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Abstract 

We present a method  based  on  hierarchical  self-organizing  maps  (SOMs)  for recognizing patterns in protein se- 
quences.  The  method is fully automatic,  does  not  require  prealigned  sequences, is insensitive to  redundancy in 
the  training  set,  and  works surprisingly well even with small learning sets. Because it uses unsupervised neural net- 
works,  it is able  to  extract  patterns  that  are  not present in  all of the  unaligned sequences  of the  learning  set.  The 
identification  of  these  patterns in sequence  databases is sensitive and  efficient. 

The  procedure  comprises  three  main  training  stages. In the first stage,  one SOM is trained to  extract  common 
features  from  the set of unaligned  learning sequences.  A feature is a number of ungapped sequence  segments (usu- 
ally 4-16 residues long)  that  are  similar  to  segments in most of the  sequences of the  learning set according  to  an 
initial  similarity  matrix. In the  second  training  stage,  the  recognition of each  individual  feature is refined by se- 
lecting an  optimal weighting matrix  out of  a  variety of existing amino  acid  similarity  matrices. In a third  stage 
of  the SOM procedure,  the  position of the  features in the  individual  sequences is learned.  This  allows  for vari- 
ants with feature  repeats  and  feature  shuffling. 

The  procedure  has been  successfully applied  to a number of notoriously  difficult cases  with distinct recogni- 
tion  problems: helix-turn-helix motifs in DNA-binding  proteins,  the CUB domain  of  developmentally  regulated 
proteins,  and  the  superfamily of ribokinases. A comparison with the established database  search  procedure  PRO- 
FILE (and with  several others) led to  the  conclusion  that  the new automatic  method  performs  satisfactorily. 
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In sequencing projects, a database  search  for similar  sequences 
is an inexpensive first  attempt  at suggesting the biological func- 
tion of newly sequenced primary  structures.  More  and  more se- 
quences  are  assignable  to  families,  and  there  are a number of 
published  procedures  for  the  heuristic  recognition of local se- 
quence  patterns using the  information inherent in a set of related 
specimens or in a consensus  model.  All  such  strategies  have a 
circularity  problem,  however, in that  pattern  recognition  pre- 
supposes a valid alignment  of  the  sequences,  whereas  the  con- 
struction of an alignment  requires  previous  knowledge of the 
pattern.  Although in the case of a very clear-cut and distinct pat- 
tern  this  difficulty  may  be alleviated by a skillful iteration  pro- 
cedure,  serious  problems  may  arise when one or several  of the 
following situations  apply:  the presence of a  fuzzy pattern (dif- 
ficult to  distinguish  from  noise), very liberal  alignment  (too 
many possible  insertions/deletions), or undersampling  (prohib- 
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iting  statistical  analysis of pattern elements). An  additional  and 
very common practical problem is that extensive searches in vo- 
luminous databases become prohibitive, because unrelated noise 
accumulates even in the  neighborhood  of  true  samples,  and  au- 
tomatic  routines become time-consuming  and  dependent on la- 
borious  interactive  decisions  after  inspection  of  intermediary 
results. The  most  popular search method (Gribskov et  al., 1987, 
1990; Liithy  et al., 1994)  is essentially a statistical approach  that 
requires a preset  alignment and derives pattern descriptors from 
the single-position frequency of amino  acids,  combined with 
downweighting of redundant sequences and  evaluation  accord- 
ing to a mutation  table. A different strategy  (Smith et al., 1990; 
Henikoff & Henikoff, 1991; Neuwald  &Green, 1994; Tatusov 
et  al., 1994) circumvents  the  intricate  alignment  and  looks  in- 
stead for  ungapped partial blocks whose common presence leads 
to  the  identification  of a motif. 

Pattern recognition in biopolymer sequences is a task that may 
be  tackled  with a  recently developed class of algorithms based 
on distributed  computational capability (Rumelhart & McClel- 
land, 1986; Hertz et al., 1991). These methods  are  known as ar- 
tificial neural  networks  (ANN). In one  variant,  the  learning 
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program is called “supervised,” because it is confronted with two 
or several classes of objects,  each  of  them  carrying its unique 
class pertinence  as a label.  The  goal is to  learn  correct classifi- 
cation  of  objects.  In a second  variant,  named  “unsupervised,” 
the learning  process  includes both  definition of classes and their 
correct  classification.  ANNs  that  learn  under  supervision  have 
been applied to  prediction  of  secondary  structure  from  the  in- 
formation  supplied by a database  of  known  structures  (Bohr 
et al., 1988; Qian & Sejnowski, 1988; McGregor et ai., 1989; 
Rost & Sander, 1994), and  also in motif  definition  and recog- 
nition in protein  sequences  (Bengio & Pouliot, 1990; Hirst & 
Sternberg, 1991; Frishman & Argos, 1992). 

An  unsupervised, self-classifying strategy is appropriate  for 
treatment  of  patterns.  It  may  support or even replace  the  often 
dubious  previous  definition  (including classification and  align- 
ment)  of patterns.  This  paper proposes the use of Kohonen  maps 
(1989, 1990) for  this  purpose.  These  are  self-organizing  neural 
networks  that  compress a more or less compact  training set of 
high-dimensional  vectors  to  low-dimensional  ones,  arranging 
them on a  (usually two-dimensional)  map.  Such a strategy  has 
the  advantage  of  tolerating low accuracy  of signal representa- 
tion  and  of  synaptic weights. The  approach  has been applied  to 
detecting signal peptides  (Arrigo et al., 1991) and  to  clustering 
protein  sequences  into families according  to  their  degree of se- 
quence  kinship  (Ferran & Ferrara, 1991). 

Here we want  to  apply  Kohonen  maps  to  the  task  of  motif 
definition in a training set and  to  subsequent  recognition of 
query  objects. In contrast to  previous applications,  but by anal- 
ogy with brain  functional  mapping, we arrange  Kohonen  maps 
in a hierarchic  structure  of  self-organizing  maps (SOMs). We 
chop all sample  sequences  into  the set of  constituent  words 
(4-16 letters,  a selectable parameter), encode  them as a  property- 
describing or scoring vector,  and present  this information  to  an 
unsupervised  self-organizing Kohonen  map.  This leads to a map 
in which words  are  portrayed  and  agglomerate locally  (as fea- 
tures, a feature being  a characteristic  subsequence  occurring in 
the  set)  according  to  their  similarity.  Each  feature so obtained 
is introduced  into a tuning  procedure  that  takes place  in  a sec- 
ond  “floor”  of  Kohonen  maps, which selects the  “best” evalu- 
ation  principle  for  that  class  of  objects  (emphasizing,  for 
example,  evolutionary  relationship, physicochemical  properties 
of residues, information  content, or structural propensity). Only 
after  this  step is the  position  of  the  feature  specimens in the se- 
quence block considered; if desirable, a common  alignment is 
then  suggested.  The  ordering of partial  stages is to  some  extent 
similar  to  the  procedure  applied in a different  context by Pear- 
son and  Lipman (1988), which first finds accumulations  of  small 
“tuples” in order  to align them  afterward.  The  strategy involv- 
ing Kohonen  maps  as presented  here is applicable to motif fam- 
ilies with sequence  lengths  of  more  than 15 residues. 

