SPRY domains in ryanowine receptors （Ca2＊－pelease chamels）

Intracellunar Ca^{2-} signalling is cxitical to the control of diverse cellular processes ${ }^{1}$ and depends，in many instances，on the release of Ca^{2+} ions from intracellular stores via either inositol 1，4，5－trisphosphate receptor（ $1 P$ ，R ）or ryanodine receptor（RyR）subtypes ${ }^{2}$ ．In excitable striated muscle cells，membrane depolarisation induces a signal via the dihydropyridine receptor（DHPR）that triggers RyR－mediated Ca^{2+}－release from the sarcoplasmic reticulum．The DHPR－mediated signal is coupled to $R y R-1$ and／or RyR－2 homotetramers by one or both of two mechanisms，dependent on the RyR subtype： Ca^{2+}－induced Ca^{2+} release is accomplished by either RyR－1 or RyR－2，whereas a mechanical coupling of DHPR with RyR is mediated solely by RyR－1（Ref．3）．IP， \mathbb{R}^{2} and RyR proteins are homologues，with sequence－similar amino－ferminal regions， encompassing the $\mathbb{I P}_{3}$－binding site in $\mathbb{I P}_{3} \mathrm{Rs}$ ， and carboxy－terminal regions，containing between $4-12$ membrane－spanning sequences ${ }^{1.2 .4}$ ．The intervening central regions of RyRs and $\mathbb{I P}_{3}$ Rs，however，are sequence－dissimilar and are likely to contain domains with modulatory and transducing functions．

Here，we report the identification of a domain that is present in three copies in each of the three mamnalian RyR subtypes．The triplicated domain is located in the central $P_{3} R$－dissimilar region of RyRs，and is also present three times in a Dictyostelium discoideum dual－specificity kinase termed spla．Owing to the repeats in splA and RyR，we refer to these sequences as SPRY domains．Our interest in these domains arose from a recent collation of proteins containing a domain termed a＇sterile alpha motil＇（SAM）${ }^{5}$ ． SpIA（also called DPYK1）contains a single SAM and is a dual－specificity kinase that regulates spore cell differentiation ${ }^{6}$ ．A Blastp ${ }^{7}$ search with the amino－terminal region that precedes the $S A M$ domain

AYNR FABBIT－3 AYNR／CAEEL－3 RYNR RABIT－1 RYNR／CAEEL－I RYNF＿RABIT－2 RYNRICAEEL－2 ROU＿HUMAN DDXIMHUNAAN F20a1．9／CAEEL SPLAVDICDI－y SPLA／DICDI－2 SPLADICDI－3 P532／HLMAN C26e6．5／CAEEL Ygl227w／YEAST
ASH2／DROME YmB520．20c／Sc
YKM4 VEAST consengus／80\％ 2nd structure

AYNP＿RABIT－ 3 PYNR／CAEEL－3 Q FYNR＿RABIT－1 RYNR／CAEEL－1 RYNR＿RABIT－2 RYNP／CAEEL－2 ROU HUMAN DOXI／HUMAN F20a1．9／CAEEL SPLAMICDI－1 SPLA／DICDI－2 SPLA／DICDI－3 P532／HUMAN C26e6．5／CAEEL Ygl227w／YEAST ASH2／DROME Ym8520．20c／Sc YKM14＿YEAST consensus／80\％ 2nd Structure

PYNR＿RABIT－3
RYNARABIT－3 ．NT FQ E．．．．PNTK GYNA＿RABIT－1 FYNR／CAEEL－ 1 RYNF RABIT－2 RYNF／CAEEL－2 ROU＿HUMAN DOX1／HURAN F20a1．9／CAEEL SPLADDICDI－ 1 SPLADICDI－2 SPLAJDICDI－3 P532／HUMAN C26e6．5／CAEEL Vgl227w／YEAS ASH2／DROME Ym8520．20c／Sc YKM4＿YEAST consensus／80\％ 2nd Structure
 shhyay？
＊VNPDUH（7）．DLSK RAVT TVGE（10） （ VTTQUH（7）．GSQG RECR SEADH（10） E ALTEGY 10 GGNG GDDL S G DGLHL E ANSVEF（101GCNG GDDF：S．G DGKSM G ARPELR．．．FDVE EADE A V NG © MDIGST．．．．PEIQ CADD S A DG． ELTTSG．．．．．．ML GEEE S G S． G STMOAS．．．．．．LD GTDK：G G G ． G ATLGeS．．．．．．LN GKGLDS G G． © TTNDEAE．．．IEVY GNYQ S：G．S．．．． G ANLEFP．．．TFYK GNMP：S：G H（4）R C SHSTYP．．．FIKH GREP S G S．．． G SRWPYH．．．．DFN RTESSDM L RA．．． G ATKHEA（5）．YVAL GSDD S G NL．．． G KLVERE（66）KCQK GFDL：V G：CG．．． G GREYGN．．．LQAP GYDK G 5 RS． c STQPYF ．．．YFRL GRHH S A D．．． G ITVPYP． ．YFRV GMAK S A E．．．． ．higt ．huhuap．．．．
eee eete
p．s．hhlGhsp．．h．

