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We have developed and implemented a method for
computational gene identification called GIN (gene
identification using neural nets and homology infor-
mation) that has been particularly designed to avoid
false positive predictions. It thus predicts 55% of all
genes tested correctly, has a specificity of 99%, but also
has an overall accuracy of 92% on a benchmark set of
570 vertebrate genes constructed by Burset and Guigo.
The method combines homology searches in protein
and expressed sequence tag databases with several
neural networks designed to recognize start codons,
Poly(A) signals, stop codons, and splice sites. Pre-
dicted exons are assembled into genes using a homol-
ogy-based scoring function. GIN is able to recognize
multiple genes within genomic DNA as demonstrated
by the identification of a globin gene (y-globin-1(G))
that has not been annotated as a coding region in the
widely used the test set of Burset and Guigo. Further-
more, GIN identifies more than 107 other protein hits
in noncoding regions and classifies them into possible
pseudogenes or splice variants. © 1998 Academic Press

Key Words: gene prediction; neural nets; homology
searches.

With the scaling up of sequencing in genome projects
of higher eukaryotes such as Caenorhabditis elegans or
human, there is an increasing demand for accurate
primary annotation of genomic DNA, including the
prediction of the genes and their functions. Although
there are complementary data available, such as ex-
pressed sequence tags (ESTs)! or results of “exon trap-
ping,” gene prediction in large amounts of genomic
DNA mostly relies on computational methods. Numer-
ous methods have been published for prediction of
genes and shown to perform well for known genes (e.g.,

1 Abbreviations used: EST, expressed sequence tag; ORF, open
reading frame; GIN, gene identification using neural nets and ho-
mology information; HSPs, high-scoring segment pairs.
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FGENEH (18), GenelD (11), GeneParser3 (19), Gen-
Lang, (7), GRAIL2 (23), and SORFIND (13), but a
recent benchmark of existing methods showed an ac-
curacy between 52 and 84% when applying these meth-
ods to genomic DNA that had been published after the
methods were developped (6). This set of 570 genes has
been recently used to benchmark newer methods, but
now the set is known and a real performance is difficult
to estimate, although methods obviously become more
sophisticated and also perform better with more data
available. In practice, sequencing groups still often use
several complementary methods and assemble the
genes manually as there are several parameters such
as sensitivity (Sn) and specificity (Sp) (Table 1) that
need to be considered and which vary greatly in the
numerous programs available (6).

As it is very important to avoid false positive predic-
tions and to “polluting” sequence databases with
wrongly assembled genes, we intended to develop a
method with high specificity and a low error rate. Er-
rors can propagate in databases and hamper consider-
ably subsequent analysis. Retraction or updating of
erronious database entries is the exception rather than
the rule (2).

The challenge in computational gene prediction is
the efficient combination of various complementory
weak signals that leads to the identification and cor-
rect assembly of exons. As we consider homology infor-
mation to be the strongest signal, we developped a
method that tries to extract as much information on
the coding region as possible out of a detected similar-
ity with database proteins or ESTs. Homology informa-
tion has been recently incorporated into several gene
prediction programs (e.g., GenelD+ (11), GeneParser3
(19), PROCRUSTE (9), and GenView (16), but usually
at the end of the prediction procedure. Here we start
with exploiting this signal and refine it using several
neural nets for start codons, Poly(A) signals, stop
codons, and splice sites (Fig. 1). The most similar ap-
proach is PROCRUSTE, which is also using BLASTX
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TABLE 1
Performance of the Programs in the Test Set of 570 Vertebrate Gene Sequences Constructed by Burset and Guigo (6)