We tested this  method  on several  sets of  sample  proteins (dif- 
ficult cases,  different  types of problems)  and  compared it to 
other  methods. 

Results 

We examined  the  performance  of a set of  hierarchic  arrayed 
Kohonen  maps  at  the  recognition  of  subtle  motifs  in  protein se- 
quences.  The  search  strategy,  as  described in the  Materials  and 
methods, involves three  stages: (1) finding  features in chopped 
sequences;  (2)  tightening  pattern  definition;  and (3) evaluating 

the  occurrence,  array,  and position  of features. We did  three se- 
ries of  studies,  taking  notoriously  intricate test problems  from 
the  literature,  and  compared  the  performance  of our SOM hi- 
erarchy with that of some well-established recognition methods. 

Helix-turn-helix motif in DNA-binding proteins 

The helix-turn-helix (HTH)  motif  belongs  to a  class of  protein 
sequences that  are bacterial transcription  factors or similar pro- 
teins (Brennan & Matthews, 1989; Anderson, 1992; Dodd & 
Egan, 1990; Chapter 7 of  Branden & Tooze, 1991; Pabo & 
Sauer, 1992). The  HTH  motif is the site that  binds  to  regula- 
tory sites at  DNA.  It is about 20 amino  acid residues long,  and 
there is 3D  structural  information  available.  There is no  align- 
ment  problem between most  of  the  specimens, because the  two 
helices and  the  short  turn in  between are  superimposable  with- 
out  gaps.  On  the  other  hand,  the  sequence  information is ex- 
tremely fuzzy, because  a  wide spectrum  of  only slightly related 
sequence variants is compatible with the  requirement  of a HTH 
structure.  The  PROSITE  database (release 12) lists several hun- 
dred sequences classified into 10 families with different sequence 
“signatures.” 

In addition  to  the bacterial  transcription factors,  there is a fur- 
ther  superfamily of many  hundred sequences  of approximately 
the  same  length,  originating in eukaryotic sources: the so-called 
“homeodomains” or “homeoboxes”  (Chapter 8 of Branden & 
Tooze, 1991; Pabo & Sauer, 1992; Treisman et al., 1992). They 
perform a similar  regulatory  function  and  also  contain a HTH 
motif.  Structural  information is likewise available.  The  HTH 
motif of homeoboxes is in the twilight region  of  similarity to  the 
bacterial  transcription factors,  and they may be aligned together. 

Recognition  and  analysis  of  the  HTH  motifs is a very tough 
matter  that  has led to  much  controversy  (Yudkin, 1987,  1988; 
Dodd & Egan, 1988,  1990; Lawrence  et  al., 1993). We took a 
subset of HTH  motifs  as selected and  studied in detail by Law- 
rence  et al. (1993) and  Neuwald  and  Green (1994). The  neural 
networks were trained  on  this set to  identify these and  other 
HTH  motifs in the  whole  protein  sequence  database. 

The training set consisted of 12 HTH  patterns (each 20 amino 
acids  long) and included 1 homeobox  and 11 bacterial transcrip- 
tion  sites.  These  motif  examples  are so diverse  that  none  of  the 
mutual pairwise PAM120  scores  surpassed a  value of 35, which 
is a faint  similarity  at best. 

The  SOM  procedure  chopped  each  of  the 12 learning se- 
quences  into five tetrapeptides, collected them in five files, and 
subjected  each file to  the  learning cycle of  a  specialized Koho- 
nen map.  The  map  contained 16 neurons;  that  is, slightly more 
than  the  number  of  sequence  segments.  After  training, we per- 
formed a run  through  the  SWISSPROT  database  (Bairoch & 
Boeckmann, 1993) and collected  in  every  20-window of all  se- 
quences  the  quantization  error  (q.e.) (a distance  measure) re- 
ported by the five maps. A  file was collected of  all 20-windows 
where the five maps  reported a moderately low q.e.  (threshold: 
positive if < 3.0). The  results  (Table 1) may be summarized  as 
follows: 

1. All training sequences were retrieved as a set of positive re- 
ports  from all five maps with  extremely  low q.e. (~0 .003) .  This 
means  that  they  all were redetected with  high  fidelity  (which is 
no  surprise,  because  the  neurons were numerous  enough  to 
“learn by heart”). 
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Table 1. Self-organizing hierarchic networks f o r  
pattern recognition in protein sequence 

~ - ~ _ _ _ _ _ _ _ _ ~  

ID 

NlFA-KLEPN 
HMAN-DROME 
DICA-ECOLI 
DNIV-ECOLI 
DEOR-ECOLI 
ARAC-ECOLI 
NAHR-PESPU 
MERD-SERMA 
FIS-ECOLI 
RPC2-LAMBD 
RP32XECOLI 
LEXA-ECOLI 

RPSK-BASCU 
RPSB-BASCU 
NTRC-BRASR 
MTAl-YEAST 
CRP-ECOLI 
RCRO-LAMBD 
RCRO-BPP22 
FNR-ECOLI 
NTRC-KLEPN 
CYTR-ECOLI 
GALR-ECOLI 
LACI-ECOLl 
TER2-ECOLI 
TRPR-ECOLI 
RPSE-BASCU 
PURR-ECOLI 
EBGR-ECOLI 
RPCl -BP22 

HXA7-XENLA 
HMAA-DROME 
HXB6-HUMAN 
HMAN-DROME 
HM90-APIME 
HMSC-APIME 
HXBLHUMAN 
HXA5-MOUSE 
HXB4CMOUSE 
HXB7LHUMAN 
HXC6-MOUSE 
HXD4-CHICK 
HXB6-CHICK 

-~ . - 

. ,. ~~ 

Position N, N2 N, N4 N, 
~- ~ 

495 
326 
22 

160 
23 

196 
22 
5 

73 
25 

252 
27 

94 
223 
449 
99 

169 
15 
12 

196 
444 

11 
3 
5 

26 
67 

205 
3 
3 

25 

27 
164 
I72 
323 

34 
34 

220 
221 
187 
163 
167 
170 
33 

. -~ 

0.0003 
0.0002 
0.002 
0.003 
0.002 
0.0002 
0.001 
0.001 
0.003 
0.0001 
0.002 
0.0001 

0.8 
0.9 
1.2 
1 . 1  
0.9 
0.9 
1.1 
1.4 
1.2 
0.8 
0.9 
1.3 
0.9 
0.8 
0.8 
1 .o 
0.6 
0.9 

1 . 1  
0.8 
1.1 
I .2 
1.6 
1.4 
0.9 
1 .o 
1.2 
I .3 
2.2 
2.1 
2.5 

~.”_______~. 