SNC	GDE－VSPGQQGRISHTDL
QNC	SEL．．．．LATTPD ANTK
WTG	VTS．．．．．PGQHL APET
YFG S	VGH．．．．．．．．kL EKGD
．HR	LGS．．．．EPFGRP QSGD．
．YL	QGA．．．．ETYGKE KIGD．
．LK	NCE ．．TEDYGEK DEND．
．GT ：S	NKQ．．E DNYGEE TMHD．
．GT S	HKK．．FDDYGLP TLNE．
．GD	GTNE ．．GRVYGPS SSGD．
KFR EE	GVNE ．．GESYGSS KKGD
SE E	GSEI ．．GEPYGPF FFDG（8）
．YS	NGE ．．QTLTLSS TQGD．
．VD	NGA（6）KMNNPPK EVGD．
．FD	STE．QSKEYAKP GRDD．
．RK	ESH．．．GKHYSDA VEGID．
．SN	NDS（6）LRTLFPQ EKGD．
．ST	NNP．FTAST
．．phhhnhsst．．．．．．．．．．．ht．sD eeeEe	

cc	D ATG．．．L T T TGKES
ec	D SIG．．．．E S Q GSTD
SC	D SVP．．．S．SR．EECP
Gc．	D TIP．．．．E．K S 区itTY
EC	D TEN．．．T．I T
EC	D NDR．．．．T S S MGEL（6）
TC：	N ESDEV．E S A Requd
cc	D DKG．．．H K S XUKD
cc	D DSR．．．．T W S \％eeq
EC	DSSSK．．．．T Y T EESVY
GC	S TSR．．．．E F T ${ }^{\text {Stem }}$
cc	N STR．．．${ }^{\text {d }}$ ．T
TC	D EAR．．．．T S G meem
RL	D DTH ．．．V Y E MEEF
cc	N IDG．．．．S F T R⿰耳又土IH：
cr	E PEE（23）R E F MEPS
GI	：RSRSG ．．．T F T Weakk N．E
GF	R KTG．．．T F T \％GKK
hlGsh1s EEEEEE	lchptt．．pl．FshNGp．h． eEe eEEEe