Accuracy per nucleotide

Accuracy per exon

Method Sn Sp AC CcC Sn Sp Avg. ME WE
GIN 0.92 0.99 0.92 0.91 0.78 0.80 0.79 0.11 0.04
GENSCAN 0.93 0.93 0.91 0.92 0.78 0.81 0.80 0.09 0.05
GenelD+ 0.91 0.91 0.88 0.88 0.73 0.70 0.71 0.07 0.13
GeneParser3 0.86 0.91 0.86 0.85 0.56 0.58 0.57 0.14 0.09
GeneParser2 0.66 0.79 0.67 0.65 0.35 0.39 0.37 0.29 0.17
Genie 0.76 0.77 0.72 0.55 0.48 0.51 0.17 0.33
FGENEH 0.77 0.88 0.78 0.80 0.61 0.64 0.64 0.15 0.12
GRAIL2 0.72 0.87 0.75 0.76 0.36 0.43 0.40 0.25 0.11
GenelD 0.63 0.81 0.67 0.65 0.44 0.46 0.45 0.28 0.24
GenLang 0.72 0.79 0.69 0.71 0.51 0.52 0.52 0.21 0.22
SORFIND 0.71 0.85 0.73 0.72 0.42 0.47 0.45 0.24 0.14
Xpound 0.61 0.87 0.68 0.69 0.15 0.18 0.17 0.33 0.13

Note. Sn/nucleotide, TP/(TP + FN); Sp/nucleotide, TP/(TP + FP); CC, (TP*TN — FP*FN)/sqrt(PP*PN*AP*AN); AC, 0.5 * (TP/AP +
TP/PP + TN/AN + TN/PN) — 1. AP, actual positives; AN, actual negatives; TP, true positives; TN, true negatives; FP, false positives; FN,
false negatives. Sn/exon, (number of correct exons)/(number of actual exons); Sp/exon, (number of correct exons)/(number of predicted exons);
Avg., (Sn/exon + Sp/exon)/2; ME, (number of missing exons)/(number of actual exons); WE, (number of wrong exons)/(number of predicted

exons).

(10) for fast identification of exons, but the details such
as recognition of DNA signals, exon assembly, etc. vary
greatly.

When analyzing the matches of putative exons to
protein databases, we were surprised to find numer-
ous similarities to proteins in the annotated introns
or intergenic region of a test set collected by Burset
and Guigo (6). Although most of these hits comprise
pseudogenes or even artificial open reading frames
(ORFs) stored in public protein databases, the data-
base searches are also indicating distinct splice vari-
ants and a real gene that has not been annotated and
does not appear in any report on novel gene predic-
tion methods that have used benchmark of Burset
and Guigo (6) (e.g., Refs. 5, 12, 15). This raises ques-
tions as to the validation of prediction methods as
the annotation cannot be taken as the absolute
truth.

In the following, we briefly outline our strategy for
gene prediction and then discuss the results.

As the expectation of finding for a given query
homologous sequences in public databases is increas-
ing (3) and a significant similarity to a protein is the
strongest signal for a coding potential, we first scan
(after filtering out ALU and B2 DNA repeats using
BLASTN program for the public repetitive sequences
database (Ref. 14; see Fig. 1)) public protein data-
bases using the BLASTX program (10). As the mem-
ory requirements increase with the length of the
genomic query sequence, we chop long queries into
shorter segments and reassemble them. If no puta-
tive exon is indicated, we use the TBLASTX program

to compare the genomic query sequence with public
available ESTs.

We then combine this information with searches
for various DNA signals such as start codon, Poly(A)
signal, stop codon, splice site, and branch point sig-
nal by using the back-propagation neural network
model (21) to determine all the possible exons. The
back-propagation model has a multilayered sensory
structure and a strong ability for self-organizing and
self-adaptability, by learning some representative
examples, to know fundamental characteristics of
the objects. The self-learning algorithm of the back-
propagation model is an iterative procedure. At first,
a set of initial weights of the network is given, and
then one by one samples are input to the network
and the output is calculated. The difference between
the calculated value and the expected value is used
to update its weights so that the difference can be
reduced. This updating process will be repeated until
the difference is smaller than a specified error value.
After the neural network is trained in the self-learn-
ing way by sufficient samples, the final weights are
its correct interior representation.

In this research, the four bases of DNA sequences
are coded as 4D vectors composed of only 0 and 1 (A,
1000; T, 0100; G, 0010; C, 0001), which are taken as the
input of the neural network. Therefore, the number of
units in the input layer is equal to the number of
nucleotides contained in training samples X 4. The
output layer contains one unit. The neural network
model just has one hidden layer which contains eight
units.
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FIG. 1. Flow chart of the GIN system.

The training database includes 420 sequences size of the training database, it is not given in this
taken from five eukaryotic organisms: human, rat, paper, but it is available from the authors upon
cattle, sheep, and monkey. They are all different request.
from the 570 sequences of the ALLSEQ database (6) Let (i, j) be the exon interval found by sequence
which was taken to be our test set. Because of the signal searches and (x, y) be the homology hits.
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(i, j) is a putitive exon determined by the following
rule:
|x—i| <80 and |y—j| <80.