0.0001 0.0001  0.0001 0.0004 
0.001 0.0001 0.0001 0.0004 
0.001 0.0001 0.002 0.004 
0.0003 0.001 0.0002 0.0001 
0.0002 0.001 0.0002 0.0002 
0.004 0.001 0.001 0.002 
0.002 0.0003 0.0001 0.0002 
0.0004 0.003 0.0001 0.0004 
0.0003 0.002 0.002 0.0003 
0.002 0.0001 0.0002 0.0001 
o.Ooo1 0.0001 0.001 0.001 
0.0001 0.002 0.0003 0.0001 

0.8 0.14 1.2 
1.9 0.14 0.9 
1.0 0.64 1.05 
0.6 0.6 1.6 
1.9 1.1 0.9 
0.9 1.1 0.8 
0.6 0.1 1.1 
1.5 0.0001 1.0 
0.0001 1.0 1.0 
1.0 0.9 1.1 
1.0 0.001 1.2 
0.9 0.001 1.2 
0.6 0.8 0.8 
1.3 1.4 1.2 
1.2 0.4 1.0 
0.4 1.1 1.0 
0.9 0.0001 0.7 
1.0 0.4 0.6 

0.7 1.5 1.2 
1.4 1.2 1.1 
0.8 1.5 1.8 
1.3 2.3 1.0 
1.2 1.1 1.2 
1.2 1.4 1.7 
1.8 2.3 2.1 
1.9 2.1 2.4 
1.5 2.3 2.4 
1.7 2.6 2.3 
2.1 2.4 2.1 
2.4 2.5 2.6 
2.3 2.6 2.7 

1.1 
0.7 
0.82 
0.4 
1.4 
1.1 
0.4 
0.7 
0.8 
0.7 
1 .o 
1.4 
1.1 
1.6 
0.7 
0.9 
1.1 
0.0004 

1.4 
2.5 
1.2 
1.7 
1.5 
1.8 
1.9 
2. I 
2.2 
2.1 
2.5 
2.3 
2.5 

binding proteins by a parallel array of SOMs. The first 30 rows of the 
a Recognition of features contained in HTH patterns of DNA- 

table  refer to individual HTH patterns from  the  collection  assembled 
as a test  set by Lawrence  et al. (1993). SWISSPROT acronyms are re- 
ported in the  first  column.  Column 2 identifies the position of the first 
amino acid  of the HTH motif (20 residues  long) in the  complete se- 
quence.  The  upper  block of the table  displays the 12 patterns used  as 
a training  set,  and  the 18 patterns in the middle  block are the applica- 
tion (test) set. Training stage: Each HTH pattern was chopped into five 
nonoverlapping  4-words and presented to the  corresponding SOM (la- 
beled N,-N,) for training. Application  stage: All window positions in 
the  protein database were chopped into five  consecutive  4-words  and 
presented in turn for diagrosis to the  trained SOMs. The table shows 
the “hits” obtained (identified by q.e. < 3.0 pointing to similarity). I t  
is evident that each SOM redetected  the  complete  learning set (q.e. 5 
0.003), which by  itself  is a difficult  task, because of its diversity (see text), 
and recognized (with less similarity, q.e. around 1.0) the  application  test 
of bacterial HTH sites  (block 11). A final  block of 13 patterns shows 
a subset of additionally  detected  homeoboxes (q.e. < 3.0). Many fur- 
ther binidng  sites are detected  with a looser acceptance criterion  (e.g.. 
not all subfeatures require q.e. < 3.0), but  then  false  positives  would 
also appear. 
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2. Such  an extremely low q.e. was only occasionally reported 
for  other sites  in SWISSPROT (examples  in Table 1, second 
block),  but never by all five maps. 

3. Many  bacterial  HTHs (in particular, all those of the  paper 
by Lawrence  et  al., 1993) showed  up with moderately low q.e. 
in all five tetrapeptide  maps  and in proper  arrangement  (i.e.,  are 
identified  as HTHs by the  network). 

4.  Many  homeoboxes  appeared  also  at  moderately low q.e. 
(Table 1, last group), with no  suspected  false positives in be- 
tween (identification  of a false positive  was not always sure,  as 
several proteins  of  unkown  function  appeared in the list). 

We consider this an excellent result.  It  compares  satisfacto- 
rily with that of the  PROFILE  study we undertook with the 
same training  set. The  PROFILE  procedure was not  only blindly 
used:  a  wide spectrum  of  parameters was studied,  sequence 
weights  were incorporated,  and  different  evaluation  matrices 
were applied  as  described by Luthy  et  al. (1994). 

The result  of a PROFILE  search  through  SWlSSPROT was 
in  all  cases  essentially the  same  (not  much  influenced by vari- 
ants of technique). A list of around 100 window sites appeared 
with high to  moderate Z scores (>5.0, pointing to similarity with 
the profile). The profile  identified  mainly  homeoboxes (very nu- 
merous in the  database);  many fewer  of the  equally  numerous 
bacterial sites  were identified  (although they made  up 11 of  the 
12 training  HTHs).  There were always a few definite  false  pos- 
itives interspersed with the true positives (some  of  them with high 
Z scores), which is an  indication  that  the  “detection  radius” of 
the  profile is so large that a number  of  fortuitous  hits  appear, 
pointing  to  the high “volume” of the  loose  HTH  cluster.  The 
12 training  sequences were  typically  retrieved only  partly:  usu- 
ally about  one  third  with a high Z score,  one  third with a mod- 
erate Z score  (dubious  statistical significance), and  one third with 
a  clear “random  score,”  sometimes below  2.0. 

We also  performed a database  search with the  HTH  profile 
obtained  from 21 sequences by Gribskov et al. (1990) as avail- 
able in the  public  domain.  The result was a  similar list of  about 
100 HTHs with significant Z scores. Its composition emphasized 
the  bacterial  origin  of  the  profile:  more  bacterial  transcription 
factors,  only a few homeoboxes,  again a few dubious or false 
positives, and  again  the typical fact  that  only  part (10 of 21) of 
the  input sequences to  the file were retrieved with high Z scores. 

The  fact  that a profile retrieves only  part of its own  input is 
the clearest indication  that  HTH  motifs  are  only loosely  simi- 
lar.  The  profile  constructs  the  analogon of a “center of gravity” 
of a family,  and it can retrieve only  those  input  sequences  that 
are close enough  to  the bulk. Weighting (Luthy et al., 1994) may 
somewhat  redress  the  effect,  but it cannot  change  the large  dis- 
tance of the  periphery  from  the  center of gravity. 