．NT FQ E．．．．PNTK	PA F LPTHQNV Q E GKQK P11716	（1429－1570）
．GI FK E．．．．PGAM	ga F TPTATEI Q E GRIK U64854	（1459－1602）
QGV EA N．．．．LDGL	PV S SAG．．VK R L GGRH P11716	（658－797）
SGS KK N．．．IDGY	PV S SAK．．VS R I GGNQ U64854	（574－709）
ETA RE E．．．．IGDG	EV S GPG． S QV H N EQDV P11716	（1084－1208）
EMA DN V．．．．CODG	PA T GSG．．QR R N GQQS U64854	（996－1120）
GVA KISKEV．LAGRP	PH L HNC．．．A E N GQKE Q00839	（325－444）
GLA EI PH．MKNQA	EA V：KNA．．．E K N GEEE X70649	（123－240）
PAA SL VKYKNSNTC	PA L QNS．．．S S N GSQP U53150	（92－211）
GVA OK．．．．．INLIG	FT G QNPGESV I F GPFS U32174	（56－178）
GTA SN ．．．．YGV	gS A NEPG．IS T V OPPF U32174	（256－382）
GVA SR ．．．．．TSDP	\＆S S RGVVGGL V T PGGH U32174	（746－876）
KLA ED ．．．．DAAE	PC．M Y ．SNPGEK K CDMQ U50078	（2072－2190）
GIA NH ．．．．PPLR．	PA C VYGNTEV M Y GSPQ U13875	（197－330）
GNA TD ．．．．．NDLE	PY A RPG．．NS K N GLNE 272749	（398－591）
GVA ED ．．．．YAGS	PA S HKS．AT R N GPAF U73809	（326－525）
KSV GH RG．．WKFQY	PI GSNVP．．CQ H N GTYG 249705	（21－160）
MDV QN G．．．，IDLF．	IG F AA．．．YT T T DGLL P32343	（227－363）
```.sshtth.....s.. eEe```	$\begin{aligned} & \text { aPsh.htss....hph.hGt.. } \\ & \text { eeEEEE } \quad \text { eEEEEEe } \end{aligned}$	

Figure 1
Multiple alignment of representative SPRY－domain sequences（apparent orthologues have been removed from the alignment）． $\beta$－strands $\beta 3-\beta 4-\beta 5$ are expected to be aligned with less accuracy than the remainder of the $\beta$－strands．Secondary structure prediction，using the PHD server ${ }^{16}[H / h$ denotes an $\alpha$－helix and E／e a $\beta$－strand with an expected accuracy higher than $82 \%$（upper case）／72\％（lower case）］is shown beneath the alignment，as is the consensus sequence（threshold $=80 \%$ ；$a=$ aromatic，$c=$ charged，$h=$ hydrophobic，$p=$ polar，$s=s m a l l$ ， $\mathbf{u}=$ tiny）．Dots represent insertions／deletions．Residue limits and SWISS－PROT，EMBL and PIR accession codes are shown following the align－ ment．RYNR＿RABIT represents rabbit RyR subtype 1．Numbers in parentheses represent residues excised from the alignment．Species： CAEEL，Caenorhabditis elegans；DICDI，Dictyostelium discoideum；DROME，Drosophila melanogaster：RABIT，Oryctolagus cuniculus；YEAST and Sc, Saccharomyces cerevisiae．Repeats in splA were also detected using REPRO ${ }^{17}$（three pairwise alignments scored $>300$ ）．A motif search Using MoST ${ }^{18}$ and an alignment block（overlined）of the three spla repeats，identified similar sequences in five RyRs，a $D$ ．melanogaster DEAD－box protein，C．elegans F20a1．9，and yeast YGL227w and YM8520．20c（ $E<0.01$ ）in an initial iteration（parameters $E=0.02,1=80 \%$ ）； subsequent iterations yielded all sequences shown in Fig．1，with the exception of RyR SPRY3，hnRNP U，p532 and C26e6．5．A human SPRY domain appears to be partially encoded by expressed sequence tags H26869 and R73437．The SPRY domain carboxy－terminal limit is defined by the SPRY domain in C26e6．5（residues 197－330 of a total of 332）；the amino－terminal limit is more poorly defined and is likely to extend further than shown here．


Flgupe 2
Schematic representation of the domain organisations of SPRY domain-containing proteins. SPRY domains are shown as purple boxes, and a previously-described fourfold repeat in RyRs is represented by a green box. The DDX1 SPRY domain is present as an insertion within a helicase homologous sequence ${ }^{12}$. The YGL227w SPRY contains a 60 -residue insertion. Inositol $1,4,5$-trisphosphate receptor ( $\mathbb{P}_{3} \mathrm{R}$ )-similar regions in RyR are represented by red ovals. Black stripes represent the minimum number of transmembrane segments thought to be present in RyRs. Regions rich in a particular type of amino acid ( D or $\mathrm{E}, \mathrm{N}, \mathrm{Q}$ or G) are indicated by a solid line. P532 contains two regions ('RLD') that are homologous to the RCC1 cell-cycle regulator, and a region containing seven WD40 repeats ${ }^{13}$. A region of p532 that is similar to a hypothetical Caenorhabditis elegans protein (C01b7.6) is represented by a brown box. Putative ATP- and RNA-binding sites within hnRNP $\mathrm{U}^{10}$ are indicated. Mutations in the RyR-1 gene that are associated with malignant hyperthermia susceptibility ${ }^{19}$ do not map to any of its three SPRY domains. Results of profile, motif and HMM methods (not shown) indicate the presence of two EF-hands in RyRs. of which the first was reported to bear 'some resemblance' to EF-hands in a previous publication ${ }^{20}$. The amino-terminal EF-hand is strongly predicted by these methods [e.g. score of 35 bits for C. elegans Ryr- 1 using an EF-hand HMM ${ }^{21}$, whereas the carboxy-terminal EF-hand is more poorly predicted ( 10 bits)]. However, the latter prediction is made given that EF-hands almost invariably occur in pairs and that PROSITE ${ }^{22}$ predicts two EFhands in C. elegat 5 Ryr.1.
