gal4 Profile: i0 ACDRCRKRKVKCDG+++KRPpCSRCAKRG.LECTY 40 
DNA Translation: ACTQCRKRKIGCDR .... KPICGNCVKYNKPDCFY 
E~0bI:SCHS0~5: 5541' gtactaaaaagtgaGCCAacatgatgataacgttt 

cgcaggagatggag actggagtaaaacagta 
tccacggagcgccg agatgtccgtcggcttt 5445' 

b 
Score 9190 
Aligned Ranges: 
1-36 (profile) 
1080-1277 (sequence) 

Gal4 Profile: 1 KRVSTACDRCRKRKVKCDGKRP ............................ 
DNA Translation: RRQNHSCDPCRKGKRRCDAPVGCRYRLPSVCTDSR*DVTOENRNEANENG 
EmbI:ANALCR: 1080 cccacatgctcagacctggcggtctcccagtagactgga~gaaaggagag 

ggaaaggacggagagggacctgggagtcgtgcagggatcaaagaacaaag 
acgttcctctcgcgacttcgatcatgcccgcectcataa~atacgctacc 

Gal4 Profile: 23 ..pCSRCAKRGLECTY 36 
DNA Translation: WVSC SNCKRWNKDCTF 
Embl : ANALCR : 1230 tgtttatactaagtat 

gt cgcagaggaaagct 
gtgtatcgtgcgttcc 1277 

FIG. 4. (a) Highest scoring local alignment produced by PairWise for the GALA profile 
against all three reverse frames of the yeast genomic cosmid embl:SCH8025. A single base 
insertion has caused a frameshift in the middle of a GALA domain, which would otherwise 
belong to the N terminus of the adjacent ORF YHR056c (predicted range -5426  to -2828).  
Translated D N A  codons are shown in lowercase, and nucleotides spanned by the frameshift 
site are in uppercase and capped by the ^ symbol. Cys residues essential for the binuclear 
cluster are highlighted in boldface type. A WWW server that allows fast detection of frameshifts 
even in large cosmids (J. Boyle, N. P. Brown, and P. Bork, unpublished) will be available 
under http://www.embl-heidelberg.de/-boyle/errors/. (b) Highest scoring local alignment pro- 
duced by PairWise for the GALA profile against the three forward frames of the Aspergillus 
nidulans AIcR gene in embI:ANALCR. An in-frame insertion including a stop codon separates 
two halves of a GAL4 domain, with only the latter part being in the predicted AlcR translation. 
Good matches to fungal splice donor, acceptor, and branch-point consensus sequences are 
shown in boldface italic type and reveal an overlooked exon containing the N-terminal portion 
of the GAL4 domain. Incorrect splicing inferences are not uncommon. In-frame introns 
(especially when lacking stop codons) are usually overlooked in fungi such as yeast due to 
the perception that introns are rare. 
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Surprisingly, two separate mouse Jak3 entries had different scores. One 
was well detected, but the other was below a number of false hits. Compari- 
son of this sequence, 45 using the frameshifting algorithm of PairWise, to 
human, rat and the other mouse Jak3 revealed that it possessed seven 
frameshifted regions, of which two fell in the SH2 domain, accounting for 
the reduced profile score. 

The exercise here reveals that the pattern methods can detect SH2 
domains in Jak tyrosine kinases, which makes good sense, implying either 
inter- or intramolecular phosphotyrosine peptide recognition by these ki- 
nases. A review of the literature reveals that the Jak SH2 domains had 
been proposed earlier 46 yet were apparently rejected within the field, pre- 
sumably to the detriment of Jak kinase research. The alignment of Jak and 
other SH2 domains is presented elsewhere in this volume in the Clustal 
alignment chapter, 36 where it is used as a divergent alignment test case. 

Conclusion 

There are numerous examples in which predictions based on motif and 
profile searches were useful as guides in further research, while themselves 
being verified by various experimental approaches. On the debit side, there 
are also a considerable number of "black sheep" that have caused resources 
to be squandered in exploration of wrong hypotheses. We wish to stress 
the two checklists provided here in Tables I and If, one for setting up and 
running the searches and the other for evaluating the borderline top hits. 
If these are followed, most of the suggestive, yet false, hits should be 
identified and discarded. Ultimately, solved three-dimensional structures 
are the arbiters of truth for homology predictions. Currently, the identifica- 
tion of new protein domains is followed almost immediately by the determi- 
nation of the three-dimensional structure by NMR or X-ray. For more than 
50% of the known intra- or extracellular modules (mostly defined by motif 
and profile searches), a three-dimensional structure is already available for 
at least one member of the family. 47 In addition to the identification of 
numerous domains 4v (e.g., the discovery of a nuclear domain superfamily 
present in cyclin, transcription factor IIB (TFIIB), and retinoblastoma pro- 
teins4S), experimentally verified predictions with functional implications 
from our own work include the prediction of a type X polymerase in yeast, 3 

45 S. G. Rane and E. P. Reddy, Oncogene 9~ 2415 (1994). 
46 A. G. Harpur, A.-C. Andres,  A. Ziemiecki, R. R. Aston, and A. F. Wilks, Oncogene 7, 

1347 (1992). 
47 p. Bork and A. Bairoch, Trends Biochem. Sci 20, poster, March issue (1995). 
48 T. J. Gibson, J. D. Thompson, A. Blocker, and T. Kouzarides, Nucleic Acids Res. 22, 

946 (1994). 
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ATPase activities of several prokaryotic cell cycle proteins, 49 and homodi- 
merization of the Norrie's disease protein via a specific disulfide bridge. 5° 

Two additional points should be noted. (1) Soon essentially all sequences 
will have homologs in public databases. (2) Motif and profile search methods 
are being actively developed at a number of institutions and can be expected 
to be significantly improved. As a result these methods will continue to be 
very valuable tools. 
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By L A S Z L O  P A T T H Y  

Introduction 

Recognition of homologies may provide important hints about the struc- 
ture and function of proteins; therefore, there is a growing interest in 
methods of sequence comparison. The FASTA and FASTP programs use 
a rapid sequence comparison algorithm which, by identifying proteins with 
high similarity scores, is useful for the detection of related sequences) '2 
When sequence similarity is low, however, it is difficult to decide whether 
this similarity is due to common ancestry or whether it merely reflects 
chance similarity of unrelated proteins. In such cases, statistical tests are 
used to decide whether two sequences are more similar than would be 
expected by chance. In this approach, the similarity score of the actual 
comparison is compared with the distribution of the scores determined for 
pairs of a large number of random permutations of the two sequences, and 
the standard deviation of the comparison above the mean of the randomized 
comparisons is calculated. The use of high cutoff values increases the confi- 

D. J. Lipman and W. R. Pearson,  Science 227, 1435 (1985). 
2 W. R. Pearson and D. J. Lipman,  Proc. Natl. Acad. Sci. U.S.A. 85, 2444 (1988). 
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