By contrast,  the  SOM  has a special property  here. It can 
“learn” a distant  HTH with the  same precision  as  a central  one. 
Therefore,  the  input  sample members and their  closest relatives 
are always redetected with high fidelity,  and hits by pure  ran- 
dom  coincidence have a much  smaller  chance  of  getting a  low 
q.e. in all partial  maps.  Chopping  an  alignment  into  oligopep- 
tides  increases this  effect,  as we concluded  from  an  experiment 
with training  one  Kohonen  map by the  full HTH  motif (20 
amino acids). This  attempt produced a worse separation of HTH 
variants  and  non-HTHs. A further  experiment was  designed to 
detect HTH motifs  without specifying their  position  in  the  to- 
tal  protein sequence.  Even  in  this case,  the “feature-extraction’’ 
method  was  able  to recognize the  motifs in 7 of 12 cases. 
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For  comparative  purposes, we undertook a  retrieval study  of 
HTH patterns with the  program  BLIMPS, available  in the  pub- 
lic domain  (Wallace & Henikoff, 1992). This  program is block- 
oriented and  therefore suitable for diagnosis  of cases where  there 
is a well-conserved substructure  in  the  family.  The  result  con- 
firmed  what  the  ASSET  study  (Neuwald & Green, 1994) had 
concluded  already.  Four  of  the 12 representative  motifs were 
redetected  by  BLIMPS  (the  output  contained  bacterial  DNA- 
binding  proteins in the  first  place),  and  the  one  homeobox was 
also  identified,  but in two  further  cases  the  correct  assignment 
appeared on the  lower  part  of  the list only,  and  in five  cases, 
the  correct  assignment was  missed entirely.  Again, this  result 
points  to  the very vague  cluster  structure of the  HTH  region. 

Ribokinase family 

The  ribokinase family is one  of several sugar kinase families that 
catalyze  ATP-dependent  phosphorylation  of  sugars. Bairoch’s 
PROSITE  database  (Bairoch, 1993) lists the  current established 
set of 22 sequences  (between 280 and 430 residues long)  under 
the  name  “pfkb-family.”  He includes,  in the  form of regular ex- 
pressions,  two  consensus  signatures  as typical for  this set.  Bork 
et al. (1993) have  studied  this family in  more detail. For sequence 
searching, the particular  intricacy  of  this  motif is that its elemen- 
tary  features  are  separated by long  unrelated regions  of  variable 
length  (up  to 150 residues). 

Because this  conservation pattern is apparently different from 
that of the HTH family, we tested an SOM network on this fam- 
ily. Only  three  full-length  specimens were  used as  learning set 
(Fig. 1). They were presented  without  any  alignment to  a first- 
stage  map, which distinguished 15 features,  and  retrained on a 
parallel  array  of 15 second-stage  SOMs, resulting  in the set of 
typical  features  displayed in Figure 1. 

The 15 SOM networks so instructed  looked  into  the whole 
SWISSPROT  database  and  found (as  a set of maps  “flashing,” 
as it  were,  in the  correct  position) all  22 specimens  of  the  fam- 
ily contained in the  database.  Without second-stage refinement 
(by  matrix  retraining),  identification  was possible  in only 17 
cases. The  PROFILE  software, with a CLUSTAL-W-derived 
alignment  (Higgins et al., 1992), was also  able to  “learn”  on these 
three  sequences  and  produced  (without  refinement) 19 of 22 
specimens  present  in  the  database.  Also,  BLIMPS  (Wallace & 
Henikoff, 1992) is able  to identify three blocks  of the ribokinase 
family,  but  not in all cases  (a notable  exception is LACC-ST 
AAU,  from which only  one  of  the  motifs was found). 

Figure 1 shows sections of  the sequences and their  typical  fea- 
tures. A part  of  the 15 features is identical with the  two  “signa- 
tures” of PROSITE  and  with  the  conserved  blocks  of  Bork 
et al. (1993). These  are  rather well conserved (Gs, Ds, and Ns 
present  in all three  specimens  at  identical  positions).  The  other 
features  as  found by SOM are  more  fuzzy (e.g., only a few res- 
idues  identical in two  of  the  learning  sets,  and  none  identical  in 
all three). A problem  in  all  standard  methods is to find all this 
in  the  bulky  learning  set  without  previous  alignment.  The 
oligoword  strategy  of SOMs performs  satisfactorily. 

In  particular,  the  extraction  of  the  distantly  related  INGK- 
ECOLI is remarkable.  The  overall  sequence similarity of  the 11 
features,  as  identified (see Fig. 1) to  any  one  of its analoga in 
the  three  learning  sequences, is in the twilight zone below 25% 
letter  identity. The identification is complicated by the  facts  that 
the  features  in  INGK-ECOLI  are in completely  unrelated  po- 

sitions of the  sequence  and  that several features  of  the  training 
set are  lacking in INGK-ECOLI. 

It is noteworthy  that,  after  inclusion  of  the newly found  five 
specimens,  the  block  shows  much  more  sequence  identity  than 
the  original  three  ones, suggesting (in a situation  where  one 
would not know  this  in  advance) that a cluster has been collected 
rather  than  just five more  random  sequences.  This  ability  to 
identify  rather fuzzy features  from  an  undersampled set (if in- 
deed a feature is present) is one of the peculiar  capacities of the 
Kohonen  map  hierarchy. 

CUB domain 

The widespread CUB  domain occurs in various  developmentally 
regulated  extracellular proteins  and in complement proteins  (for 
details, see Bork & Beckmann, 1993). It  contains  nine  repeated 
feature  blocks  of  length -6-8 residues,  separated by unrelated 
variable  regions  of flexible length (2-8 residues). Only  two cys- 
teine residues seem to be invariant in all of the 18 modules 
present in SWISSPROT, release 31. The secondary structure  at- 
tained by these patterns  has so far  not been rigorously  deter- 
mined,  but  prediction  analysis suggests  all /3 structures.  The 
sequence  features  are  vague,  consisting mainly of hydrophobic 
and  partly  aromatic  amino  acids. A unique  multiple  alignment 
and hence similarity  analysis is very difficult  to establish. PRO- 
FILE was offered a training set of five specimens and  found  af- 
terward 11 of 18 CUB  examples present in  the  database with  a 
Z score  above 6.0 and  ahead of the  first  false positive. We did 
not pursue PROFILE  further with sophisticated parameters, be- 
cause we wanted  only  to  show  the  CUB  problem  to  be  intricate 
enough.  Our SOM hierarchy, having  learned on the  same set of 
five  specimens,  detected all 18 sequences in  a  fully automated 
run.  Figure 2 shows a detail of the  CUB set that  illustrates  that 
three  characteristic  patterns (7- or  8-words) were found by an 
SOM, without  previous  supervised  instruction  and  without 
alignment. 

Discussion 

Heuristic recognition of patterns in protein sequence sets is a  no- 
toriously  difficult  task  because  different  factors  influence  the 
appearance  of a  sequence: (1) the  evolutionary origin of  the se- 
quence; (2) functional  requirements  (e&,  the need to  form  an 
active  center); and (3) structural  demands  on  the  chain (e.g., the 
need to  form a certain  globular  structure or to fit into a mem- 
brane  medium).  The sequence contains all this information, but 
in  a more  or less veiled form.  Hence,  some  features in  a  family 
of related  proteins  may be quite  evident (e.g., two cysteine res- 
idues  at a certain  distance),  whereas  others  are extremely  fuzzy 
or even obscure  at  the level of primary  structure. 