(residues 1-905) revealed significant similarities with the Caenorhabditis elegans Ryr-1 $\left(p=1.9 \times 10^{-8}\right)$, a hypothetical Saccharomyces cerevisiae protein (YGX7; $\mathrm{p}=2.6 \times 10^{-7}$ ), a Drosophila melanogaster helicase homologue ( $P=4.5 \times 10^{-5}$ ) and other RyR isoforms $\left(10^{-4}<\mathrm{P}<10^{-2}\right)$. In addition, the Blastp output revealed regions of sell-similarity within the spla sequence (pairwise alignments with FiSP scores 121,114 and 81 ). indicating the presence of three repeats. The presence of triplicated repeats in splA was further indicated by MACAW ${ }^{8}$-derived three-way alignments that yielded p -values of 0.0 and $6.2 \times 10^{-11}$; similar methods were used to suggest three repeats in rabbit skeletal muscle and in other RyR isoforms ( $\mathrm{r}=1.1 \times 10^{-9}$ and $1.0 \times 10^{-2}$ ). A profite, prepared from an alignment of the three splA SPRY domains, when compared in a single iteration with databases using SWise ${ }^{9}$ indicated SPRY domains in RyRs and a further nine proteins (Figs 1, 2). These and other results (see Fig. 1 legend) lead us to propose that these proteins contain homologous domains.
Although no information concerning the functions of SPRY domains is yet
avallable, their presence in two proteins suggests a possible RNA-binding role. Heterogeneous nuclear ribonucleoprotein $U$ (hnRNP $U$ ) is a nucleoplasmic RNA-binding protein that is thought to participate in RNA processing ${ }^{10}$. and $D D \% 1$ is a putocive RNA helicase that has been suggested to contribute to the control of cell growth and division ${ }^{11.12}$. However, it is not clear what functional benefit might accrue to RyRs from their posser sion of three RNA-binding SPRY domrains. The remaining proteins ${ }^{*}$ functions are uncharacterised, except for two p.oteins: p532 (previously called p619), which stimulates guanine nucl sotide exchange factor on ARFI and mey perform multiple roles in membranc trafficking processes ${ }^{13}$; and the nuclear protein ash2 from Drosophila, a trithorax group gene product that is required for imaginal disc pattern formation ${ }^{14}$.
In conclusion, a novel domain has been identiiied in RyRs and in other proteins. These results, and evidence for the presence of two EF-hands in RyRs (see Fig. 2 legend), will facilitate both the investigation of the molecular mechanisms underlying $\mathrm{Ca}^{2+}$-induced $\mathrm{Ca}^{2+}$-release and
the identification of RyR domains that bind regulatory components of the Ca- ${ }^{2}$-release complex, such as triadin and FK506-binding protein (reviewed in Ref. 15).

## Heherences

1 Berridge, M. J. (1993) Nature 361, 315-325
2 Furuichi, T., Kohde. K., Miyawaki, A. and Mikoshiba, K. (1994) Curr. Opin. Neurobiol. 4. 294-303
3 Yamazawa, T. et al. (1996) EMBO J. 15. 6172-6177

4 MicPherson, P. S. ano Campbell, K. P. (1993) A. Biol. Chem. 268, 13765-13768
5 Schultz. J.. Ponting, C. P.. Hommann. K. and Bork, P. (1997) Protein Sci. 6. 249-253
6 Nuckolls. G. H. Osherov, N., Loomis, W. F. and Spudich, J. A. (1996) Development 122. 3295-3305
7 Altschul. S. F., Boguski. MI. S.. Gish. W. and Wootton. J. C. (1994) Nat. Jenet. 6, 119-129
8 Schuler, G. D., Altschul, S. F. and Lipman, D. J. (1991) Proteins Struct. Funct. Genet. 9, 180-190
9 Birney, E., Thompson, J. D. and Gibson, T. J. (1996) Nucleic Aciots Res. 24. 2730-2739
10 Kiledjian, M. and Dreyfuss, G. (1992) EMBO J. 11, 2655-2664

11 Rafit. F.. Scarvelis. D. and Lasko. P. F. 11996) Gene 171, 225-229
12 Godbout, R. and Squire. J. (1993) Proc. Natl. Acad. Sci. U. S. A. 90. 7578-7582
13 Rosa, J. .. Et al. (1996) EMBO J. 15.4262-4273 (Corrigendum: EMEO 1. 15.5738)
14 Adamson. A. L. and Shearn, A. (1996) Gerretics 144. 621-633

15 Meissner, G. (1994) Annu. Rev. Physiol. 56 485-508
16 Rost, B. Sander, C. and Schneider, R. (1994) Comput. Appl. Biosci. 10, 53-60
17 Heringa, J. and Argos. P. (1993) Protein Struct. Funct. Genet. 17. 391-411
18 Tatusov, R. L., Altschut, S. F. and Kaonin. E. V. (1994) Proc. Netl. Acad. Sci. U. S. A. 91. 12091-12095
19 Mickelson, J. R. and Louis, C. F. (1996) Physiof. Rev. 76, 537-592
20 Hakamata, Y., Nakai, J.. Takeshima, H. and Imoto. K. (1992) FEBS Lett. 312, 229-235
21 Eddy. S. R. (1996) Curr. Opin. Struct. Biol. 6. 361-365
22 Bairoch. A., Bucher. P. and Hofmann, K. (1996) Nucleic Acids Res. 24, 189-196

## CMRIS PONTING

Fibrinolysis Research Unit, University of Oxford, The Old Observatory, South Parks Road, Oxford, UK OX1 3RH.
Email: ponting@molbiol.ox.ac.uk

## JORG SCHULTZ AND PEER BORK

EMBL, Heidelberg and Max-Delbrūck-Center for Molecular Medicine, Berlin-Buch, Germany.