The remaining part is to find an optimal path
through all the possible exon combinations from likely
start to stop codons. Our scoring function for this com-
puter-intensive task is again provided by homology
information as the highest scoring hit to a matching

protein is considered as the most likely gene.
The detailed procedure is the following (Fig. 1):

Step 1. Input a genomic sequence.

Step 2. BLASTN search: sequence — repeat data-
base. Get hits to the best homology repetitive sequence:
high-scoring segment pairs (HSPs) score >160.

Step 3. BLASTX search: sequence — NRDB. Get
hits to the best homology protein: HSPs score >95.

Step 4. If there are not any hits (HSPs >95) found,
go to Step 5; otherwise, go to Step 6.

Step 5. TBLASTX search: sequence — NREST. Get
hits to the best homology cDNA sequence: HSPs score
>110.

Step 6. Start codon (CCA/GCC|ATGG), Poly(A) sig-
nal (AATAAA), stop codon (TAA, TGA, TGA), and splice
site (5’ ss, AICAG |GTRAGT; 3’ ss, YYYYYYYYYYYAG;
branch point signal, CTRAY; R, purine; Y, pyrimidine)
searches by neural network method (back-propagation
model).

Step 7. Determine all the possible exons: Let (i, j) be
the exon interval found by sequence signal searches
and (X, y) be the homology hits. (i, j) is a putitive exon
determined by the following rule:

|x —i| <80 and |y—j| <80.

Step 8. Get all the possible exon combinations from
start codon to stop codon. Find all the ORFs by reading
the combinations codon by codon until the stop codon
(TAG, TAA, TGA) occurs.

Step 9. Predicted gene is the ORF which has the
highest similarity score to the best homology protein or
cDNA of the genomic sequence.

Significant similarities to proteins that cannot be
integrated into gene models are considered as a core
unit for a separate gene in order to be able to handle
nested genes or simply neighboring genes within a
genomic contig. If such core units cannot be assembled
into complete gene models, there might be several rea-
sons for it: (i) Gene identification using neural nets and
homology information (GIN) is unable to locate DNA
signals or misses exons, leading to the conflict of hav-
ing a likely coding region (determined via a significant
homology to a protein); (ii) the protein match might be
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spurious, for example, due to compositional bias (10);
(iii) the protein stored in a public database is an arti-
fact and in fact not coding; (iv) the protein match is
caused by a pseudogene; or (v) the match is due to an
alternative splice variant.

GIN does not consider those matches as genes (i.e.,
they are not included in the statistics), but several rules
are applied to classify those regions by parsing the out-
puts of the database search programs. For example, if a
“splice variant” is indicated in the header of a matching
protein, it is likely that an alternative splicing variant
has been found, unless the respective gene is modified in
a disease only and thus should not be considered as a
good alternative. High-scoring matches that cover only a
short part of the matched database protein are consid-
ered to be pseudogenes if they cannot be fit into a gene
model. Matches to a single protein in the TREMBL da-
tabase (EMBL entries translated by a script from and
provided by Thure Etzold, EBI) or in the PIR fraction
that does not have a counterpart in other databases are
also treated with caution as we repeatedly identified ar-
tificial proteins in this set. All this additional information
is provided by GIN.

The performance of GIN was tested on the set of 570
vertebrate multiexon gene sequence (6). The standard
measures of predictive accuracy per nucleotide and per
exon are shown in Table 1. They indicate that GIN
performs considerably better than other methods that
utilize homology information (e.g., GenelD+ or Gene-
Parser3), although a direct comparison with PRO-
CRUSTE and GenView is not possible as they do not
use the benchmark introduced by Burset and Guigo (6).
One difference to PROCRUSTE and GenView that
should contribute to an increase in accuracy is the
choise of a more exhaustive database. We use an as-
sembly of different databases (SWISSPROT, GEN-
PEPT, TREMBL, and PIR) cleaned for identical se-
quences using the NRDB script from the NCBI. This
daily updated NRDB database probably contains four-
fold as many sequences as the annotated SWISSPROT
part, although it is still redundant.