There exist a number of procedures  for  heuristic  prediction. 
They rely on numerical indicators evaluated for a given position 
of  the  sequence,  such  as  the  frequency of an  amino  acid  or 
amino  acid  subgroup (expressing the degree of  “conservation” 
during  evolution),  the propensity of a  certain amino acid to sup- 
port certain structural  or  functional  demands,  and  the evolution- 
ary or functional  “distance” between amino acids. In most cases, 
a sum  of  indicator weights  over  all positions (a “score”) or sim- 
ilar  statistic is defined for this evaluation. A  learning  stage (dur- 
ing  which  weights are  assigned)  may  be  distinguished  from  an 
application  phase (when diagnostic  “scores”  for  candidates  are 
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Feature mapping of protein sequence patterns 

Aqn3-Pig 9 CGGFLKNYSGWISYYaALTTNCVWTIEMKPGHKIILQILPLNLT.. 

Tld-Drome-3 624 CGGWDATKSNGSLYSPSYPDVYPNSKQCVWEWAPPNHAVFLNFSDLEGTWHY. 

A5p/Xenla-2 147 CSFWFTSSNGVIItSPKYPEKYPNALECTYIIFAPKMQEIVLEFESFELEADSN.. 

Colr-Human-1 17 GSIPIPQKLFGEVTSPLFPKYPNNFETTTVITVPTGYRVKLWQQFDLEPSEG.. 

Tsg6/Human 135 CGGVFTDPKRIFKSPGFPNEYDDNQICYWHIFUKYGQRIHLSFLDFDLEYDPG.. 

feature extraction 

GWISYYK 

GSLYSPS 

GVIKSPK 

GEVTSPL 

RIFKSPG 

feature I 

“best“ matrix: PAM120 

TDCIWTIL 

VEKSWDIE 

FETTTVIT 

IYCYWHFQ 

QICYWHIR 

feature I1 

BLOSUM45 

LQILPLNL 

LNFSDLEG 

LEFESFEL 

LVFQQFDL 

LSFLDFDL 

feature I11 

Taylor  

Aqnl-Pig 9 CGGVLRNYSGRISTYEGPKTDCIWTILAKPGSRVFVAIPYLNLA.. 

Cols-Human-1 11 AWVYAEPTMYGEILSPNYPQAYPSEVEKSlQDIEVPEGYGIHLYE’THLDIELSEN.. 

Tld-Drome-4 787 CKFEITTSYGVLQSPNYPEDYPRNIYCYWHFQTVLGHRIQLTFEDFEVESHQE.. 

Awl-Pig 9 CGGVLRDPPGKIFNSDGPQKDCVWTIXV~HFHWLAIPPLNLS. 

Asfp/BOvin 10 CGGILKEESGVIAmYGPKTNCVWTIQMPPEYHVRVSIQYLQLN.. 

CaspMessau-1 17 ASFSAEPTMHGEILSPNYPQAYP-IEVPEGFGVRLYFTmbfELSEN.. 

Bmpl-Human-2 435  CGGDVKKDYGHIQSPNYPDDYFPS~CIWRIQVSEGFHVGLTFQSFEIE~DS. 

P14/Mouse-l  36 CGDTIKITSPSYLTSAGYPHSYPPSQRCEWLIQAPEHYQRIMINFNPllFDLEDRE.. 

pl4/Mouse-2  158 CGGDWTGESGWASEGFPNLYPPNXKCIWTITVPEGQTVSLSFRW~LHPS.. 

Pspl-Pig 6 CGGRLTDDYGTIFTYKGPKTECVWTLQVDPKYKLLVSIPTLNLTCGKEYVEILEG.. 

Fig. 2. Recognition  of CUB features  by an SOM array.  Shown  are  the  first  three (of nine)  features,  labeled 1-111, as extracted 
by the  “feature  extraction”  network (see Fig. 3) from  the  learning set of five sequences.  “Best  matrix”  was  obtained by retrain- 
ing in the  “feature  tuning”  layer (Fig. 6) and is indicated below each  feature.  The  bottom  part  of  the  figure  emphasizes  the  fea- 
ture  occurrences  detected in some  “unknown”  sequences.  The  whole set of neural  maps  may  be  envisaged  as an  array  of signal 
lamps  that  flash  when  a  common  feature  comes  by. A pattern of flashing  signals  identifies a sequence  belonging to the  set of 
CUB domains. 

calculated).  The  procedures  require a  multiple alignment  of  the 
learning  set.  Our  results  permit  the  general  conclusion  that a 
level hierarchy  of  Kohonen  maps is able  to solve this  same  task 
even in notoriously  intricate cases. Hence, a well-trained  neu- 
ral network is as  good a tool  for  the experimentalist  as is a well- 
designed statistical  procedure. 

At first  glance, the  two principles-statistical  arithmetics and 
neural  computation-seem  to  be  rather  different.  On closer ex- 
amination,  one sees items of similar information processing. The 
most important  one is numerical  encoding  of  sequence informa- 
tion (usually in the  form  of  scores assigned to  “window” sec- 
tions).  Furthermore,  both  approaches  use  the  strategy of 
replacing  the  crude  letter  information by a vector  of physico- 
chemical properties  and/or by a vector of numerical values rep- 
resenting  the  distance between amino  acids.  One  of  the best 
established  arithmetic  methods  of  sequence  recognition is the 
program  named  PROFILE  (Gribskov et al., 1987, improved  as 
iterative  optimization by Liithy  et  al., 1994, and  Thompson 

et al., 1994). It starts  from a set of  prealigned  sequences and cal- 
culates,  position by position,  scores  for  any  amino  acid in a 
given place.  The  scores  are derived from  the position-specific 
frequency of amino  acids  and from similarity  coefficients be- 
tween them. 

Our  Kohonen  map is able  to process the  same  information, 
but  in a different way. Instead of one  scalar  element,  the whole 
vector of coefficients  of an  amino acid in  a weight matrix is pre- 
sented  to  the  learning  procedure. A Kohonen  map  may  be 
trained with a very small  training set (indeed, even from a  sin- 
gle specimen). This  would  create  problems in any  frequency- 
dominated  arithmetic  procedure. 

The  Kohonen  network  learns  and  works with chopped,  un- 
gapped  partial sequences. This  principle is similar to  that of 
methods like FAST  (Pearson & Lipman, 1988: first stage, search 
of “tuples”) or BLAST  (Altschul et al., 1990, looking  for sig- 
nificant  common  “segments”),  and to  the strategy of “block” 
representation  of  sequence  families  (Henikoff & Henikoff, 
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1991). It is obvious  that  such a strategy  does  not  require pre- 
alignments, a t  least not in the  first  stage,  and  thus  circumvents 
principal  obstacles  of  sequence  analysis in the presence of  in- 
sertions and/or deletions. The price to be paid is additional  con- 
sideration  of  number  and  position  of  ungapped  features.  In  the 
Kohonen  network, this necessitates higher levels of  hierarchy be- 
yond  simple  recognition  of  features. 

We have compared  (not shown  here) our Kohonen  map  strat- 
egy with the  more  common  feed-forward  networks (see, for ex- 
ample,  Frishman & Argos, 1992). It  turned  out  that  Kohonen 
hierarchies  discriminate  better, which may  be  caused by the 
topology-preserving  learning  principle  of  lateral  inhibition in 
Kohonen  networks  (Ritter  et  al., 1992). 

The claim of this paper is that  suitably scaled Kohonen  maps 
arranged  in  an  appropriate  architecture  are  able  to  memorize 
and recognize motifs  and  patterns  in  protein  sequences with a 
quality  that is not  worse,  and is often  better,  than  that of estab- 
lished methods.  The  test cases of  ribokinases  and  of CUB do- 
mains  demonstrate  the  ability  to  discern  related  sequences by 
common  short  subsequences  without  previous  alignment.  The 
HTH example  demonstrates  the ability to  be trained  with a re- 
stricted  learning set of  a structural  motif  that is extremely  fuzzy 
on  the level of  primary  structure (see analyses  of  Lawrence 
et al., 1993, and Neuwald & Green, 1994). From a  Kohonen map 
hierarchy  as  reported  here,  one  may expect the  following. (1) 
A detection  performance  occurs  as in any  other  arithmetic  pro- 
cedure  working  on  the  same  principle  (blockwise  detection, 
blockwise optimizing  of mutation  table, discarding  out-of-block 
information  as  “noise.” (2) An SOM is able,  without special  ef- 
fort,  to  “subclassify”  an  inhomogenous  family  by seeing sub- 
clusters  of  features (which  in several  established  procedures 
would be merged by averaging). (3) An SOM learns  without pre- 
alignment on rather small  learning  sets. With such performance 
established,  and given access to  a massively parallel  computer, 
the  method  should  be  applicable  to  search  tasks of enormous 
volume and  may thereby  overcome, or at least alleviate, the well- 
known  capacity  limitation  of  sequence  analysis  against  large 
databases.  At  present, we prepare a systematic  application of 
the  method  to  sets  of  superfamilies. 

Materials and  methods 

We describe  the  Kohonen  mapping  strategy  as  applied  to  par- 
tial  sequences  and,  later  on,  the  hierarchic  array  of  Kohonen 
maps  for  pattern  recognition. 

Feature recognition by a Kohonen map (SOM) 

A feature is a set of characteristic  ungapped  partial  sequences 
of a  certain  length that  are close neighbors  of each  other  accord- 
ing to a scoring  measure.  The  Kohonen  map is trained  to rec- 
ognize  such  features  within a more or less numerous collection 
of  partial  sequences  presented  to  it.  The  sequences  are  coded 
such  that  either  distance or similarity between them is defined, 
and  the  feature  specimens  appear  as a cluster  of  small  mutual 
distance in the  sequence  space,  whereas  nonfeatures  are  at a 
large  distance  from  that  cluster. 

The  algorithmic  details  of  the  training  strategy  are  described 
in the specialized literature (e.g., Hertz  et  al., 1991; Ritter  et al., 
1992). We sketch  only  the  application  to our task. 

The basic model  of  the  Kohonen  map is outlined in  Figure 3. 
For a certain  set of codebook  vectors,  the  signal  space is 
uniquely mapped  into  domains of the pertinent neurons.  “Learn- 
ing” is an iterative process, during which  all input signals are 
“shown” in turn  and  many times to  the  mapping,  and  each  time 
the  codebook vector  of the  pertinent  neuron  (the  “winner”)  and 
those of  its  closest neighbors  become  updated  to  better  memo- 
rize this  signal (shifting  the  codebook  vector  somewhat closer 
to  it). Over a prolonged cycle, this procedure results in the code- 
book vectors being in the center of the  feature specimens around 
them. 

As a  result, we obtain a map of neurons whose codebook vec- 
tors  populate  the signal space  such  that densely populated in- 
put regions also  have a dense  representation  on  the  map (in the 
sense  that  codebook  vectors  of  neurons  that  are  neighbors on 
the  map have a small  distance in the signal space),  whereas in 
sparsely  populated  input regions the  codebook  vectors  occur 
rarely (i,e.,  codebook vectors of  neighboring  neurons have a 
large distance). 

A given feature emerges  in this  transformation  as a  set of in- 
put signals projecting  onto  the  same  neuron  or  its  immediate 
neighbors  on  the  map.  Their  distance  from  the  pertinent  code- 
book  vector  in  the signal space (called “quantization  error”) is 
small.  Any  “nonmember”  of  the  feature set will become  pro- 
jected  either on  neurons  distant  (on  the  map)  from  those of the 
feature (this occurs when relatives of it have been offered in the 
training  set),  or (if unprecedented) will be  projected  at  random 
on  the  neuron  that  happens  to be at  minimum distance, but with 
large  quantization  error. 

Throughout this study we have taken  the  Euclidean  distance 
between signal  vector and  codebook vector as  quantization  error. 

Recognition performance of a Kohonen map (SOM) 

After the properly parametrized passage through  the training it- 
eration,  the SOM recognizes the  feature  (projection with small 

representative  neuron 
I 

‘codebook‘ vectors 

Fig. 3. Schematic  illustration  of  signal  space  and  projection  onto  the 
Kohonen  map.  Sequences  are  encoded  such  that  they  form  a  “signal”; 
that is,  a  vector  of  numerical values unique  for  that  sequence. For any 
pair  of  sequences,  a  “distance” (or some  analogon  of  it,  such  as  a  dis- 
similarity  score) is defined.  Kohonen  mapping is the  projection of the 
signal of any  sequence  onto  a  unique  neuron of a  two-dimensional layer 
of neurons  (the  “map”; see right-hand  lattice).  After  training,  a  unique 
“codebook  vector” is assigned to  each  neuron  of  the  map.  The  “recep- 
tor  field”  of  a  neuron is the  set  of  all  sequence  signals  whose  distance 
from  the  pertinent  codebook  vector is smaller than  their  distance  from 
any  other  codebook  vector.  The  receptor fields form  polygonal  patterns 
in  the  signal  space  (two  such  “honeycombs”  are  shown).  During  train- 
ing,  the  position of codebook  vectors  and  hence  of  the  polygonal  recep- 
tor  fields  are  systematically  changed in accordance  with  the  features  to 
be  learned (see text). 
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error into the domain of the pertinent neuron) and distinguishes 
it from  nonfeatures  (projection with large error  and/or  onto a 
distant  neuron). 

Kohonen’s mapping is essentially a well-selected projection 
from a multidimensional signal space onto a two-dimensional 
lattice. It cannot “completely” preserve the topology of the in- 
put space, in the sense that orderings in the distance remain in- 
tact. All that can be ensured is that clusters of signals remain 
clusters on  the map.  A  codebook vector of a cluster is in some 
sense its “center”; hence, previously unknown relatives of the 
cluster will  be recognized as well as the training specimens 
themselves. 