Comparison of the accuracy data (Table 1) shows
that GIN performs similar to GENSCAN (5), a pro-
gram that is based on DNA signals, compositional fea-
tures of exons, introns, and intergenic regions, and
that does not use homology information. Only the spec-
ificity/nucleotide is currently better than other pub-
lished methods (for the test set). Another important
parameter is how many of the genes are entirely pre-
dicted correctly (“gene-level accuracy” as introduced by
Burge and Karlin (5)). GIN performs here considerably
better than GENSCAN with 0.55 (315 out of 570 genes)
for GIN and 0.43 (243 out of 570) for GENSCAN, re-
spectively. The greater accuracy in specificity/nucleo-
tide means that GIN has less false positives in predict-
ing nucleotides; therefore, there is less chance to
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TABLE 2

Classification of the 108 Hits in Noncoding Regions
of the Test Set

Classes Number Intergenic Intron
Genes 1 1 0
Pseudogenes® 71 46 25
Variant 9 2 7
Single high-scoring hit
in TREMBL or PIR® 27 17 10
Total 108 66 42

2 Criteria for classifying: High-scoring hits cover only a short part
of the matched database protein and they cannot be fit into a gene.

® We do not exclude such hits, but caution and manual analysis are
recommended.

provide false positives in amino acids in the final pre-
dicted protein product. Thus GIN performs better than
GENSCAN in gene-level accuracy as mentioned above,
although the specificity/exon (specificity in exon level is
the proportion of predicted exons that is correctly pre-
dicted) is similar to GENSCAN's. However, one has to
consider that (i) all of the 570 genes have some ho-
mologs in current databases, (ii) the test set is known
and thus some of its information is indirectly used for
training, and that (iii) the intron/exon structure in the
test genes is often rather simple (5).

Furthermore, when analyzing the false positives, we
found that a y-globin-1(G) from monkey (Accession No.
X53419) is in fact a correct prediction and a known
gene (8) but was not annotated in the benchmark set as
coding due to a missing database comment. Thus, we
cannot exclude that more genes might be hidden in the
test set.

As GIN records all significant similarities of the que-
ries to putative proteins that are likely cores of exons
but that cannot be assembled into complete genes, we
were able to map and to classify as many as 107 of
those hits into the noncoding regions of the 570 query
contigs of the test set (Table 2). Some of them are
predicted as “alternative splice variants.”

These matches provide an additional annotation
that is hard to decode into an “accuracy” value. For
example, fragments that GIN classifies as “pseudo-
genes” might in fact be parts of overlooked genes that
GIN fails to assemble properly. Also, there were 14
partial hits to reverse transcriptases of transposons
which GIN annotates separately. Some of them might
in fact be functional.

Taking together (i) the prediction of a complete gene
in a region annotated as intergenic, (ii) several indica-
tions of alternative splicing, and (iii) several other re-
gions that harbor pseudogenes or genes calls for cau-
tion when interpreting percentages of accuracy (Table
1). Thus, the numbers measured on the test set of
Burset and Guigo (6) (Table 1) can only be seen as
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rough guides, and only the praxis will show the real
performance.

In addition, the weak point of GIN is rather low
prediction power, if no database hits are found. For
new genes where we expect approximately 30% with-
out a database hit, the accuracy will go down consid-
erably. And there is also much room for improvement
of the GIN system as we currently have no good
handle for the prediction of very short exons (<40
nucleotides) that are often overlooked by GIN. Even
if we consider all possible exons predicted by DNA
signals (a time-consuming step), their occurrence as
terminal exons still remains a problem. Another
problem remains the extreme compositional bias of
some genes. Usually, one can “filter” those regions in
the BLAST program suite using, for example, the
SEG program (22) in order to avoid spurious hits.
Unfortunately, this is at the cost of masking exons,
so that a complicated and time-consuming iterative
search system has to be applied.

In summary, the GIN system shows that when uti-
lizing homology information in a first step (if applica-
ble) and in combination with signal searches by neural
nets, a reasonable accuracy in gene prediction can be
achieved. GIN should be complementary to methods
such as GENSCAN as its principle is very different. A
server for gene prediction using GIN with all the fea-
tures discussed has been recently provided: http://Avww.
bork.embl-heidelberg.de/fmilpetz/GINY/.
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