The number of neurons on the map is of importance  for  the 
performance. Too few neurons  (compared to  the set of se- 
quences) will allow only a very coarse classification. Too many 
neurons will create  a tendency to “learn by heart”; that is, to 
memorize only one individual sequence per trained neuron and 
to miss close relatives. 

The iteration  procedure  has  a  number of parameters  (adap- 
tion step size, learning radius on the map). They have to be suit- 
ably varied during  the  training (see Ritter et al., 1992). 

Coarse classification vs fine tuning of feature recognition 

By a suitable choice and change of the  iteration  parameters  as 
well as of the training sample,  one may construct  a Kohonen 
map  on which more  than one feature is distinguishable by pro- 
jection into different  domains of the lattice (“feature distinc- 
tion’’), or, alternatively, a  different  type of map  that recognizes 
only one feature (against the universe of nonfeatures) but with 
great precision of detail and ability to distinguish “subfeatures” 
(“fine tuning of the  feature”). 

Encoding of input sequences 

The basic item presented as the  input signal is the contents of 
a “window” of width W, that is, a sequence of W amino acids. 
The  amino acid appearing in a certain position is encoded as a 
vector of A elements, either of chemical properties (in binary 
notation, as in  Taylor’s evaluation scheme [ 1986]), or  of numer- 
ical  values. These values may be property coefficients (express- 
ing, for example, hydrophobicity or bulkiness) or scores taken 
from  a weight matrix (like PAM or BLOSUM) (Dayhoff et al., 
1978; Henikoff & Henikoff, 1992). In our application of such 
matrices, the column vector of substitution scores belonging to 
one amino acid is taken as the signal element of that position, 
so that  the whole W-word  is represented by an image consist- 
ing of ( W x A )  elements arrayed in matrix form, and introduced 
into  the computation as a vector of concatenated columns of 
that matrix. This representation of an  amino acid by a vector 
constitutes a conceptual difference from scoring methods like 
PROFILE (Gribskov et al., 1987 and many others), where only 
one scalar is assigned to  one  amino acid in one given position. 
Such a coding procedure defines a convenient distance metric 
as a Euclidean distance between two signals. 

The hierarchy of feature maps 

Kohonen maps are arrayed in parallel, each one  for a different 
feature, and then assembled in hierarchic order to perform dif- 
ferent  recognition  stages (see Figure 4 for  a schematic view). The 

feature  tuning 

feature  exiractkm 

tmlnhg  sequences 

Fig. 4. The feature-map model.  The  flow of information through a set 
of Kohonen maps arrayed in hierarchical order is shown. Each Koho- 
nen map is displayed as a two-dimensional area where individual neu- 
rons aggregate into  neighborhood  regions  (ellipsoids) representing 
“features.” Lines between the layers symbolize the connection weights 
that  perform  the projection from the  respective  input onto the map. Dur- 
ing training, these connections  obtain numerical weights. The input is 
illustrated by a set of unaligned training sequences. The features are  set 
in bold for clarity, but their character is unknown during the training 
phase.  The first (bottom) network learns to recognize typical n-words 
in the chopped (partial) sequences. In the second  “tuning” layer, each 
Kohonen map deals exclusively with the specimens assigned to  one  se- 
lected feature to find the optimal substitution matrix leading to the most 
compact cluster. The third  layer studies the location and repetition pat- 
tern of the features. The uppermost layer is trained to integrate infor- 
mation on one pattern composed  of several features in a specified 
number and location. It is possible to instruct  it to recognize more than 
one pattern, provided the number of neurons is sufficient. Recognition 
of  a family means projection of all signals into  one region of  the Ko- 
honen map. Application (after training) means that  query sequences en- 
ter into the character-recognizing (second) layer, go through the upper 
layers, and become projected into the corresponding family locus. 

processing of the sequence is thus divided into several concep- 
tual stages, which are described in the following sections. 

Step I :  Feature extraction method 

In the first step,  features need to be extracted from a collection 
of candidate sequences. The criterion for the definition of a 
feature is that certain specimens form a cluster in the space of 
sequences; that is, that their mutual distance is small (or, equiv- 
alently, their mutual similarity score large) when compared with 
samples of nonfeatures. 

Finding features in a collection of sequences is the task to be 
solved by Kohonen  maps. We present all continuous sub- 
sequences of a specified length (or range of lengths) to the map. 
After training, the projection algorithm makes it possible to de- 
tect  typical features that occur frequently in the set. As the chop- 
ping produces overlapping words, and  as the word length is 
allowed to vary, a selection procedure follows that defines the 
most compact feature (in terms of quantization error). Figure 5 
shows an example where features are allowed to have different 
lengths (optimized by trial). Table 1, by contrast, gives an ex- 
ample where the sequences have been cut into nonoverlapping 
pieces of specified (likewise optimized) length. This  approach 
may  be preferable in cases where the alignment problem does 
not exist or has been solved previously. 
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Fig. 5. Feature  extraction.  The  manner  in  which  the  subsequences of 
each  training  sequence  are  projected onto  corresponding vicinities of the 
feature  map  (where  individual  neurons  have  not  been  indicated) is il- 
lustrated.  The  procedure  isolates  two clusters whose optimal  compactness 
is reached when they  are  presented  as  5-words or 6-words, respectively. 
The  former is the  RRERN-cluster,  the  latter  the  KCRKRK-cluster (see 
boxes).  They  have very similar  relatives  in  each  of  the  three  sequences 
in similar  position.  Each cluster is projected  into  one  neuron. The  quan- 
tization  error for the  RRERN-cluster is 0.67, that  of  the  KCRKRK- 
cluster 0.78, indicating  a  tight  cluster.  There  are  two  examples of 
5-words,  RKSRD  and  RRSRA, which are  somewhat less related to  the 
cluster  and  are  in  different  locations  in  their  sequences,  and  which  be- 
come  projected  at  some  distance  from  the  RRERN-cluster.  The  quan- 
tization  errors  of  RKSRD  and  RRSRA  are 1.3 and 1.55, respectively, 
indicating  that  they do  not  form a  tight  cluster.  The  5-word  PESSD is 
an example  of a word  that is very distant  from  all  the  features so far 
considered  and is consequently  projected  into  the  corner.  Its  quantiza- 
tion  error is 2.25, indicating  a  “maverick.”  The  quantization  error is a 
mean  distance  between  sets  of  sequences.  It  stems  from  the  representa- 
tion of amino  acids  as  vectors. An evaluation  with  similar  conclusions 
might be done  with,  for  example, BLOSUM45 scores.  According to this 
method,  the  RRERN-group has a mean intracluster score of 22; the clus- 
ter members  toward  RKSRD  have  a  mean  score  of 16; and  those  toward 
RRSRA  have  a  mean  score  of 17; whereas  the  mean  score  to  the  dis- 
tant  PESSD is -4. Note  that this projection is independent  of  any  align- 
ment.  It  recognizes  small  “blocks”  and  analyzes  their  occurrence  and 
location. 

Step 2: Feature tuning 

Once  characteristic  features have  been identified in the set  of 
chopped  sequences,  each  of  them is presented to  one SOM of 
the  second  stage  that specializes  in it (Fig. 6). In  detailed  stud- 
ies,  it has  turned  out  that  “feature  clouds”  of  related  words be- 
come  more  homogenous  and  “compact”  and,  hence, easier to 
recognize  when the similarity criterion is optimized. This  effect 
depends  on  the biological character  of  the  motif or even of  the 
individual  feature of the  motif:  sometimes  mutability  may  be 
the  appropriate  criterion; in other  cases, similarity of physico- 
chemical milieu, structural  features  of  residues, or some  other 
feature is decisive. These different principles are  encoded in the 
published weight matrices (e.g., Dayhoff et  al.,  1978; Bacon & 
Anderson, 1986; Taylor, 1986; Niefind & Schomburg, 1991; 
Henikoff & Henikoff, 1992). The SOMs are  trained with each 
in turn,  and  the  “best”  criterion is selected by the smallest av- 
erage  distance  (quantization  error)  of  the  feature set. Further- 
more,  an  iterative  procedure  tests  whether a shortened section 
of  the  feature  (down  to  4-words) yields a more  compact  repre- 
sentation (i.e., smaller quantization error). If all members  of the 
feature  are very similar, then all of them will be projected to  the 
same  “winner” or “center of gravity”  neuron,  but  the  refined 
training may likewise yield several centers of gravity; that is, sev- 
eral  “subfeatures”  located  as  “images” in different  neurons. 

At  the  end of this  stage,  the  “best” weight matrix  and  the 
“best”  feature length has been determined,  and  there is a trained 
subnetwork  that is able  to  report  that  an  input  word  belongs  to 
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Fig. 6.  Feature  tuning.  One  of  the  features  from  the  previous  figure is 
isolated  and  processed in detail by subjecting  its  members to a  cornpar- 
ative retraining with different weight matrices (the results of four of them 
are  shown).  It is seen that  the set  may  be  represented  in the  most  com- 
pact  and  homogenously  distributed  form  by  retraining  with  the 
BLOSUM45 matrix. We have  found  that  such  fine  tuning  of  the  fea- 
ture  improves  the  performance of the  later  diagnostic  process. 

that  feature.  This  report indicates the  “winner”  neuron  to which 
the  candidate is most similar and  states  the  distance to it. A  dis- 
similar  candidate is at  once recognized by a high quantization 
error or by projection  into a distant  neuron  domain. 

Step 3: Feature location 

To this point, features  have been studied  without  regard to their 
location  in  the  learning  set.  In  the  third  stage, SOMs are  again 
specialized to  one  feature  and  are  trained  to  memorize  occur- 
rence  and  position in the  mother sequences. In  simpler  cases, 
features  occur  once in a sequence,  and  in  prescribed  order.  But 
the  network is also  able  to  learn  that  different  combinations of 
features  may  occur in different  compositions  and  orders. 

Step 4: Pattern analysis 

At  this  stage,  the  information  has been integrated.  Now  the fi- 
nal,  “master” SOM looks  at  whether  the  number  and  position 
range of features  reported  for a query sequence are  correct.  The 
signal from  the  query is projected  to  the closest neighbor on  the 
final  map  and  may  therefore be used for  diagnostic  purposes. 
Decisions may  alternatively  be  taken  after  inspection of  the Ko- 
honen  map  on a screen  graph. If the  capacity  of  the  network 
(number  of  neurons) is  sufficient,  then  more  than  one  domain 
or pattern  may be discriminated by the  same  hierarchic  array. 

Selection of learning sets 

The learning set for  HTH  detection was adopted  from previous 
studies (see text).  In  the  case  of  ribokinase  and  CUB  families, 
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we selected the  learning  sequences  at  random  (three  and five 
specimens, respectively) from  the set of  family  members  as 
present  in  SWISSPROT. 

Any learning  sequence was chopped  into all (ungapped, neigh- 
bors  overlapping)  segments of length W. The value of W  was 
started  at a reasonable  upper  boundary (13 residues),  then re- 
duced stepwise. The  “best” value for a feature is obtained when 
the  mean  quantization  error in the  neurons is minimal  (mostly 
around 4-8 residues). 

This  optimization was  repeated for  different  evaluation tables 
of  amino  acids.  This  resulted  in a “best”  Wand a “best” simi- 
larity  table  for  each  feature. 

Application and selection of diagnostic criteria 

During  application,  both  criteria  (Wand best table) were  fixed 
for  each  feature.  Whether or not a feature is present in a query 
window is decided by its  individual  q.e.: the  appropriate cut-off 
value is a matter  of  choice by the user. 

A default  criterion was constructed in the following way. The 
longest individual sequence from  the  database  that certainly did 
not  contain  the  feature was selected, and a set of “nonmembers” 
was  obtained  from  all  possible  (overlapping)  windows  of  that 
sequence.  Then  the  individual  quantization  errors  after  train- 
ing was recorded  for  all  “members”  of  the  training  sets  as well 
as  from  all  nonmembers,  and was arranged by magnitude in a 
list. If this  array  separated  members  from  nonmembers with- 
out mixing, then  the  average between the  “worst”  q.e. of mem- 
bers  and  the  “best”  q.e.  of  nonmembers  served  as  default 
cut-off. 

If both  q.e. sets would  overlap,  then  the user has  to  decide 
which type of  error  (number of  false positives or number of false 
negatives) is to be minimized, or, otherwise, which compromise 
is to  be adopted.  This selection depends  on  the specific goal of 
the  search. 

Evaluation of the training result 

The  ratio of the  mean  distance  of  training  vectors  from  their 
codebook vector after  training  to  the  mean  distance of training 
vectors from their  center-of-gravity vector before  training serves 
as  an  evaluation  measure. For good  learning,  this  measure 
should be considerably smaller than  unity (e.g., 0.1). However, 
approaching  zero  means “learning by rote”  and is to be avoided, 
either by reducing  the  network  dimension or by reducing  the 
final  “learning  radius”  of  the  algorithm. 

Programs 

The  hierarchic  network system  (called an  SOM) is a  set of pro- 
grams  and  subroutines.  They  are  implemented  on a cluster of 
5 Sparc 10 stations  (i.e., in parallel).  The  resulting  program is 
quick  for  both  stages - training  and  execution-  the  time  con- 
sumption being proportional  to  the  number of networks  and  to 
the  dimension  of  the  database. A search  through  SWISSPROT 
and  PIR  (combined) for the HTH motif  as  described in the  pa- 
per  takes 1.5 h. 

The  programs  are  written in ANSI-C  language  and  may be 
run on UNIX and MS-DOS machines. We are  preparing a  ver- 
sion accessible via ftp-server (ftp  ftpmdc-berlin.de)  and  WWW- 
server  (www.mdc-berlin.de). 

Very extensive computations were done  on  the  MasPar  com- 
puter of the university of  Stuttgart  (IPVR). 
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